
J. Functional Programming 9 (1): 105–111, January 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

105

Book reviews

Advanced Functional Programming edited by John Lauchbury, Erik Meijer

and Tim Sheard, Lecture Notes in Computer Science 1129, Springer-Verlag,

1996.

This collection of tutorial papers from the Second International School in Advanced Functional

Programming follows a similar format to the B̊astad school (Jeuring and Meijer, 1995),

reviewed in this journal (Warren Burton, to appear). These schools had the aim of widening the

audience for a mature functional paradigm, which has moved from the original innovations of

the late 1970s and 1980s to larger-scale applications, language extensions and more advanced

programming techniques. As in Jeuring and Meijer (1995), the intended audience consists of

people with a first course in functional programming as well as wider computing experience.

The authors use Haskell and Standard ML (SML) as vehicles, but many of their insights

are non-language specific. We now review the individual contributions of the authors and

conclude by making some general remarks.

Finne and Peyton Jones: Composing the User Interface with Haggis

Historically one of the problematic issues for the designer and user of functional languages

has been in handling input/output; a comprehensive survey is given by Gordon (1994). The

monads of the later versions of Haskell1 represent an emerging consensus of how to manage

not only I/O but also mutable state, exceptions and so forth; Jeuring and Meijer (1995)

contains substantial amounts of tutorial material on monadic programming. Also amenable

to monadic treatment is the programming of Graphical User Interfaces (GUIs); the Haggis

approach to GUI programming is the subject of this article. Various strands of advanced

functional programming come together in Haggis, thus.

• The system uses a declarative view of pictures. Representations of pictures are built

from a small number of primitives, together with various picture combinators. This

view is independent of the particular way that the pictures are rendered, an approach

it shares with Haskore (see the discussion of the article by Hudak below) and other

systems.

• Concurrency is used to support the realization of the GUI as a virtual device; this also

assists in separating the user interface of an application from the application itself.

• A component-based system of GUI construction, similar to the approach to Pictures.

The authors give copious numbers of examples and exercises, including the well-known model-

view-controller design pattern. Haggis is implemented in the Glasgow Haskell Compiler.

Hudak: Haskore Music Tutorial

Haskore is a Haskell-based system for describing music. At its heart is an algebraic type,

Music, which provides a concrete representation of pieces of music. A user of the system can

compose by describing objects of the Music type as well as giving general transformations

1 Hammond, K. and Peterson, J. (eds.), Report on the Programming Language Haskell 1.4, available at
www.haskell.org.

https://doi.org/10.1017/S0956796899223246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223246


106 Book reviews

over the type. Equalities between different representations can also be proved using simple

equational reasoning over the Music type. From Music other artifacts can be produced:

Haskore allows the modelling of Performances on Instruments which can themselves be

realized in MIDI and other sound formats as well as being notated. This modelling approach,

also exemplified by Haggis and Fran (1997), is elegant and flexible and is characteristic

of modern functional programming. It also appears to show one way in which functional

languages out-perform their object-oriented rivals in giving a programming device that

naturally reflects the nature of the system being modelled.

Jeuring and Jansson: Polytypic Programming

The essential idea of polytypic programming is that some functions can be defined uniformly

for all algebraic data types. A canonical example of this is a measurement of the size of a

member of an algebraic type: at a node, one sums the sizes of the recursive components and

adds one, for instance. The authors’ achievement is to show how to construct a programming

system (Polyp) in which such general ‘polytypic’ functions can be expressed by induction over

the construction of the data type involved. Their approach is built upon a categorical view of

functional programming, more details of which can be found in Bird and de Moor (1997). This

view combines a datatype-independent expression of structural recursions (or catamorphisms)

with a relatively low-level collection of categorical ‘plumbing’ combinators. After outlining

their approach the authors give some ‘theorems for free’ for polytypic functions and illustrate

their work by developing in Polyp case studies of term rewriting and unification.

Lee: Implementing Threads in Standard ML

This chapter shows how the standard functional constructs of higher-order functions and con-

tinuations as implemented in SML of New Jersey are used to implement ‘lightweight’ threads

of concurrent control. The author illustrates the value of a functional approach by the arguing

that the simple thread implementation he has given will leak space. The clarity of the code for

threads and the simplicity of the functional execution model surely make this kind of argument

easier to justify, and the article is completed with a refined, ‘safe-for-space’, thread system.

Okasaki: Functional Data Structures

Okasaki gives a tutorial on his and others’ work on designing efficient data structures in

a functional setting. In the author’s words: “Some imperative data structures can easily be

adapted to functional languages, but most cannot. Leftist heaps are essentially the same in

SML as in C, FIFO queues and catenable lists must be redesigned from scratch; the usual

imperative solutions are completely unsuitable for functional implementations”. Functional

languages provide a convenient framework for designing persistent data structures – which

can then be implemented in imperative languages. In fact for some problems the best-known

persistent solutions were designed in this way.

It is interesting to observe that although the implementation is in the strict language

SML, Okasaki introduces primitives for laziness, since these are the key to integrating the

amortization of costs of computation over repeated functions over that data with the potential

persistence of the data structure itself.

Runciman and Rojemo: Heap Profiling for Space Efficiency

One of the most difficult problems facing a programmer in a lazy language is to predict

the space behaviour of his or her programs. It is all too easy to make a small change to a

program which does not affect the results of the computation but which does have drastic

effects on the efficiency of its evaluation. The authors describe an extension to the NHC

Haskell compiler that delivers profiles of the heap usage of programs. In their tutorial the

authors follow an introduction to their system by giving a taxonomy of many of the causes

of space leaks together with a sequence of illustrative examples.

https://doi.org/10.1017/S0956796899223246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223246


Book reviews 107

Swierstra and Duponcheel: Deterministic, Error-Correcting Combinator Parsers

This article builds on Fokker’s (1995) introduction to combinator-based parsing from the

earlier AFP Spring School (Jeuring and Meijer, 1995). Fokker shows how to construct parsers

from a small set of higher-order combinators, which Swierstra and Duponcheel point out

is almost the classical example of such a style of programming. As they also argue, this

approach is inefficient, since it has inherent overheads due to its non-determinism, and limited

in being unable to provide facilities for error reporting and recovery. The authors give a new

set of combinators for LL(1) grammars, which are commonly used to give the syntax of

programming languages, and show how their combinators avoid the difficulties of the naive

approach. They conclude their discussion with an informative account of the possibilities for

partial evaluation in this context and the difficulty of applying this analysis for the monadic

version of the parser combinators (Hutton and Meijer, to appear).

Tofte: Essentials of Standard ML Modules

Tofte summarizes the SML module system in which a distinction is drawn between interfaces

(ML signatures) and their implementations (ML structures), as well as containing parametric

structures (ML functors) which are dependent on arguments which need to conform to a

given signature. The type system is illustrated by means of a series of practical exercises to

build a polymorphic type-checker for the idealized language MiniML.

Conclusion

The text reviewed here continues themes begun in Jeuring and Meijer (1995), showing how

the powerful abstraction mechanisms of functional languages can be used to provide elegant

and powerful solutions to programming problems such as GUI and thread programming,

modelling musical structures and general modular programming. A different theme is the

need for efficiency in functional systems. Okasaki aids a programmer by providing efficient

implementations of data structures which can be used ‘off the shelf’, while Runciman and

Rojemo show how programmers can analyze the space behaviour of their programs for them-

selves. Finally, Jeuring and Jansson show that research into functional languages themselves

still has useful results to deliver by describing a new definition mechanism for polymorphic

functions which uses induction over the construction of the domain types to give functions

defined over all algebraic types in a uniform way.

References

Bird, R and de Moor, O. (1997) Algebra of Programming, Prentice-Hall.

Elliott, C. and Hudak, P. (1997) Functional Reactive Animation, International Conference on

Functional Programming, ACM.

Fokker, J. (1995) Functional Parsers, in Jeuring, J. and Meijer, E. (eds.), Advanced Functional

Programming: Lecture Notes in Computer Science 925, Springer-Verlag.

Gordon, A. (1994) Functional Programming and Input/Output, Cambridge University Press.

Hutton,G. and Meijer,E. (to appear) Monadic Parser Combinators, J. Functional Programming.

Jeuring, J. and Meijer, E. (eds.) (1995) Advanced Functional Programming: Lecture Notes in

Computer Science 925, Springer-Verlag.

Warren Burton, J. (to appear) Review of Advanced Functional Programming: Lecture Notes

in Computer Science 925, J. Functional Programming.

Simon Thompson

https://doi.org/10.1017/S0956796899223246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223246


108 Book reviews

Advanced Functional Programming: Lecture Notes in Computer Science 925

edited by Johan Jeuring and Erik Meijer, Springer-Verlag, 1995.

Advanced Functional Programming contains the lecture notes used at the First International

Spring School on Advanced Functional Programming Techniques in May 1995, in B̊astad,

Sweden. Advanced Lazy Functional Programming perhaps would have been a better title.

Many of the ideas presented do not apply to strict functional languages such as Standard ML.

For example, most of the chapters at least mention monads, and type classes are widely used.

Most books on functional programming, or introductory books on programming in other

languages, usually focus on programming in the small and use small toy examples. This book

focuses on larger problems and more advanced topics. Because of the power and simplicity

of functional languages, this book contains a number of examples that simply would be too

large and complex for even an advanced book of similar size based on a different style of

language. Many of the concepts considered in the book, while useful with toy problems, don’t

really show their worth until applied to more complex problems, such as these.

The book consists of nine chapters, written by different authors. The chapters tend to relate

to some aspect of the authors’ research, usually containing some of the authors own results.

However, the contents of the book do not appear to have been dictated by the interests of the

authors. Instead, it appears that the contents of the book were carefully selected and appropri-

ate authors were chosen for the different topics. In general, the authors are known not only for

the quality of their research, but also for the quality of their presentations, both oral and writ-

ten. Clearly they invested a significant amount of effort in making this book a pleasure to read.

While the chapters are independent, and in principle can be read in any order, they fit

together nicely, reference each other occasionally, and are ordered so that later chapters often

build on ideas introduced in earlier ones. However, each chapter is sufficiently self-contained

that reading of previous chapters is not required.

As the title suggests, this book assumes some prior knowledge of functional programming.

I covered selected chapters in the later part of a graduate course that introduced functional

programming to graduate students who, for the most part, were not primarily interested in

functional programming or programming languages. The book would be ideal for a graduate

course for students with a previous knowledge of functional programming, or for self-study

by anybody interested in extending their knowledge of functional programming techniques.

Individual chapters are a good starting point for learning about particular topics.

The power and simplicity of functional programming is illustrated throughout the book.

The modularity and potential for code reuse that results when functional program components

can be combined in various ways is frequently demonstrated. Hence, chapters may be worth

reading as examples of functional programming techniques and styles even if the official topic

of the chapter is not of interest to the reader. Most chapters contain exercises, and all have a

good balance between the presentation of concepts and examples (often nontrivial).

Most, if not all, of the chapters contain minor errors. These did not seriously impede my

reading, so I will leave finding and correcting them as an exercise.

Brief comments on the individual chapters follow:

Functional Parsers by Jeroen Fokker. Fokker gets the proceedings off to a good start with

an interesting and nontrivial application. Lazy evaluation and higher-order functions are put

to good use in functional parsers, and backtracking using the ‘list of successes’ method is

presented.

Monads for functional programming by Philip Wadler. Monads, which are used in various

ways in the following chapters, are introduced by Wadler. A number of practical examples

are given, including updatable state, arrays, output, exceptions and parsers. The laws that a

monad should satisfy are also given. The presentation is clear and the examples demonstrate

the power of monads. This chapter should be read before later chapters by anyone who is

not already comfortable with monads.

https://doi.org/10.1017/S0956796899223246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223246


Book reviews 109

The Design of a Pretty-printing Library by John Hughes. The topic of the chapter by

Hughes is really program derivation and transformation. Using a pretty-printing library as

an example, an efficient program is derived from a simple specification, with a number of

variations of the program appearing along the way. Extensive use is made of higher-order

functions. Experiments are used to check the efficiency of the various programs, so the

chapter has a practical as well as theoretical flavour. It is unlikely the final program could

have been produced without recourse to formal transformations. Near the end of the chapter

the functional pretty-printing library is compared to a classic pretty-printing library.

Functional Programming with Overloading and Higher-Order Polymorphism by Mark

P. Jones. Type classes and constructor classes can now be found in several functional pro-

gramming languages. Mark Jones presents the basic concepts behind classes and presents a

variety of examples showing how classes can be put to good use in a functional programming

language such as Haskell. Constructor classes are a fairly natural generalization of type classes

as originally proposed, but significantly add to the power of the class system. In particular,

monad is a constructor class, since a monad (as defined in a functional language) is a type

constructor. While monads are only one of many classes considered by Jones, the relation of

monads to constructor classes nicely complements Wadler’s earlier presentation.

As Jones demonstrates, classes contribute significantly to the ability to write modular and

reusable code.

Programming with Fudgets by Thomas Hallgren and Magnus Carlsson. The book takes

a more applied turn with the chapter on fudgets. Fudgets are ‘functional widgets’ where a

‘widget’ is a ‘window gadget’.

One of the areas where functional languages have tended to be weak is input and output.

Early functional programs were functions from input streams to output streams. File I/O,

if supported at all, tended to not be purely functional. Dialogues provided a more general,

yet purely functional, I/O mechanism. But dialogues are not pretty. Monadic I/O is a big

improvement, but does not address the increasingly important problem of supporting a

graphical user interface.

Fudgets support graphical user interfaces in a simple and almost purely functional manner.

Actually, fudgets are slightly nonfunctional because some mechanism is required to allow a

program to respond to input from different sources arriving at different rates, but a carefully

considered practical compromise maintains the spirit of functional programming and allows

graphical user interfaces to be written in a surprisingly functional style.

Fudgets can also be used for communication between different computers, using sockets.

Constructing Medium Sized Efficient Functional Programs in Clean by Marko C.J.D.

van Eekelen and Rinus (M.) J. Plasmeijer. This chapter discusses the implementation of a

spreadsheet in Clean, version 0.8. The resulting program was about 30,000 lines long, with

about two thirds of that consisting of code reused from a previously written I/O library and

a text editor.

While the focus of the chapter is on software engineering, and the suitability of a functional

language for code reuse and programming in the large, the chapter also describes many of

the key features of Clean, a pure lazy functional programming language. The most novel

feature is unique types. If a value has a unique type, then there can be only one reference to

it. Unique types provide a viable alternative to monads for allowing destructive updating of

data and supporting nice input and output. Clean is able to support graphical user interfaces

through the use of unique types. Clean uses a class system similar to that of Haskell or Gofer,

but with some interesting differences.

While the use of Clean for writing a medium sized program was successful, experience with

writing the spreadsheet in Clean 0.8 has resulted in a number of changes to Clean 1.0.

https://doi.org/10.1017/S0956796899223246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223246


110 Book reviews

Merging Monads and Folds for Functional Programming by Erik Meijer and Johan

Jeuring. As someone who probably should know more category theory than I do, I expected

this chapter to be heavy going. However, I was pleasantly surprised by the clarity of the

presentation.

The fold (or foldr) function takes three arguments, the last of which is a list, and

effectively replaces each cons (or :) used in the construction of a list with one of the

arguments and replaces the nil (or []) at the end of the list with the other argument. For

example:

foldr (+) 0 [1,2,3] = foldr (+) 0 (1:(2:(3:[]))) = 1+(2+(3+0))

Fold functions, called catamorphisms, can be written for other types of data structures.

With a fold function, each data constructor is replaced with one of the arguments to the fold.

That is, a fold function is a higher-order function encapsulating structural recursion for a

particular datatype.

Meijer and Jeuring give a number of examples of fold functions for different types, and

show that many computations can be defined in terms of these. However, they then go on

and show how fold functions can be modified to monadic fold functions, which incorporate

many of the advantages of both monads and folds. A few further examples are sufficient to

convince the reader that monadic folds are a useful addition to one’s bag of programming

techniques.

They close the chapter with an example showing how an efficient interpreter for a toy

language can be derived from a simple specification using monadic folds. Thomas Johnsson

had previously performed the same derivation using fold and unfold operations, but the

authors claim that their approach results in a derivation that is about two thirds the lengths

of Johnsson’s, and easier to understand.

Programming with Algebras by Richard B. Kieburtz and Jeffrey Lewis. As someone who

probably should know more category theory than I do, I found this chapter to be a bit

hard to understand in places. Part of the problem is that the notation used in this chapter is

different than that used for the same concepts earlier in the book. For example, a variation

of the monadic bind operation is used, but it has a different name and different argument

order, and no mention of its relation to the bind operator is made. Some of the mathematical

concepts are introduced quickly and not in enough detail to be easily understood. However,

the fundamental concepts of the chapter are clear.

Kieburtz and Lewis discuss ADL, an Algebraic Design Language. ADL is a more formal

functional language than those considered in previous chapters, and is oriented towards

proving programs correct.

In a language like Haskell it is necessary for a programmer to define a separate fold

operator for each data structure, if a fold operator is desired (as it is likely to be, by any

programmer who has read the previous chapter). In ADL there is a general fold operator

that works with any type of data structure. This construct is extended to facilitate the writing

of many functions for which the fold operator by itself is not sufficient. Near the end of the

chapter, monads are considered.

Graph Algorithms with a Functional Flavour by John Launchbury. As mentioned above,

input and output has been one of the traditional trouble spots for functional programming.

Another has been updatable state. Graph algorithms are an ideal example of a problem area

where updatable state is at least very useful, and probably necessary for efficient programs.

Of course monads provide updatable state of the type needed for graph algorithms.

However, if, using monads, one directly translates a standard graph algorithm to a functional

language, one really hasn’t gained much.

https://doi.org/10.1017/S0956796899223246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223246


Book reviews 111

The really nice thing about this chapter is that the use of state is encapsulated in a small bit

of code, and a more functional style is used for most of the program. This makes it relatively

easy to use the standard techniques for reasoning about functional programs. Launchbury

illustrates this by doing a calculational proof of correctness for an algorithm for finding the

strongly connected components of a directed graph, and argues that his proof is simpler and

more straight forward than other proofs of correctness for this algorithm.

F. Warren Burton

Modern Compiler Implementation in ML: Basic Techniques by Andrew W.

Appel, Cambridge University Press, 1997, ISBN 0521587751.

Andrew Appel’s Modern Compiler Information in ML is an in-depth study of modern com-

pilers. Although it uses the functional language ML as an implementation language and

a later chapter covers the implementation of functional programming languages it is not

a ‘functional’ book. Rather it gives a very detailed account of implementing conventional

languages.

This is achieved by taking a made-up language ‘Tiger’ and working through each part of

the compilation process in sequence. There are chapters on lexical analysis, parsing, abstract

syntax, semantic analysis, intermediate code generation, basic blocks, instruction selection,

liveness analysis and register allocation.

Appel claims his goal was to describe a good compiler that is ‘as simple as possible – but

no simpler’, and he has designed the Tiger language with this in mind. This does not mean

he does not cover topics not required by the simple language but they are then covered at a

higher level of abstraction. Specific ML code as is provided for much of the Tiger language.

It is this high level of detail that is both the strength and weakness of this book. On the

positive side it means that all the nitty-gritty details are explained and good practice code is

given. However, the downside is that the detail also tends to obscure the principles that may

be more appropriate in a lecture course. However, as there are a number of excellent texts

that provide a higher level view of compilation (for example, the ‘Dragon’ book of Aho et al.

(1986)), Appel’s text provides a welcome addition to the literature. Although the use of ML as

an implementation language would somewhat limit it as a suitable textbook for many courses,

there are also versions of the book available that use the languages C and Java. I have not

studied these alternative versions in detail, but a quick comparison of the ML and Java texts

suggested that apart from the fragments of example code and small changes of emphasis, the

majority of the text, including the language Tiger used as a running example, was unchanged.

The reason for the subtitle ‘Basic Techniques’ in the title is that these three books are

preliminary versions of books to be published in 1998. These contain four extra chapters on

loop optimizations, static single-assignment form, pipelining and scheduling and finally the

memory hierarchy, as well as revising some of the other material in the books. However,

even the ‘basic’ versions cover topics that are not found in many other compiler books.

Each version is supported by WWW resources, including the code required for the numerous

programming exercises, sample Tiger programs and pointers on how to obtain additional

software such as the scanner and parser generators used.

In conclusion this book is a valuable addition to the bookshelves of programmers interested

in reading about or implementing modern compiler techniques and would make an excellent

book to support a university compiler implementation course.

Reference

Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers, Principles, Techniques and Tools,

Addison-Wesley.

Bruce McKenzie

https://doi.org/10.1017/S0956796899223246 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899223246

