
2

The weak currents

2.1 The weak currents and some of their properties

The effective weak interaction in Eq. (1.1) was motivated by nuclear β-decays. For
many years this was the main theoretical framework for analyzing experiments.
As new experimental discoveries became available, the form of the interaction was
maintained but the current Jµ(x) was enlarged to incorporate the new observations.
At the end of the sixties the charged current J †

µ(x) included a leptonic and a hadronic
term,

J †
µ = l†µ(x) + h†

µ(x). (2.1)

The leptonic part of the current is

l†µ(x) = �e(x)γµ(1 − γ5)�νe (x) + �µ(x)γµ(1 − γ5)�νµ
(x), (2.2)

with the first term corresponding to the electron and its neutrino and the second term
to the muon and its neutrino. Its space-time structure has a vector part analogous
to the electromagnetic current and an axial part introduced after the discovery of
parity violation. A direct calculation using the currents in (2.2) gives the µ-decay
spectrum, which is in good agreement with experiment. It also gives the decay rate
of the muon as

�(µ → e + νe + ν̄µ) = Gµm5
µ

192π3
. (2.3)

From the observed decay rate and the mass of the muon the constant Gµ is deter-
mined to be

Gµ = (1.166 32 ± 0.000 04) × 10−5 GeV−2. (2.4)

This determination includes the effects of radiative corrections, which in the
electroweak theory are finite and can be calculated precisely.
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2.1 The weak currents and some of their properties 13

The hadronic current consists of several parts determined by detailed analyses
of hadron decays. For instance, the decay of a neutron, n → p + e− + νe, is well
described by the matrix element

〈p|J †
µ|n〉 = 〈p|V †

µ|n〉 − 〈p|A†
µ|n〉, (2.5)

where we can decompose the matrix elements in terms of form factors. Lorentz
invariance gives the general expressions

〈p|V †
µ|n〉 = ū(p′)

(
gVγµ + fV

(p + p′)µ
2M

+ hV
qµ

2M

)
u(p) (2.6)

and

〈p|A†
µ|n〉 = ū(p′)

(
gAγµγ5 + fA

iσµνqν

2M
γ5 + hA

qµ

2M
γ5

)
u(p), (2.7)

where pµ and p′
µ are the momenta of the neutron and proton, respectively, with

qµ = p′
µ − pµ. The functions gV, fV, and hV are vector form factors describing

the effects of strong interactions in the hadrons. Similarly gA, fA, and hA are axial
form factors. General symmetries, like charge symmetry and time-reversal, limit
the form factors and demand that hV = fA = 0 (see Marshak et al., 1969, p. 314).
At zero momentum transfer, the vector form factor gV was precisely determined and
it is strikingly close to 1, while gA is about −1.23. An explanation was proposed,
namely that the strangeness-conserving part of V †

µ has the isospin content

V †
µ = V 1

µ + iV 2
µ =: V +

µ and A†
µ = A1

µ + iA2
µ =: A+

µ, (2.8)

where 1 and 2 denote the first and second components of isospin. This means that
the charges

T i =
∫

V i
0 (x)d3x (2.9)

are the same isospin generators as those occurring in the strong interactions and
are therefore conserved. This rule is called the conserved-vector-current (CVC)
hypothesis. The T i form an algebra that closes under commutation relations[

T i , T j
] = iεi jk Tk . (2.10)

As a consequence, the commutator of T + with T − produces the third component of
isospin. In the late sixties T 3 had not yet been observed to mediate transitions with
the strength G; there was no weak neutral current. But such an operator already
existed in the electromagnetic current. The electromagnetic current consisted of
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14 The weak currents

two parts,

J em
µ (x) = V 3

µ(x) + 1√
3

V 8
µ(x), (2.11)

with V 3
µ(x) being the third component of isospin and V 8

µ an iso-scalar current
transforming as the eighth component of SU(3). It is evident that there is a rela-
tion between the weak and the electromagnetic currents, since the vector part of the
weak current and the isovector part of the electromagnetic current form an isotriplet.
The form of the interaction in (1.1) defines a universal coupling for leptonic, semi-
leptonic, and non-leptonic decays. Once the coupling constant G has been deter-
mined, as in (2.4) from the muon decay, it can be used to translate the isotriplet
hypothesis into relations between electromagnetic and weak matrix elements. In
Section 11.3 we give a consequence of the isotriplet hypothesis and the cross
section for neutrino–neutron quasi-elastic scattering. Expressions for the currents
in terms of quark fields are given in Chapter 3.

Since V +
µ is an isospin current, its matrix elements at zero momentum transfer

are simply given by Clebsch–Gordan coefficients. The strength gV is determined
in nuclear β-decay as well as in the elementary decays

π+ −→ π0 + e+ + νe,
(2.12)

n −→ p + e− + ν̄e.

In all these cases the charge current connects states with the same isospin T, but
different components T3. At zero momentum transfer the relevant matrix element
is

〈I, I3 + 1|V +
µ (0)|I, I3〉 = 1, (2.13)

for I = 1
2 . The value of gV is extracted from β-decay and its value is found (see

Equation (9.28)) to be

gV = 0.9740 ± 0.0003 ± 0.0015. (2.14)

This precise value includes radiative corrections, so its deviation from unity is
significant.

Is the small difference of 2.6% a drawback of the theory or is there another com-
ponent of the current? The discrepancy was explained by the observation that the
hadronic current V ±

µ does not generate only the isospin group SU(2), but contains
other pieces responsible for strangeness-changing decays, like

�0 −→ p + e− + ν̄e,
(2.15)

K+ −→ π0 + e+ + νe.
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2.1 The weak currents and some of their properties 15

Thus the hadronic current is the sum of a 	S = 0 term and a 	S = 1 term,

V +
µ = cos θc V 	S=0

µ + sin θc V 	S=1
µ . (2.16)

The two terms are interpreted as two components of the current orthogonal to each
other and connected through the mixing angle θc. The first term contains the isospin
current that appears in (2.8),

V 	S=0
µ = V 1

µ + iV 2
µ. (2.17)

The second component produces strangeness-changing transitions and it has, in
SU(3), the form

V 	S=1
µ = V 4

µ + iV 5
µ. (2.18)

The matrix elements of V 	S=0
µ and V 	S=1

µ can be estimated accurately. The con-
clusion from numerous experimental estimates gives the mixing angle

sin θc = 0.220 ± 0.002. (2.19)

In this way universality is restored, since the sum of the squares of the hadronic
couplings reproduces the coupling observed in muon decay. In addition the dis-
crepancy of gV from 1 is understood. The angle θc is called the Cabibbo angle.
The appearance of the Cabbibo angle will become more evident in the context of
the Cabibbo–Kobayashi–Maskawa matrix, which enters the full Lagrangian of the
weak interaction.

Finally, we mention one more difference between electromagnetic and weak
interactions. The electromagnetic amplitude for the reaction e+e− → µ+µ− has
the amplitude

M = ie2 Jµ gµν

q2
J ν†, (2.20)

with an explicit photon propagator and the product of two currents, like

Jµ = lem
µ + J em

µ . (2.21)

The hadronic current was discussed in Chapter 1 and the leptonic current has a term
for each charged lepton like

lem
µ = �lγµ�l . (2.22)

On comparing (2.20) with (1.1), we note that the propagator is missing in (1.1). It
should have been there in the form

g2	µν = g2 −igµν

q2 − M2
W

, (2.23)
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16 The weak currents

if the weak interaction were mediated by the exchange of a particle of mass MW and
coupling strength g. At very low energies, however, at which most of the decays
take place, q2 � M2

W and

g2	µν −→ igµν

g2

M2
W

= igµν

G√
2
. (2.24)

Thus the form in (1.1) is indeed a very good approximation.

2.2 The partially conserved axial current

A second property of the weak currents deals with approximations that are possible
in matrix elements of the axial current. The charged pions decay weakly into µν̄µ

pairs with a hadronic matrix element

〈0|A±
µ (x)|π±(q)〉 = i fπ(q2)qµe−iqx . (2.25)

Here qµ is the four-momentum of the pion and fπ defines the decay coupling
constant. The form of the matrix is dictated by Lorentz invariance. The coupling
fπ(q2 = m2

π) is measured with the pion on the mass shell. We can take the diver-
gence of this matrix element and obtain

qµ〈0|A±
µ (x)|π±〉 = i fπq2e−iqx . (2.26)

We conclude from this relation that the axial current is not conserved, because
neither fπ nor mπ is zero. However, it may be approximately conserved because
q2 = m2

π is a small number relative to the mass squared of all other hadrons. Thus,
for many low-energy processes that involve the axial current with four-momentum
qµ, it is possible to replace the divergence of the axial current by the pion field

∂µ Ai
µ = fπm2

πφi , (2.27)

and, in addition, after we have extracted the pion propagator, the reduced matrix
element is a slowly varying function of q2 provided that q2

� m2
π. Equation (2.27)

is an operator relation and holds for all matrix elements. We must be careful,
however, to replace the pion field by its source j i

π = (�2 + m2)φi and substitute
for the pion–nucleon vertex the coupling

〈p| jπ+|n〉 = i
√

2gπNNū(p′)γ5u(p). (2.28)

Several applications have established that the matrix elements of the axial current
and its divergence can be treated this way. We shall describe here an application
of this procedure to the matrix element in β-decay, which leads to a remarkable
relation known as the Goldberger–Treiman relation. We present the derivation in
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2.2 The partially conserved axial current 17

ifπqµ

qµ
i
√

2gπNNγ5

Figure 2.1. Direct coupling of the axial current to a particle of zero mass.

two ways in order to emphasize that the second method is based on an underlying
symmetry. Consider the matrix element

〈p|A+
µ |n〉 = ū(p′)

(
gA(q2)γµγ5 + hA(q2)

qµ

2M
γ5

)
u(p). (2.29)

Taking the divergence of both sides of this equation gives

〈p|∂µ A+
µ |n〉 =

(
2MgA(q2) + q2 hA(q2)

2M

)
iū(p′)γ5u(p). (2.30)

On the other hand, from (2.27)

〈p|∂µ A+
µ |n〉 = fπm2

π〈p|φ+|n〉 = fπm2
π

1

−q2 + m2
π

〈p| j+
π |n〉

= fπ
m2

π

−q2 + m2
π

i
√

2gπNNū(p′)γ5u(p). (2.31)

Taking the limit q2 → 0 with m2
π �= 0 in the last two equations, we obtain

√
2MgA = gπNN fπ. (2.32)

This is the Goldberger–Treiman relation. For the experimental values of the
coupling constants it holds at the 10% level. It is a remarkable relation, relating
the pion–nucleon coupling constant to two couplings of weak interactions.

There is a second way of looking at partially conserved axial current (PCAC).
The meaning of PCAC is that the actual world is not far from the limit in
which the axial currents are conserved at the expense of having zero-mass
pions (mπ = 0, fπ �= 0). In this approach we can still define fπ and gA through
Eqs. (2.25) and (2.29). Because the axial current is now conserved, Eq. (2.30)
becomes

2MgA(q2) + q2 hA(q2)

2M
= 0. (2.33)

In the limit of q2 → 0 the second term of Eq. (2.29) does not vanish but con-
tributes the amplitude

i fπqµ

i

q2
i
√

2gπNNū(p′)γ5u(p) (2.34)
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18 The weak currents

shown by the diagram in Fig. 2.1. The amplitude has a pole at q2 = 0 and its
divergence gives

q2 hA(q2)

2M
= −

√
2 fπ gπNN + terms proportional to q2, (2.35)

which, together with (2.33), gives again the Goldberger–Treiman relation. This
demonstrates that the form factor hA(q2) is dominated at small momentum transfers
by the pion pole.

2.3 Regularities among the forces

The subjects covered in the first two chapters represent basic topics developed long
before the electroweak theory. They strongly suggest that the weak force is not an
isolated phenomenon, but one intimately connected with the other forces of nature.
The isotriplet hypothesis clearly states that the isovector part of the electromagnetic
current and the vector part of the weak current for 	S = 0 transitions form an
isospin triplet. In addition, it states that the charges T ± are the same generators as
those of strong isospin. We note that operators of the three types of interactions are
related. The isotriplet hypothesis also posed a problem: that of explaining why the
neutral member of the multiplet did not occur in the weak interactions by itself, but
only through electromagnetism. This question was answered with the discovery of
weak neutral currents.

The hypothesis of PCAC relates couplings of the weak interactions to the pion–
nucleon coupling constant through the Goldberger–Treiman relation. In another
application, PCAC combined with equal-time commutation relations, it is possible
to calculate the deviation of gA from 1 as an integral over the pion–nucleon cross
sections.

Consequences of PCAC hold at the 10%–20% level. They are understood to
hold because the mass of the pion is small in comparison with the masses of other
hadrons. That is, there is an underlying symmetry, which is broken by the small mass
of the pion. The previous remarks provide a strong motivation to search for a closer
connection of the weak, electromagnetic, and perhaps the strong interactions. The
successful theory which unifies the weak and electromagnetic forces is studied in
the following chapters. The electroweak theory is so far in excellent agreement with
experiment. It made many predictions that have been confirmed by experimental
data. Finally, the reader should keep in mind that the theory must also provide a
natural explanation of the empirical rules described so far and others to be described
in the following chapters.
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Problems for Chapters 1 and 2

1. The scattering of particles

a + b −→ c + d

is described by the amplitude

f (θ ) = 1

k

∑
l

(2l + 1)
(ηle2iδl − 1)

2i
Pl(cos θ ),

where ηl and δl are real functions and k is the magnitude of the momentum of particle
a or b in the center-of-mass system. δl is the phase shift and ηl is introduced to describe
inelastic scattering: for elastic scattering ηl = 1 and for inelastic scattering ηl < 1.

(a) Prove the optical theorem and show that

σtot = 2π

k2

∑
l

(2l + 1)[1 − ηl cos(2δl)].

(b) Show that, for elastic scattering,

σel = 4π

k2

∑
l

(2l + 1)

∣∣∣∣ηle2iδl − 1

2i

∣∣∣∣
2

.

(c) Show that, from (a) and (b), it follows that

σtot = π

k2

∑
l

(2l + 1)(1 − η2
l ).

2. Using the result from Problem 1 (part (c)), show that the cross section for the reaction
νµ+ e− → µ− + νe is limited by

σ (νµ+ e− → µ− + νe) ≤ π

2E2
cm

,

where Ecm is the energy of the νµ or the e− in the center-of-mass frame. Take into
account that it is an l = 0 scattering and that there is a spin factor of (2s + 1).

3. From the Hermiticity of the electromagnetic current, show that F1(q2) and F2(q2) are
real.

4. From time-reversal invariance, show that F1(q2) and F2(q2) are real.
5. By considering the non-relativistic limit of the Pauli interaction,

1

2
µ�σµν�Fµν, Fµν = ∂µ Aν − ∂ν Aµ,

give a physical interpretation of the term containing F2(q2). Express F2(0) in terms of
the proton’s anomalous magnetic moment.
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