cambridge.org/jhl

# **Research Paper**

**Cite this article:** Li WX, Zhang D, Fu PP, Song R, Zou H, Li M, Wu SG, Wang GT (2020). Characterization and phylogenomics of the complete mitochondrial genome of the polyzoic cestode *Gangesia oligonchis* (Platyhelminthes: Onchoproteocephalidea). *Journal of Helminthology* **94**, e58, 1–10. https:// doi.org/10.1017/S0022149X19000452

Received: 26 February 2019 Accepted: 30 April 2019

#### Key words:

Mitogenome; Onchoproteocephalidea; Eucestoda; parasitic platyhelminths; *Gangesia oligonchis* 

Author for correspondence:

G.T. Wang, E-mail: gtwang@ihb.ac.cn

© Cambridge University Press 2019



# Characterization and phylogenomics of the complete mitochondrial genome of the polyzoic cestode *Gangesia oligonchis* (Platyhelminthes: Onchoproteocephalidea)

# W.X. Li<sup>1</sup>, D. Zhang<sup>1,2</sup>, P.P. Fu<sup>1,2</sup>, R. Song<sup>3</sup>, H. Zou<sup>1</sup>, M. Li<sup>1</sup>, S.G. Wu<sup>1</sup> and G.T. Wang<sup>1</sup>

<sup>1</sup>Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; <sup>2</sup>University of Chinese Academy of Sciences, Beijing 100049, China and <sup>3</sup>Hunan Fisheries Science Institute, Changsha 410153, China

#### Abstract

The order Onchoproteocephalidea (Eucestoda) was recently erected to accommodate the hook-bearing tetraphyllideans and the proteocephalideans, which are characterized by internal proglottization and a tetra-acetabulate scolex. The recognized subfamilies in the Proteocephalidae appeared to be non-monophyletic based on 28S recombinant DNA (rDNA) sequence data. Other molecular markers with higher phylogenetic resolution, such as large mitochondrial DNA fragments and multiple genes, are obviously needed. Thus the mitochondrial genome of Gangesia oligonchis, belonging to the putative earliest diverging group of the Proteocephalidae, was sequenced. The circular mitogenome of G. oligonchis was 13,958 bp in size, and contained the standard 36 genes: 22 transfer RNA genes, two rRNA genes and 12 protein-coding genes, as well as two major non-coding regions. A short NCR and a large NCR (INCR) region were 216 bp and 419 bp in size, respectively. Highly repetitive regions in the lNCR region were detected with that of 11 repeat units. The mitogenome of G. oligonchis shared 71.1% nucleotide identity with Testudotaenia sp. WL-2016. Phylogenetic analyses of the complete mitochondrial genomes with Bayesian inference and maximum likelihood methods indicated that G. oligonchis formed a sister clade with Testudotaenia sp. WL-2016 with maximum support. The ordinal topology is (Caryophyllidea, (Diphyllobothriidea, (Bothriocephalidea, (Onchoproteocephalidea, Cyclophyllidea)))). The mitogenomic gene arrangement of G. oligonchis was identical to that of Testudotaenia sp. WL-2016. Both mitogenomic and nuclear sequence data for many more taxa are required to effectively explore the inter-relationships among the Onchoproteocephalidea.

# Introduction

Based on comparative morphology, the eucestodes Tetraphyllidea, Lecanicephalidea, Onchoproteocephalidea (syn. Proteocephalidea), Nippotaeniidea, Tetrabothriidea and Cyclophyllidea are closely related taxa (Hoberg *et al.*, 1997). Evidence from 28S recombinant DNA (rDNA) and 18S rDNA (Olson *et al.*, 2001, 2008; Waeschenbach *et al.*, 2007; Caira *et al.*, 2014) and the large fragments of mitochondrial DNA (mtDNA) (Waeschenbach *et al.*, 2012) suggest that the acetabulate lineages (Litobothriidea, Lecanicephalidea, Nippotaeniidea, Cyclophyllidea and Tetrabothriidea) form a monophyletic group. Owing to the non-monophyly of the order Tetraphyllidea, the new order Rhinebothriidea was established to house the tetraphyllideans with stalked acetabula (Healy *et al.*, 2009), and the new order Onchoproteocephalidea was established for ten described genera of hook-bearing tetraphyllideans and the members of the order Proteocephalidea (Caira *et al.*, 2014).

Onchoproteocephalidean tapeworms, with a cosmopolitan distribution, represent a diverse group of parasites with 316 valid species in bony fish, lizard, snake and amphibian hosts (Caira *et al.*, 2017), and 246 valid species in elasmobranch hosts (Caira *et al.*, 2017). The traditionally accepted families Proteocephalidae and Monticelliidae have been abandoned, and the only family Protecephalidae has been split into a number of subfamilies and genera (de Chambrier *et al.*, 2009). 28S rDNA-based phylogeny suggests that most of the presently recognized subfamilies (and genera) appear to be non-monophyletic, and a deep systematic reorganization of the order is thus needed (de Chambrier *et al.*, 2015). Regardless of the validity of subfamilies, the Gangesiinae and the Acanthotaeniinae appear to be the most primitive, and the Old World (Palaearctic Region) origin of onchoproteocephalideans in freshwater fish is confirmed by the phylogenetic analysis of the 28S rDNA sequence (de Chambrier *et al.*, 2009, 2015) and the internal transcripted spacer sequence and 18S rRNA (Hypša *et al.*, 2005). Owing to the non-monophyly of subfamilies and the polytomy of the phylogenetic tree

of siluriform parasites from the Neotropics, large mtDNA fragments and multiple genes are obviously needed (de Chambrier *et al.*, 2015).

Owing to its maternal inheritance, a lack of recombination and a fast rate of evolution, the haploid mitochondrial genome has proven to be a useful marker for population studies, species identification and phylogenetics (Huyse *et al.*, 2008). Using gene sequences and gene arrangements from the complete mitochondrial genome, the phylogenies of some parasitic platyhelminths have been reconstructed (Littlewood *et al.*, 2006). Although mitogenomes for more than 40 cyclophyllideans are available in GenBank, the only onchoproteocephalidean mitogenome available in GenBank is that of *Testudotaenia* sp. WL-2016, belonging to the newly erected subfamily Testudotaeniinae (de Chambrier *et al.*, 2009).

*Gangesia oligonchis* (Gangesiinae) parasitizes in the intestine of the bullhead catfish, *Tachysurus fulvidraco* (Siluriformes: Bagridae), distributed in Russia (Ash *et al.*, 2015) and China (Fu *et al.*, 2019). Thus the mitogenome of *G. oligonchis* was sequenced and characterized to provide mitogenomic data for future studies on inter-relationships of onchoproteocephalideans.

#### Materials and methods

#### Specimen collection and DNA extraction

Tapeworms were collected from the intestine of the bullhead catfish (*T. fulvidraco*), which was anesthetized with 0.02% MS-222, from Liangzi Lake in Hubei Province, China (30°11′05″N, 114°37′34″E). Their identity with *Gangesia oligonchis* was confirmed using morphology and partial 28S rDNA data (Fu *et al.*, 2019). Voucher specimen (accession number: IHB-Gangesia001) was deposited in the museum at the Institute of Hydrobiology, Wuhan, China.

Tapeworm specimens were preserved in 100% ethanol and stored at 4 °C. Total genomic DNA was extracted from a single worm using a TIANamp Micro DNA Kit (Tiangen Biotech, Beijing, China) according to the manufacturer's protocol, and stored at -20 °C.

### PCR and DNA sequencing

Sequences from GenBank were used to design five primer pairs (see supplementary material table S1). These primers were used to amplify partial sequences of the *rrnS*, *cox1*, *cytb*, *nad2* and *nad4* genes. Based on these fragments, seven specific primers were designed for subsequent PCR amplification. PCR reactions were conducted in a 20 µl reaction mixture, containing 7.4 µl dd H<sub>2</sub>O, 10 µl 2×PCR buffer (Mg<sup>2+</sup>, dNTP plus, Takara), 0.6 µl of each primer, 0.4 µl rTaq polymerase (250 U, Takara, Dalian, China) and 1 µl DNA template. Amplification was performed under the following conditions: initial denaturation for 2 min at 98 °C, followed by 40 cycles: 10 s at 98 °C, 15 s at 48–60 °C, 1 min at 68 °C and a final extension for 10 min at 68 °C. PCR products were sequenced bidirectionally at Sangon Company (Shanghai, China) using the primer walking strategy.

#### Sequence annotation analyses

After checking the quality of the sequences, amplification of the complete mitochondrial genomic sequence of *G. oligonchis* was assembled using the DNAstar program (Burland, 2000) and confirmed by BLAST (Altschul *et al.*, 1990). Mitogenome annotation followed the procedure described by Li *et al.* (2017, 2018). Protein-coding genes (PCGs) were detected by searching for

open reading frames (employing genetic code 9, invertebrate mitochondrial) and by checking the nucleotide alignments against homologues. All of the transfer RNAs (tRNAs) were predicted and confirmed using the ARWEN program (Laslett & Canback, 2008) and MITOS web server (Bernt et al., 2013). Similarly, the positions of *rrnL* and *rrnS* were preliminarily located using the MITOS program (Bernt et al., 2013), and their ends were assumed to extend to the boundaries of their flanking genes. Tandem repeats in the non-coding region were identified using the Tandem Repeats Finder program (Benson, 1999), and the secondary structure was predicted using Mfold software (Zuker, 2003). Codon usage and relative synonymous codon usage (RSCU) of the 12 PCGs were computed and sorted using the PhyloSuite program (Zhang et al., 2018), and the RSCU figures were finally drawn using ggplot2 plugin (Hadley, 2009). The circular map of the G. oligonchis mitogenome was drawn with the mitochondrial visualization tool MTVIZ (http://pacosy.informatik.uni-leipzig.de/mtviz/).

#### Phylogenetic analyses

Phylogenetic analyses were carried out using the newly sequenced mitogenome of G. oligonchis and the 35 cestode mitogenomes available in GenBank (table 1 and supplementary material table S2). Two species of trematode, Dicrocoelium dendriticum (Rudolphi, 1819) (NC 025280) and Dicrocoelium chinensis (Sudarikov and Ryjikov, 1951) (NC 025279), were used as outgroups. The PhyloSuite program was used to generate the AT content and the GC skew (see supplementary material table S2) and the \*.sqn file for GenBank submission. A Fasta file with the nucleotide sequences for all 36 genes (12 PCGs, 2 rRNAs and 22 tRNAs) for the 35 cestodes was downloaded from GenBank using PhyloSuite. All genes were aligned with the MAFFT program (Katoh & Standley, 2013) integrated in PhyloSuite, wherein codon-alignment mode was used for the 12 PCGs, and normalalignment mode was used for the remaining RNAs (two rRNAs and 22 tRNAs). PhyloSuite was then used to concatenate these alignments and generate input files for the phylogenetic analyses, conducted using maximum likelihood (ML) and Bayesian inference (BI) methods. The most appropriate evolutionary models for the dataset were determined using ModelGenerator v0.8527 (Keane et al., 2006). Based on the Akaike information criterion, GTR + I + G was chosen as the optimal model of nucleotide evolution. ML analysis was performed using the RaxML GUI (Silvestro & Michalak, 2011) and the ML + rapid bootstrap (BP) algorithm with 1000 replicates. BI analysis was performed with MrBayes 3.2.1 (Ronquist *et al.*, 2012) with default settings, and  $6 \times 10^6$ metropolis-coupled Markov chain Monte Carlo generations. Bayesian posterior probability (BPP) values were calculated in a consensus tree after discarding the first 25% samples as burn-in.

#### Results

#### Genome organization and base composition

The typical circular duplex molecule mitogenome of *G. oligonchis* was 13,958 bp in length (GenBank accession number: MF314173). Apart from lacking the *Atp8* gene, which is typical of parasitic flatworms (Le *et al.*, 2002), the mitogenome contained the standard 36 genes: 22 tRNA genes, two rRNA genes and 12 PCGs, as well as two major non-coding regions (mNCRs) (fig. 1). All genes were transcribed from the same strand. Five overlapping regions were found in the genome (table 2).

Table 1. The list of cestode species used for comparative analyses mitogenomes.

| Species                            | GeneBank<br>accession no. | Full length<br>(bp) | A<br>(%) | T<br>(%) | C<br>(%) | G<br>(%) | A+T<br>(%) | G+C<br>(%) | AT<br>skew | GC<br>skew |
|------------------------------------|---------------------------|---------------------|----------|----------|----------|----------|------------|------------|------------|------------|
| Anoplocephala magna                | KU236385                  | 13,759              | 24.3     | 46.5     | 8.2      | 21       | 70.8       | 29.2       | -0.313     | 0.441      |
| Anoplocephala perfoliata           | NC_028425                 | 14,459              | 24.9     | 46       | 8.5      | 20.5     | 70.9       | 29         | -0.297     | 0.412      |
| Atractolytocestus<br>huronensis    | KY486754                  | 15,130              | 22.4     | 39.9     | 13.3     | 24.4     | 62.3       | 37.7       | -0.28      | 0.294      |
| Breviscolex orientalis             | KY486752                  | 14,011              | 19.1     | 39.5     | 14.9     | 26.5     | 58.6       | 41.4       | -0.348     | 0.281      |
| Cladotaenia vulturi                | KU559932                  | 13,411              | 27.8     | 46.9     | 8.1      | 17.2     | 74.7       | 25.3       | -0.256     | 0.36       |
| Cloacotaenia megalops              | KU641017                  | 13,887              | 26.4     | 45.2     | 9.7      | 18.7     | 71.6       | 28.4       | -0.264     | 0.314      |
| Dicrocoelium chinensis             | NC_025279                 | 14,917              | 18.1     | 44       | 10       | 27.9     | 62.1       | 37.9       | -0.417     | 0.473      |
| Dicrocoelium dendriticum           | NC_025280                 | 14,884              | 18.2     | 44       | 10.1     | 27.7     | 62.2       | 37.8       | -0.414     | 0.466      |
| Dibothriocephalus latus            | NC_008945                 | 13,608              | 23.6     | 44.6     | 12       | 19.8     | 68.2       | 31.8       | -0.309     | 0.245      |
| Dibothriocephalus<br>nihonkaiensis | NC_009463                 | 13,747              | 23.7     | 44.1     | 12.5     | 19.7     | 67.8       | 32.2       | -0.301     | 0.225      |
| Diphyllobothrium<br>balaenopterae  | NC_017613                 | 13,724              | 23.1     | 45.5     | 11.2     | 20.2     | 68.6       | 31.4       | -0.326     | 0.287      |
| Diphyllobothrium s grandis         | NC_017615                 | 13,725              | 23.2     | 45.6     | 11.2     | 20.1     | 68.8       | 31.3       | -0.326     | 0.286      |
| Dipylidium caninum                 | NC_021145                 | 14,296              | 21.4     | 51.5     | 7.6      | 19.5     | 72.9       | 27.1       | -0.413     | 0.441      |
| Drepanidotaenia<br>lanceolata      | NC_028164                 | 13,573              | 23.9     | 46       | 9.9      | 20.2     | 69.9       | 30.1       | -0.317     | 0.342      |
| Echinococcus equinus               | NC_020374                 | 13,605              | 19.9     | 48       | 7.8      | 24.3     | 67.9       | 32.1       | -0.414     | 0.516      |
| Echinococcus granulosus            | KJ559023                  | 13,605              | 19.1     | 47.9     | 8.1      | 25       | 67         | 33.1       | -0.43      | 0.512      |
| Echinococcus oligarthrus           | NC_009461                 | 13,791              | 20.8     | 48.5     | 7.4      | 23.3     | 69.3       | 30.7       | -0.399     | 0.516      |
| Echinococcus vogeli                | NC_009462                 | 13,750              | 18.9     | 48.2     | 7.6      | 25.3     | 67.1       | 32.9       | -0.436     | 0.539      |
| Gangesia oligonchis                | MF314173                  | 13,958              | 23       | 43.3     | 12.9     | 20.8     | 66.3       | 33.7       | -0.307     | 0.235      |
| Hydatigera kamiyai                 | AB731761                  | 13,853              | 26.2     | 46.4     | 8.1      | 19.3     | 72.6       | 27.4       | -0.278     | 0.407      |
| Hydatigera krepkogorski            | NC_021142                 | 13,792              | 27.8     | 45       | 8.5      | 18.7     | 72.8       | 27.2       | -0.236     | 0.374      |
| Hydatigera parva                   | NC_021141                 | 13,482              | 25.5     | 45.9     | 8.3      | 20.3     | 71.4       | 28.6       | -0.285     | 0.419      |
| Hymenolepis diminuta               | AF314223                  | 13,900              | 25.4     | 45.6     | 9.6      | 19.3     | 71         | 28.9       | -0.285     | 0.334      |
| Hymenolepis nana                   | NC_029245                 | 13,764              | 27       | 46       | 8.8      | 18.2     | 73         | 27         | -0.261     | 0.346      |
| Khawia sinensis                    | NC_034800                 | 13,759              | 21.6     | 38.7     | 16.2     | 23.5     | 60.3       | 39.7       | -0.285     | 0.183      |
| Khawia sinensis                    | KY486753                  | 14,620              | 23.9     | 41.7     | 12.7     | 21.7     | 65.6       | 34.4       | -0.271     | 0.263      |
| Pseudanoplocephala<br>crawfordi    | NC_028334                 | 14,192              | 23.9     | 45.8     | 9.2      | 21.1     | 69.7       | 30.3       | -0.313     | 0.39       |
| Schyzocotyle acheilognathi         | KX589243                  | 14,046              | 23.2     | 45.8     | 10.3     | 20.6     | 69         | 30.9       | -0.327     | 0.333      |
| Schyzocotyle acheilognathi         | KX060595                  | 13,849              | 23.2     | 45.9     | 10.3     | 20.6     | 69.1       | 30.9       | -0.328     | 0.336      |
| Schyzocotyle nayarensis            | NC_030317                 | 13,852              | 24       | 45.3     | 10.3     | 20.4     | 69.3       | 30.7       | -0.307     | 0.327      |
| Senga ophiocephalina               | NC_034715                 | 13,816              | 23.7     | 46.4     | 9.8      | 20.2     | 70.1       | 30         | -0.324     | 0.348      |
| Spirometra decipiens               | NC_026852                 | 13,641              | 20.3     | 46       | 11       | 22.6     | 66.3       | 33.6       | -0.387     | 0.345      |
| Spirometra<br>erinaceieuropaei     | NC_011037                 | 13,643              | 20.3     | 46.1     | 11       | 22.6     | 66.4       | 33.6       | -0.388     | 0.348      |
| Taenia crassiceps                  | AF216699                  | 13,503              | 25.4     | 48.6     | 7.6      | 18.3     | 74         | 25.9       | -0.314     | 0.413      |
| Taenia pisiformis                  | NC_013844                 | 13,387              | 27.7     | 45.4     | 8.8      | 18       | 73.1       | 26.8       | -0.242     | 0.343      |
| Taenia saginata                    | NC_009938                 | 13,670              | 24.2     | 47.3     | 7.9      | 20.6     | 71.5       | 28.5       | -0.322     | 0.445      |
| Testudotaenia sp. WL-2016          | KU761587                  | 13,709              | 23.4     | 42.7     | 13.2     | 20.7     | 66.1       | 33.9       | -0.292     | 0.22       |
| Versteria mustelae                 | NC_021143                 | 13,582              | 23.2     | 48.2     | 8        | 20.7     | 71.4       | 28.7       | -0.35      | 0.445      |



Fig. 1. Map of the complete mitochondrial genome of *Gangesia oligonchis*. All 36 genes and major non-coding regions are displayed.

An A + T bias was detected in the mitogenome of *G. oligonchis* (A = 23.0%, T = 43.3%, C = 12.9%, G = 20.8%). The nucleotide composition of the complete mitogenome of *G. oligonchis* was strongly skewed away from A, in favour of T, and was biased towards G (AT skew = -0.307, GC skew = 0.235) (table 3). The mitogenomes of *G. oligonchis* and *Testudotaenia* sp. WL-2016 shared 71.1% nucleotide identity, with 65.4–78.5% identity in PCGs and rRNA genes (table 2).

#### Protein-coding genes and codon usage

The total length of the concatenated 12 PCGs was 10,122 bp, with the average A + T content of 65.4%, ranging from 63.8% (cox2) to 71% (nad3) (table 3). The start codon ATG was commonly found in ten PCGs, whereas the start codon GTG was most commonly found in cox3 and nad6. The most frequent stop codons were TAG (for eight PCGs), followed by TAA (four PCGs). Codon usage, relative synonymous codon usage (RSCU), and codon family proportion (corresponding to the amino acid usage) of these two onchoproteocephalideans are presented in fig. 2. Leucine (14.9%), phenylalanine (12.9%), valine (10.4%) and isoleucine (6.7%) were the most frequent amino acids in the PCGs of G. oligonchis, which is also observed in Testudotaenia sp. WL-2016 (fig. 2). In particular, all second codon positions of the codons encoding these amino acids were T, corresponding to its relatively high T skewness (AT skew = -0.465, table 3). The most frequent codons were TTT (phenylalanine, 11.3%) and TTA (leucine, 6.4%), both consisted of A and T. Codons ending in A or T were predominant (blue and green bar in fig. 2), which corresponds to the high A + T content of the third coding position of all PCGs in G. oligonchis (67.7%).

#### Transfer and ribosomal RNA genes

All 22 tRNAs were found in the mitogenome of *G. oligonchis*; these ranged in length from 59 bp (trnS1) to 67 bp (trnN, trnM and trnG) (table 2). In terms of secondary structure, most of

the tRNA sequences could be folded into the conventional cloverleaf shape; the exceptions were trnS1 and trnR, which lacked the dihydrouridine arms and loops. Standard anticodons were found in all tRNAs, except for trnR, which exhibited a transition from U to A. The genes rrnL and rrnS were 975 bp and 732 bp in length, with 66.7% and 67.2% A + T content, respectively (table 3). They were separated by trnC. The mitogenomic gene arrangement of trnT-rrnL-trnC-rrnS is shared by all cestodes characterized so far (fig. 3).

#### Non-coding regions

A total of 22 short intergenic regions (1 to 12 bp in length) were interspersed within the mitogenome of G. oligonchis (table 2). These included two mNCRs consisting of an sNCR located between trnY and trnS2 and a INCR located between Nad5 and trnG. These non-coding regions were 216 and 419 bp in size, respectively; they had a much higher A + T content at 78.7% and 84.3%, respectively (table 3). The sNCR and INCR of Testudotaenia sp. WL-2016 (108 bp and 265 bp in size, respectively) were much smaller than those of G. oligonchis. Highly repetitive regions (HRRs) in INCR were detected in both G. oligonchis and Testudotaenia sp. WL-2016, with 11 and six repeat units, respectively (fig. 4). Although the predicted stem (2 bp) of the Testudotaenia sp. WL-2016 repeat unit was extremely short, both consensus repeat units were capable of forming stem-loop structures (fig. 4). In addition, the sNCR of the two onchoproteocephalidean mitogenomes was also capable of forming a stem-loop structure (fig. 4).

#### Phylogeny and gene order

Phylogenetic analyses of the concatenated 36 mitochondrial genes using BI and ML methods produced identical tree topologies in which *G. oligonchis* grouped as the sister taxon of *Testudotaenia* sp. WL-2016 with maximum support (BP = 100, BPP = 1). The ordinal topology is (Caryophyllidea, (Diphyllobothriidea, (Bothriocephalidea, (Onchoproteocephalidea, Cyclophyllidea)))). The mitogenomic gene arrangement of *G. oligonchis* was identical to that of *Testudotaenia* sp. WL-2016 and some cyclophyllideans, such as those of the families Hymenolepididae, Anoplocephalidae, Dipylidiidae and Paruterinidae (fig. 3).

#### Discussion

The topology of the trees resulting from phylogenetic analyses of the concatenated 36 mitochondrial genes was stable and in full agreement with those generated from studies based on complete mitogenomes (Li et al., 2017) and large and small subunits of nuclear ribosomal RNA genes (28S rDNA and 18S rDNA) (Brabec et al., 2006; Waeschenbach et al., 2012; Kuchta & Scholz, 2017). However, this topology deviated from that recovered from the recent mitogenomic studies of Feng et al. (2017) and Zhang et al. (2017), in which a sister-group relationship of Diphyllobothriidea and Bothriocephalidea was recovered. These discrepancies may be caused by idiosyncrasies of different phylogenetic reconstruction software. To test this, another phylogenetic analysis was performed using the RaxML program (Silvestro & Michalak, 2011) (instead of MEGA) based on the same dataset and computational model as those of the studies by Feng et al. and Zhang et al. The resultant topology was identical to ours (see supplementary material fig. S1). Furthermore, a sister-group relationship of

# Table 2. The organization of the mitochondrial genome of Gangesia oligonchis.

|                                                   | Pos           | ition         |               | Codon                     |             |             |            |                 |  |
|---------------------------------------------------|---------------|---------------|---------------|---------------------------|-------------|-------------|------------|-----------------|--|
| Gene                                              | From          | То            | Size          | Intergenic<br>nucleotides | Start       | Stop        | Anti-codon | Identify<br>(%) |  |
| Gangesia oligonchis/<br>Testudotaenia sp. WL-2016 |               |               |               |                           |             |             |            |                 |  |
| cox1                                              | 1/1           | 1644/1617     | 1644/1617     |                           | ATG         | TAA         |            | 73.66           |  |
| trnT                                              | 1630/1608     | 1692/1670     | 63/63         | -15/-10                   |             |             | TGT        | 84.13           |  |
| rrnL                                              | 1693/1671     | 2667/2636     | 975/966       |                           |             |             |            | 75.74           |  |
| trnC                                              | 2668/2637     | 2732/2704     | 65/68         |                           |             |             | GCA        | 67.65           |  |
| rrnS                                              | 2733/2705     | 3464/3416     | 732/712       |                           |             |             |            | 74.46           |  |
| cox2                                              | 3465/3423     | 4034/3992     | 570/570       | -/6                       | ATG         | TAA         |            | 75.79           |  |
| trnE                                              | 4047/3999     | 4110/4065     | 64/67         | 12/6                      |             |             | TTC        | 74.63           |  |
| nad6                                              | 4114/4070     | 4569/4528     | 456/459       | 3/4                       | GTG/<br>ATG | TAG         |            | 71.02           |  |
| trnY                                              | 4579/4540     | 4644/4606     | 66/67         | 9/11                      |             |             | GTA        | 88.06           |  |
| trnS2                                             | 4861/4715     | 4925/4780     | 65/66         | 216/108                   |             |             | TGA        | 83.33           |  |
| trnL1                                             | 4928/4793     | 4992/4856     | 65/64         | 2/12                      |             |             | TAG        | 77.27           |  |
| trnL2                                             | 5001/4860     | 5066/4924     | 66/65         | 8/3                       |             |             | TAA        | 83.33           |  |
| trnR                                              | 5066/4925     | 5124/4984     | 59/60         | -1/-                      |             |             | ACG        | 68.85           |  |
| nad5                                              | 5131/4991     | 6705/6565     | 1575/1575     | 6/6                       | ATG         | TAA         |            | 65.4            |  |
| trnG                                              | 7125/6831     | 7191/6895     | 67/65         | 419/265                   |             |             | тсс        | 74.63           |  |
| сох3                                              | 7195/6899     | 7839/7543     | 645/645       | 3/3                       | GTG         | TAG/<br>TAA |            | 69.3            |  |
| trnH                                              | 7841/7554     | 7905/7621     | 65/68         | 1/10                      |             |             | GTG        | 85.29           |  |
| cytb                                              | 7911/7627     | 9008/8724     | 1098/1098     | 5/5                       | ATG         | TAA         |            | 76.05           |  |
| nad4L                                             | 9009/8738     | 9269/8998     | 261/261       | -/13                      | ATG         | TAG/<br>TAA |            | 68.58           |  |
| nad4                                              | 9236/8965     | 10,480/10,209 | 1245/1245     | -34/-34                   | ATG         | TAG/<br>TAA |            | 67.07           |  |
| trnQ                                              | 10,481/10,210 | 10,543/10,272 | 63/63         |                           |             |             | TTG        | 84.13           |  |
| trnF                                              | 10,547/10,282 | 10,611/10,341 | 65/60         | 3/9                       |             |             | GAA        | 65.15           |  |
| trnM                                              | 10,608/10,342 | 10,674/10,408 | 67/67         | -4/-                      |             |             | CAT        | 68.66           |  |
| atp6                                              | 10,681/10,412 | 11,196/10,927 | 516/516       | 6/3                       | ATG         | TAG         |            | 74.42           |  |
| nad2                                              | 11,205/10,936 | 12,077/11,808 | 873/873       | 8/8                       | ATG         | TAG         |            | 74.23           |  |
| trnV                                              | 12,087/11,812 | 12,151/11,875 | 65/64         | 9/3                       |             |             | TAC        | 86.15           |  |
| trnA                                              | 12,155/11,881 | 12,217/11,944 | 63/64         | 3/5                       |             |             | TGC        | 93.75           |  |
| trnD                                              | 12,227/11,951 | 12,289/12,013 | 63/63         | 9/6                       |             |             | GTC        | 65.08           |  |
| nad1                                              | 12,295/12,018 | 13,185/12,908 | 891/891       | 5/4                       | ATG         | TAG         |            | 78.45           |  |
| trnN                                              | 13,197/12,908 | 13,263/12,973 | 67/66         | 11/-1                     |             |             | GTT        | 92.54           |  |
| trnP                                              | 13,269/12,980 | 13,332/13,041 | 64/62         | 5/6                       |             |             | TGG        | 70.31           |  |
| trnl                                              | 13,338/13,056 | 13,403/13,120 | 66/65         | 5/14                      |             |             | GAT        | 92.42           |  |
| trnK                                              | 13,408/13,132 | 13,470/13,195 | 63/64         | 4/11                      |             |             | СТТ        | 73.85           |  |
| nad3                                              | 13,473/13,200 | 13,820/13,547 | 348/348       | 2/4                       | ATG         | TAG         |            | 75.57           |  |
| trnS1                                             | 13,819/13,560 | 13,878/13,619 | 60/60         | -2/12                     |             |             | GCT        | 78.33           |  |
| trnW                                              | 13,886/13,640 | 13,951/13,702 | 66/63         | 7/20                      |             |             | TCA        | 77.27           |  |
| Full mitogenome                                   |               |               | 13,958/13,722 |                           |             |             |            | 71.11           |  |

Table 3. Nucleotide composition of the protein-coding genes, tRNAs, rRNAs and non-coding region of mitochondrial genomes of *Gangesia oligonchis* and *Testudotaenia* sp. WL-2016.

| Regions                   | Size (bp) | T(U) | С    | А    | G    | AT(%) | GC(%) | AT skew | GC skew |
|---------------------------|-----------|------|------|------|------|-------|-------|---------|---------|
| Gangesia oligonchis       |           |      |      |      |      |       |       |         |         |
| PCGs                      | 10,122    | 44.7 | 13.3 | 20.7 | 21.3 | 65.4  | 34.6  | -0.368  | 0.232   |
| 1st codon position        | 3374      | 40.3 | 11.8 | 23.3 | 24.5 | 63.6  | 36.3  | -0.267  | 0.349   |
| 2nd codon position        | 3374      | 47.5 | 15   | 17.3 | 20.2 | 64.8  | 35.2  | -0.465  | 0.148   |
| 3rd codon position        | 3374      | 46.4 | 13.1 | 21.3 | 19.2 | 67.7  | 32.3  | -0.37   | 0.19    |
| atp6                      | 513       | 47.6 | 14.8 | 17.2 | 20.5 | 64.8  | 35.3  | -0.47   | 0.16    |
| cox1                      | 1641      | 42.3 | 13.8 | 22.5 | 21.5 | 64.8  | 35.3  | -0.306  | 0.218   |
| cox2                      | 567       | 38.8 | 14.1 | 25   | 22   | 63.8  | 36.1  | -0.215  | 0.22    |
| сох3                      | 642       | 46   | 14.5 | 18.5 | 21   | 64.5  | 35.5  | -0.425  | 0.184   |
| cytb                      | 1095      | 42.5 | 14.4 | 21.7 | 21.4 | 64.2  | 35.8  | -0.323  | 0.194   |
| nad1                      | 888       | 46.1 | 11.7 | 18.9 | 23.3 | 65    | 35    | -0.418  | 0.331   |
| nad2                      | 870       | 50.3 | 10.2 | 17.9 | 21.5 | 68.2  | 31.7  | -0.475  | 0.355   |
| nad3                      | 345       | 51.3 | 10.7 | 19.7 | 18.3 | 71    | 29    | -0.445  | 0.26    |
| nad4                      | 1242      | 44.5 | 15.1 | 19.7 | 20.7 | 64.2  | 35.8  | -0.386  | 0.158   |
| nad4L                     | 258       | 49.2 | 11.2 | 21.7 | 17.8 | 70.9  | 29    | -0.388  | 0.227   |
| nad5                      | 1572      | 42.6 | 13.9 | 21.5 | 22   | 64.1  | 35.9  | -0.329  | 0.225   |
| nad6                      | 453       | 49.4 | 10.6 | 19.6 | 20.3 | 69    | 30.9  | -0.431  | 0.314   |
| rrnL                      | 975       | 39.1 | 13.3 | 27.6 | 20   | 66.7  | 33.3  | -0.172  | 0.2     |
| rrnS                      | 732       | 37.6 | 12.7 | 29.6 | 20.1 | 67.2  | 32.8  | -0.118  | 0.225   |
| INCR                      | 419       | 50.4 | 1.7  | 33.9 | 14.1 | 84.3  | 15.8  | -0.195  | 0.788   |
| sNCR                      | 216       | 38   | 10.6 | 40.7 | 10.6 | 78.7  | 21.2  | 0.035   | 0       |
| tRNAs                     | 1417      | 37.8 | 13.7 | 26.7 | 21.9 | 64.5  | 35.6  | -0.172  | 0.23    |
| Full mitogenome           | 13,958    | 43.3 | 12.9 | 23   | 20.8 | 66.3  | 33.7  | -0.307  | 0.235   |
| Testudotaenia sp. WL-2016 |           |      |      |      |      |       |       |         |         |
| PCGs                      | 10,098    | 44.2 | 13.6 | 21.2 | 21   | 65.4  | 34.6  | -0.353  | 0.216   |
| 1st codon position        | 3366      | 40.3 | 12   | 24.3 | 23.4 | 64.6  | 35.4  | -0.247  | 0.322   |
| 2nd codon position        | 3366      | 47.7 | 15.3 | 17.1 | 20   | 64.8  | 35.3  | -0.472  | 0.133   |
| 3rd codon position        | 3366      | 44.8 | 13.4 | 22.1 | 19.7 | 66.9  | 33.1  | -0.34   | 0.189   |
| atp6                      | 513       | 45.4 | 14   | 19.3 | 21.2 | 64.7  | 35.2  | -0.404  | 0.204   |
| cox1                      | 1614      | 41   | 15.3 | 22.5 | 21.2 | 63.5  | 36.5  | -0.292  | 0.161   |
| cox2                      | 567       | 36   | 16.9 | 23.8 | 23.3 | 59.8  | 40.2  | -0.204  | 0.158   |
| сох3                      | 642       | 45.5 | 13.1 | 19.3 | 22.1 | 64.8  | 35.2  | -0.404  | 0.257   |
| cytb                      | 1095      | 42.9 | 13.6 | 21.9 | 21.6 | 64.8  | 35.2  | -0.324  | 0.226   |
| nad1                      | 888       | 45.2 | 11.3 | 19.8 | 23.8 | 65    | 35.1  | -0.39   | 0.357   |
| nad2                      | 870       | 50   | 10.7 | 19   | 20.3 | 69    | 31    | -0.45   | 0.311   |
| nad3                      | 345       | 49   | 8.7  | 18.6 | 23.8 | 67.6  | 32.5  | -0.451  | 0.464   |
| nad4                      | 1242      | 45.2 | 15.5 | 18.4 | 20.9 | 63.6  | 36.4  | -0.42   | 0.15    |
| nad4L                     | 258       | 48.8 | 10.5 | 23.3 | 17.4 | 72.1  | 27.9  | -0.355  | 0.25    |
| nad5                      | 1572      | 42.7 | 14.4 | 23.7 | 19.1 | 66.4  | 33.5  | -0.285  | 0.14    |
| nad6                      | 456       | 50.7 | 11.6 | 20.2 | 17.5 | 70.9  | 29.1  | -0.43   | 0.203   |
| rrnL                      | 966       | 38.5 | 12.7 | 29.4 | 19.4 | 67.9  | 32.1  | -0.134  | 0.206   |
| rrnS                      | 712       | 36.8 | 14   | 29.1 | 20.1 | 65.9  | 34.1  | -0.117  | 0.177   |

(Continued)

#### Journal of Helminthology

#### Table 3. (Continued.)

| Regions         | Size (bp) | T(U) | С    | А    | G    | AT(%) | GC(%) | AT skew | GC skew |
|-----------------|-----------|------|------|------|------|-------|-------|---------|---------|
| LNR             | 265       | 40   | 3.4  | 34.7 | 21.9 | 74.7  | 25.3  | -0.071  | 0.731   |
| SNR             | 108       | 36.1 | 9.3  | 44.4 | 10.2 | 80.5  | 19.5  | 0.103   | 0.048   |
| tRNAs           | 1414      | 37.7 | 13.2 | 28.4 | 20.7 | 66.1  | 33.9  | -0.14   | 0.219   |
| Full mitogenome | 13,709    | 42.7 | 13.2 | 23.4 | 20.7 | 66.1  | 33.9  | -0.292  | 0.22    |



# Testudotaenia sp. WL-2016



Fig. 2. Relative synonymous codon usage (RSCU) of the complete mitochondrial genome of *Gangesia oligonchis* and *Testudotaenia* sp. WL-2016. Codon families are labelled on the *x*-axis. Values on the top of the bars refer to amino acid usage.

Bothriocephalidea and 'acetabulate' was also supported using a much denser taxon by 28S rDNA + 18S rDNA (Brabec *et al.*, 2006; Kuchta *et al.*, 2008) and partial mtDNA + 28S rDNA + 18S rDNA (Waeschenbach *et al.*, 2012; Kuchta & Scholz, 2017).

The mitogenomic gene arrangement of *G. oligonchis* was identical to that of *Testudotaenia* sp. WL-2016, which belonged to gene arrangement category IV (onchoproteocephalideans and some cyclophyllideans) as summarized by Li *et al.* (2017) (fig. 3). These authors concluded that all rearrangement events in cestode mitogenomes were observed in the rearrangement

hot spot–P1 (i.e. gene block between *rrnS* and *trnR*), a region that often harbours an NCR (non-coding region). The TDRL (tandem–duplication–random–loss) event contributed to the increased rate of rearrangement for genes adjacent to the origin replication because both strand slippage and imprecise termination were more likely to include the genes surrounding the origin of replication in the rearrangement hot spot (Cameron, 2014). Despite the rearrangement hot spot in Cestoda, the mitogenomic gene arrangement was too conserved to reflect the interrelationships within the order Onchoproteocephalidea.



Cyclophyllidea

0.6

Taeniidae

| Dicrocoelium dendriticum         |                                                                                                                                                                                          |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dicrocoelium chinensis           |                                                                                                                                                                                          |
| Breviscolex orientalis           | cox1 - T - mL - C - mS - L1 - S2 - L2 - cox2 - E - nad6 - Y - R - nad5 - G - cox3 - H - cytb - nad4 - N - P - M - atp6 - nad2 - V - A - D - nad1 - N - P - L - K - nad3 - S1 - W         |
| Atractolytocestus huronensis     | cox1 + T - mL + C - mS + L1 + S2 + L2 + cox2 + E + nad6 + Y + R + nad5 + G + cox3 + H + cytb = nad4 + Q + F + M + atp6 + nad2 + V + A + D + nad1 + N + P + 1 + K + nad3 + S1 + W         |
| Khawia sinensis NC_034800        | cox1 1 mL C mS L1-S2-L2 cox2 E add Y R add G cox3 H cyb addL add P M atp6 add V A D add N P 1 K add S1 W                                                                                 |
| Khawia sinensis KY486753         | cox1 1 mL C mS L1-S2-L2-cox2 E add Y R add G cox3 H cyb addL add P M atp6 add V A D add N P 1 K add S1 W                                                                                 |
| Spirometra decipiens             | cox1 + T mrL + C mrS cox2 + E had6 + Y + L1 + S2 + L2 + R + had5 + G + cox3 + H + cytb = had4 + had4 + Q + F + M + atp6 + had2 + V + A + D + had4 + N + P + I + K + had3 + S1 + W        |
| Spirometra erinaceieuropaei      | cox1 1 mL C mS cox2 E nad6 Y L1 S2 L2 R nad5 G cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P 1 K nad3 S1 W                                                                       |
| Dibothriocephalus nihonkaiensis  | cox1 1 mmL C mmS cox2 E nad6 Y L1 S2 L2 R nad5 G cox3 H oyle nad4L nad4 Q F M atp6 nad2 V A D nad1 N P 1 K nad3 S1 W                                                                     |
| Dibothriocephalus latus          | cox1 1 mL C mS cox2 E nad6 Y L S2 2 R nad5 G cox3 H cyb nad4L nad4 Q F M atp6 nad2 Y A D nad1 N P 1 K nad3 S1 W                                                                          |
| Diphyllobothrium balaenopterae   | cox1 1 mL C mS cox2 E nad6 Y L1 S2 L2 R nad5 6 cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P 1 K nad3 S1 W                                                                       |
| Diphyllobothrium grandis         | cox1 1 mrL C mrS cox2 E had6 Y L1 S2 L2 R had5 G cox3 H oyb had4L had4 Q F M atp6 had2 V A D had1 N P I K had3 S1 W                                                                      |
| Schyzocotyle acheilognathi (CN)  | cox1 1 mmL C mmS cox2 E nad6 L1 L2 Y S2 R nad5 G cox3 H cytb nad4L nad4 Q F M atp6 nad2 Y A D nad1 N P 1 K nad3 S1 W                                                                     |
| Schyzocotyle acheilognathi (USA) | cox1 T mrL C mrS cox2 E nad6 L1 L2 Y S2 R nad5 G cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P 1 K nad3 S1 W                                                                     |
| Senga ophiocephalina             | coxt1 - T - rmL C - rmS - cox2 - E - nad6 - L1 - L2 - Y - S2 - R - nad5 - G - cox3 - H - cytb - nad4 - nad4 - Q - F - M - atp6 - nad2 - V - A - D - nad1 - N - P - 1 - K - nad3 - S1 - W |
| Schyzocotyle nayarensis          | cox1 1 mrL C mrS cox2 E nad6 L1 L2 Y S2 R nad5 G cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P I K nad3 S1 W                                                                     |
| Gangesia oligonchis ●            | cox1 (T mrL C mrS cox2 E nad6 Y S2 L1 2 R nad5 G cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P 1 K nad3 S1 W                                                                     |
| 80 Testudotaenia sp. WL-2016     | cox1 1 mmL C mmS cox2 E nad6 Y S2 L1 L2 R nad5 G cox3 H cyb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P I K nad3 S1 W                                                                      |
| Cloacotaenia megalops            | cox1 1 mmL C mmS cox2 E nad6 Y S2 L1 L2 R nad5 G cox3 H cyb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P I K nad3 S1 W                                                                      |
| 62/0.94 Anoplocephala magna      | cox1 1 mt C mt c x 2 E nad6 Y S2 L1 L2 R nad5 G cox3 H cyb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P I K nad3 S1 W                                                                       |
| Anoplocephala perfoliata         | cox1 1 mL C mS cox2 E had6 Y S2 L1 L2 R had5 G cox3 H cytb had4L had4 Q F M atp6 had2 V A D had1 N P 1 K had3 S1 W                                                                       |
| Drepanidotaenia lanceolata       | cox1 1 mL C mS cox2 E nad6 Y S2 L1 L2 R nad5 G cox3 H cytb nad4L nad4 Q F M atp6 nad2 Y A D nad1 N P I K nad3 S1 W                                                                       |
| Hymenolepis nana                 | cox1 1 mL C mS cox2 E nad6 Y S2 L1 L2 R nad5 6 cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P 1 K nad3 S1 W                                                                       |
| Pseudanoplocephala crawfordi     | cox1 + T mrL + C + mrS + cox2 + E + nad6 + Y + S2 + L1 + L2 + R + nad5 + G + cox3 + H + cytb + nad4 + Q + F + M + atp6 + nad2 + V + A + D + nad1 + N + P + 1 + K + nad3 + S1 + W         |
| Hymenolepis diminuta             | cox1 1 mL C mS cox2 E nad6 Y S2 L1 L2 R nad5 G cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P 1 K nad3 S1 W                                                                       |
| Dipylidium caninum               | cox1 1 mL C mS cox2 E nad6 Y S2 L1 L2 R nad5 6 cox3 H cytb nad4L nad4 Q F M atp6 nad2 Y A D nad1 N P 1 K nad3 S1 W                                                                       |
| Cladotaenia vulturi              | cox1 1 mL C mS cox2 E nad6 Y S2 L1 L2 R nad5 G cox3 H cyb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P I K nad3 S1 W                                                                        |
| 93 Versteria mustelae            | cox1 + T mL + C mS + cox2 + E + nad6 + Y + L1 + S2 + L2 + R + nad5 + G + cox3 + H + cytb + nad4 + Q + F + M + atp6 + nad2 + V + A + D + nad1 + N + P + I + K + nad3 + S1 + W             |
| 95 – Echinococcus oligarthrus    | cox1 1 mL C mS cox2 E had6 Y L1 S2 L2 R had5 G cox3 H oyle had4L had4 Q F M atp6 had2 V A D had1 N P I K had3 S1 W                                                                       |
| Echinococcus vogeli              | cox1 1 mmL C mmS cox2 E had6 Y L1 S2 L2 R had5 G cox3 H cytb had4L had4 Q F M atp6 had2 V A D had1 N P I K had3 S1 W                                                                     |
| Echinococcus equinus             | cox1 1 mrL C mrS cox2 E nad6 Y L1 S2 L2 R nad5 G cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P I K nad3 S1 W                                                                     |
| Echinococcus granulosus          | cox1 1 mrL C mrS cox2 E had6 Y L1 S2 L2 R had5 G cox3 H oyb had4L had4 Q F M atp6 had2 V A D had1 N P I K had3 S1 W                                                                      |
| Taenia crassiceps                | cox1 1 mrL C mrS cox2 E nad6 Y L1 S2 L2 R nad5 6 cox3 H cytb nad4L nad4 Q F M atp6 nad2 V A D nad1 N P 1 K nad3 S1 W                                                                     |
| Taenia pisiformis                | cox1 1 mL C mS cox2 E had6 Y L1 S2 L2 R had5 G cox3 H cytb had4L had4 Q F M atp6 had2 V A D had1 N P I K had3 S1 W                                                                       |
| Taenia saginata                  | coxtl 1 mm_ C mmS cox2 E had6 Y L1 S2 L2 R had5 G cox3 H cytb had4L had4 Q F M at6 had2 V A D had1 N P 1 K had3 S1 W                                                                     |
| Hydatigera parva                 | cox1 1 mm_ C mmS cox2 E add Y L1 S2 2 R add G cox3 H cyb addL add Q F M atp6 add V A D add (N P 1 K add S1 W                                                                             |
| Hydatigera kamiyai               | cox1 T mL C mS cox2 E add Y L1 S2 L2 R add G cox3 H cyb addL add Q F M atp - add V A D add (N P 1 K add S1 W                                                                             |
| Hydatigera krepkogorski          | coxtl 1 mm_ C mmS cox2 E add Y L1 S2 L2 R add G cox3 H cyb addL add Q F M atp6 add V A D add N P 1 K add S1 W                                                                            |

Fig. 3. The phylogenetic relationships of the five orders in Cestoda inferred from concatenated 36 genes representing almost complete mitogenomic datasets (36 genes: 12 PCGs, 2 rRNAs and 22 tRNAs), using two Trematoda species as outgroup. Scale bar represents the estimated number of substitutions per site. Bootstrap (BP)/posterior probability (BPP) support values of ML/BI analysis are shown above the nodes, only BP <100 and BPP <1 were displayed. Mitogenomic gene orders of the selected cestode species (corresponding to tip labels in the tree) were listed on the right of the tree. The order was reoriented to cox1.



Fig. 4. Illustration of highly repetitive regions in the large major non-coding region and the predicted secondary structure of the short non-coding region of Gangesia oligonchis and Testudotaenia sp. WL-2016 mitochondrial genome.

Although mitogenomes are currently available for only two species of the order Onchoproteocephalidea, the low sequence identity (71.1%) between the mitogenomes of *G. oligonchis* and *Testudotaenia* sp. WL-2016 may provide some phylogenetic information. Within the family Diphyllobothriidae (Diphyllobothriidea), sequence identity of the mitogenome ranged from 85% to 87% between *Ligula* spp. and *Dibothriocephalus* spp. (Li *et al.*, 2018), which was much higher than that between *G. oligonchis* and *Testudotaenia* sp. WL-2016. *Gangesia* from catfishes, mostly in Indomalaya and Palearctic, is the early diverging group, while *Testudotaenia* from soft-shelled turtles in North America is the derived group (de Chambrier *et al.*, 2015). However, families and subfamilies within the Onchoproteocephalidea need to be determined based on mitogenomes of more taxa.

## Conclusions

The complete mitogenome of the tapeworm *Gangesia oligonchis* from the bullhead catfish *Tachysurus fulvidraco* was sequenced and characterized. The mitogenomic gene arrangement was found to be conserved across the two members of the order

Onchoproteocephalidea for which such data are available. While low nucleotide identity was found between the two onchoproteocephalideans, mitogenomes of more extensive taxa are expected to be sequenced to effectively explore the inter-relationships among the Onchoproteocephalidea.

**Supplementary material.** To view supplementary material for this article, please visit https://doi.org/10.1017/S0022149X19000452

Author ORCIDs. (D) W.X. Li, 0000-0001-7016-4535

**Acknowledgements.** The authors would like to thank Dr Jakovlić I. for his help in English language editing.

**Financial support.** This work was funded by the National Natural Science Foundation of China (31872604) and the earmarked fund for China Agriculture Research System (CARS-45-15).

#### Conflicts of interest. None.

**Ethical standards.** The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional guides on the care and use of laboratory animals.

#### References

- Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignment search tool. *Journal of Molecular Biology* 215, 403–410.
- Ash A, de Chambrier A, Shimazu T, Ermolenko A and Scholz T (2015) An annotated list of the species of *Gangesia* Woodland, 1924 (Cestoda: Proteocephalidea), parasites of catfishes in Asia, with new synonyms and a key to their identification. *Systematic Parasitology* **91**, 13–33.
- Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27, 573.
- Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M and Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. *Molecular Phylogenetics and Evolution* 69, 313–319.
- Brabec J, Kuchta R and Scholz T (2006) Paraphyly of the Pseudophyllidea (Platyhelminthes: Cestoda): Circumscription of monophyletic clades based on phylogenetic analysis of ribosomal RNA. *International Journal for Parasitology* 36, 1535–1541.
- **Burland TG** (2000) DNASTAR's Lasergene sequence analysis software. In Misener S and Krawetz SA (Eds) *Bioinformatics Methods and Protocols*. Methods in Molecular Biology, 132. Totowa, NJ, Humana Press
- Caira JN, Jensen K, Waeschenbach A, Olson PD and Littlewood DTJ (2014) Orders out of chaos - molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. *International Journal for Parasitology* 44, 55–73.
- Caira JN, Jensen K and Ivanov VA (*Eds*) (2017) Onchoproteocephalidea II. Lawrence, KS: University of Kansas, Natural History Museum.
- Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology 59, 95–117.
- de Chambrier A, Zehnder M, Vaucher C and Mariaux J (2004) The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development. *Systematic Parasitology* 57, 159–171.
- de Chambrier A, Coquille SC, Mariaux J and Tkach V (2009) Redescription of *Testudotaenia testudo* (Magath, 1924) (Eucestoda: Proteocephalidea), a parasite of *Apalone spinifera* (Le Sueur) (Reptilia: Trionychidae) and *Amia calva* L. (Pisces: Amiidae) in North America and erection of the Testudotaeniinae n. subfam. *Systematic Parasitology* **73**, 49–64.
- de Chambrier A, Waeschenbach A, Fisseha M, Scholz T and Mariaux J (2015) A large 28S rDNA-based phylogeny confirms the limitations of established morphological characters for classification of proteocephalidean tapeworms (Platyhelminthes, Cestoda). *ZooKeys* 500, 25–59.
- Feng Y, Feng HL, Fang YH and Su YB (2017) Characterization of the complete mitochondrial genome of *Khawia sinensis* belongs among platyhelminths, cestodes. *Experimental Parasitology* 177, 35–39.
- Fu PP, Li WX, Zou H, Zhang D, Wu SG, Li M, Wang GT and Xi BW (2019) Identification of *Gangesia oligonchis* (Cestoda: Onchoproteocephalidea) from *Tachysurus fulvidraco* in Central China: implications for the invalidity of *Gangesia pseudobagrae*. *Systematic Parasitology* **96**, 327–335.
- Hadley W (2009) ggplot2: Elegant graphics for data analysis.
- Healy CJ, Caira JN, Jensen K, Webster BL and Littlewood DTJ (2009) Proposal for a new tapeworm order, Rhinebothriidea. *International Journal for Parasitology* 39, 497–511.
- Hoberg EP, Mariaux J, Justine JL, Brooks DR and Weekes PJ (1997) Phylogeny of the orders of the Eucestoda (Cercomeromorphae) based on comparative morphology: Historical perspectives and a new working hypothesis. *Journal of Parasitology* **83**, 1128–1147.
- Huyse T, Buchmann K and Littlewood DTJ (2008) The mitochondrial genome of *Gyrodactylus derjavinoides* (Platyhelminthes: Monogenea) - A mitogenomic approach for *Gyrodactylus* species and strain identification. *Gene* 417, 27–34.
- Hypša V, Škerikoa A and Scholz T (2005) Phylogeny, evolution and host-parasite relationships of the order Proteocephalidea (Eucestoda) as revealed by

combined analysis and secondary structure characters. *Parasitology* 130, 359-371.

- Katoh K and Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Molecular Biology and Evolution* 30, 772–780.
- Keane TM, Creevey CJ, Pentony MM, Naughton TJ and McInerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. *BMC Evolutionary Biology* **6**, 29.
- Kuchta R and Scholz T (Eds) (2017) Bothriocephalidea. Lawrence, KS: University of Kansas, Natural History Museum.
- Kuchta R, Scholz T, Brabec J and Bray RA (2008) Suppression of the tapeworm order Pseudophyllidea (Platyhelminthes: Eucestoda) and the proposal of two new orders, Bothriocephalidea and Diphyllobothriidea. *International Journal for Parasitology* 38, 49–55.
- Laslett D and Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. *Bioinformatics* 24, 172–175.
- Le TH, Blair D and McManus DP (2002) Mitochondrial genomes of parasitic flatworms. *Trends in Parasitology* 18, 206–213.
- Li WX, Zhang D, Boyce K, Xi BW, Zou H, Wu SG, Li M and Wang GT (2017) The complete mitochondrial DNA of three monozoic tapeworms in the Caryophyllidea: a mitogenomic perspective on the phylogeny of eucestodes. *Parasites & Vectors* 10, 314.
- Li WX, Fu PP, Zhang D, Boyce K, Xi BW, Zou H, Li M, Wu SG and Wang GT (2018) Comparative mitogenomics supports synonymy of the genera *Ligula* and *Digramma* (Cestoda: Diphyllobothriidae). *Parasites & Vectors* 11, 324.
- Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA and Le TH (2006) The complete mitochondrial genomes of *Schistosoma haematobium* and *Schistosoma spindale* and the evolutionary history of mitochondrial genome changes among parasitic flatworms. *Molecular Phylogenetics and Evolution* **39**, 452–467.
- **Olson PD, Littlewood DTJ, Bray RA and Mariaux J** (2001) Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). *Molecular Phylogenetics and Evolution* **19**, 443–467.
- **Olson PD, Poddubnaya LG, Littlewood DTJ and Scholz T** (2008) On the position of *Archigetes* and its bearing on the early evolution of the tapeworms. *Journal of Parasitology* **94**, 898–904.
- Ronquist F, Teslenko M, van der Mark P, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
- Silvestro D and Michalak I (2011) raxmlGUI: a graphical front-end for RAXML. Organisms Diversity & Evolution 12, 335–337.
- Waeschenbach A, Webster BL, Bray RA and Littlewood DTJ (2007) Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. *Molecular Phylogenetics and Evolution* 45, 311–325.
- Waeschenbach A, Webster BL and Littlewood DTJ (2012) Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. *Molecular Phylogenetics and Evolution* 63, 834–847.
- Zhang X, Duan JY, Shi YL, Jiang P, Zeng DJ, Wang ZQ and Cui J (2017) Comparative mitochondrial genomics among *Spirometra* (Cestoda: Diphyllobothriidae) and the molecular phylogeny of related tapeworms. *Molecular Phylogenetics and Evolution* 117, 75–82.
- Zhang D, Gao F, Li WX, Jakovlić I, Zou H, Zhang J and Wang GT. (2018) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *bioRxiv*. doi: 10.1101/489088.
- Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Research* **31**, 3406–3415.