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An introduction to the use of projection-operator methods for the derivation of
classical fluid transport equations for weakly coupled, magnetised, multispecies
plasmas is given. In the present work, linear response (small perturbations from
an absolute Maxwellian) is addressed. In the Schrödinger representation, projection
onto the hydrodynamic subspace leads to the conventional linearized Braginskii fluid
equations when one restricts attention to fluxes of first order in the gradients, while
the orthogonal projection leads to an alternative derivation of the Braginskii correction
equations for the non-hydrodynamic part of the one-particle distribution function. The
projection-operator approach provides an appealingly intuitive way of discussing
the derivation of transport equations and interpreting the significance of the various
parts of the perturbed distribution function; it is also technically more concise. A
special case of the Weinhold metric is used to provide a covariant representation
of the formalism; this allows a succinct demonstration of the Onsager symmetries
for classical transport. The Heisenberg representation is used to derive a generalized
Langevin system whose mean recovers the linearized Braginskii equations but that also
includes fluctuating forces. Transport coefficients are simply related to the two-time
correlation functions of those forces, and physical pictures of the various transport
processes are naturally couched in terms of them. A number of appendices review
the traditional Chapman–Enskog procedure; record some properties of the linearized
Landau collision operator; discuss the covariant representation of the hydrodynamic
projection; provide an example of the calculation of some transport effects; describe
the decomposition of the stress tensor for magnetised plasma; introduce the linear
eigenmodes of the Braginskii equations; and, with the aid of several examples,
mention some caveats for the use of projection operators.
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1. Introduction
The review article by Braginskii (published in Russian in 1963 and in English

translation in 1965) on classical transport in weakly coupled, magnetised, multispecies
plasmas has served as an invaluable reference for multiple generations of plasma
physicists. For a two-component plasma with small electron-to-ion mass ratio,
µ
.
=me/mi� 1 ( .= denotes a definition), Braginskii described a path to an approximate

derivation of the so-called correction equations for the non-hydrodynamic parts of
the distribution function, from which the classical transport coefficients are ultimately
derived. The methodology, first published by Braginskii (1957),1 can be traced back
to the pioneering work of Chapman (1916) and Enskog (1917) on the kinetic theory
of rarefied gases; for many details, see Chapman & Cowling (1952). The traditional
Chapman–Enskog procedure is reviewed for the simple case of a one-component
plasma (OCP) in appendix A.

Although the relevant mathematics was described clearly by Braginskii (1957),
experience shows that many students do not take the time to work through those
calculations and consequently do not always grasp the beautiful underlying structure of
the transport problem. The techniques described in this article provide an alternative,
heuristically appealing, and technically efficient approach that for neutral fluids is
known to unify a number of threads of non-equilibrium statistical mechanics. That
unification carries over to the more complicated plasma. Appreciation of the methods
enables one to avoid reinventing the wheel and provides one with a concise yet
workable formalism on which non-trivial generalizations can be built. An example of
such a generalization is the calculation of second-order (Burnett) transport coefficients,
addressed in Part 2 of this series of articles (Krommes 2018b).

In the same year that the English translation of Braginskii’s review appeared,
Mori (1965) published a seminal paper in which the transport problem was
reformulated with the aid of projection-operator methods. The general approach
had been anticipated by Zwanzig (1961a,b), and the methodology is now known as
the Mori–Zwanzig formalism. The purpose of the present article is to describe the
application of the Mori–Zwanzig formalism to the problem of classical transport in

1Braginskii’s original 1957 paper contains a footnote indicating that the work was performed in 1952.
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4 J. A. Krommes

weakly coupled, magnetised plasmas. This leads one to an alternative derivation of
the Braginskii correction equations.

A great strength of Braginskii’s review article is its focus on the physical
interpretation of the transport coefficients, knowledge of which is essential for
researchers on magnetised plasmas. But although Braginskii’s interpretations of the
mathematics are entirely correct, here too the present projection methods are helpful
in providing additional intuition. They enable an extension of Braginskii’s equations
for the macroscopic, mean hydrodynamic variables (density, flow, and temperature) to
generalized Langevin equations that include fluctuating forces. Such equations have
previously been derived from the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy (Bixon & Zwanzig 1969; Hinton 1970), but the projection-operator methods
are arguably more transparent and efficient. Fluctuating forces appear implicitly in
Braginskii’s heuristic explanations of the various transport processes, and their effects
are contained in his systematic mathematics. However, explicit definition of those
forces brings additional clarity to the transport calculations.

A projection operator P is linear and idempotent (i.e. P2
= P). It extends to linear

algebra and functional analysis the notion of graphical projection onto an axis.
An example of a projection operator is the ensemble average2

〈. . .〉. Thus, all of
statistical closure theory (Krommes 2002, 2015) can be said to involve projection
operators. However, this is stretching the point. The specifically Mori–Zwanzig-style
projection-operator techniques have a particular flavour and do not naturally generalize
to all possible methods of statistical closure. They have been little used in plasma
physics. Krommes (1975) and Krommes & Oberman (1976) employed them to discuss
the phenomenon of long-time tails in magnetised, thermal-equilibrium plasmas, earlier
identified in the molecular-dynamics neutral-fluid computer experiments of Alder &
Wainwright (1970).3 They are mentioned briefly by Diamond, Itoh & Itoh (2010,
§ 6.2). However, they have not been used systematically in the context of plasma
transport theory. In particular, there is no published account of their application to
the derivation of the Braginskii transport equations.4

One possible reason that the Mori–Zwanzig formalism has not seen much use
in plasma physics is that the most general non-equilibrium statistical–mechanical
treatments of the transport problem produce formulas for the transport coefficients in
terms of averages over the N-particle equilibrium ensemble and dynamics evolved with
a modified N-particle Liouville propagator, where N is the total number of particles
in the system. Such formulas go back to Green (1954) and Kubo (1957). (Subtleties
with the interpretation of the Green–Kubo formulas are discussed in § G.3.) While
elegant, they are difficult to work out in the general case. However, in the special
but very important regime of weak coupling, those formulas simplify dramatically.
Moreover, with the further approximation of linear response an alternative approach
becomes possible wherein a kinetic equation for the one-particle distribution function
is first derived, then processed to produce formulas for the transport coefficients. It is

2Indeed, any linear, properly normalized averaging operation A possesses the property A2
=A and is thus

a projection operator. Weinstock (1969, 1970) employed such operators in his approach to Vlasov turbulence;
see some discussion by Krommes (2002) and Krommes (2015). Weinstock’s work was pursued, for example,
by Misguich & Balescu (1975) and Misguich (1975).

3Some discussions of long-time tails are given by Balescu (1975, § 21.5), Reichl (1998, § 11.A) and Zwanzig
(2001, chap. 9).

4Some of the material discussed here was taught by the author for many years in the course Irreversible
Processes in Plasma offered at the second-year graduate level in Princeton University’s Department of
Astrophysical Sciences. One purpose of this article is to make this material more accessible and to suggest
that it is worthy of a core topic in a plasma-physics educational curriculum.
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that processing that is clarified by the projection-operator techniques described in the
present paper. I shall show that a suitably modified Mori–Zwanzig formalism can be
easily applied to the linearized plasma kinetic equation, leads efficiently to standard
results, clarifies the structure of the hydrodynamic system and fosters heuristic
understanding of the first-order transport processes.

By nth-order processes, I mean contributions to dissipative fluxes of nth order in
the gradients. Thus, ‘first order’ is to be distinguished from ‘linear response’. The
latter describes a formally infinitesimal perturbation of thermal equilibrium. In either
linear response theory or a more general nonlinear theory, dissipative fluxes exist that
are driven by arbitrary powers of the gradients. The proportionality factors are the
‘nth-order transport coefficients’ (more precisely, the order-unity transport coefficients
that enter in fluxes involving nth-order gradients). The first-order coefficients are
called the Braginskii transport coefficients by plasma physicists; they are known
in non-equilibrium statistical mechanics as the Navier–Stokes coefficients. For
example, if small perturbations are denoted by 1, the first-order heat flux in an
unmagnetised plasma has the form 1q = −nκ∇1T (n is the density and T is the
temperature); κ is the first-order thermal conductivity. This relation is both linear
(1q ∝ 1T) and first order (1q ∝ ∇). The second-order coefficients are called the
Burnett transport coefficients. Some Burnett coefficients exist already in the linear
approximation. For example, one contribution to the linear Burnett heat flux has the
form 1q= nκ ′∇21u, where u is the fluid velocity. For nonlinear response, additional
Burnett terms arise. For example, a contribution to the nonlinear Burnett heat flux
has the form 1q= nκ ′′(∇ ·1u)∇1T .

This paper is Part 1 of a two-part series of articles whose goal is to show
how to formulate classical, weakly coupled plasma transport theory by using
projection-operator methods. Part 1 describes a self-contained rederivation of the
Braginskii correction equations for the special case of linear perturbations of an
absolute Maxwellian equilibrium. This is less than what Braginskii accomplished (his
equations are nonlinear), but it serves to familiarize one with the basic methodology in
the simplest possible context. (Following Braginskii, I restrict my attention to effects
of first order in the gradients. Although the present methodology could also be used
to study linear Burnett effects, I shall defer such calculation to the more general
discussion given in Part 2, where nonlinear Burnett effects are also considered.) I
shall also derive a set of generalized Langevin equations that extend Braginskii’s
equations to include fluctuating forces. That is a core topic that provides important
insight into the structure of the transport theory.

In Part 2, the problem is reformulated in order to embrace nonlinearity and
arbitrarily strong coupling. The methodology used there is a generalization of the
formulation of Brey, Zwanzig & Dorfman (1981) to include a background magnetic
field and multiple species. The nonlinear Braginskii equations are recovered with
ease. The techniques also allow one to obtain the next-higher-order Burnett equations,
including both of the linear and nonlinear effects as described above. Those were
originally obtained for plasmas described by the Landau collision operator by
Mikhaı̌lovskiı̌ (1967), Mikhaı̌lovskiı̌ & Tsypin (1971, 1984) and Catto & Simakov
(2004), none of whom remarked on connections to previous calculations of Burnett
coefficients for neutral gases. In Part 2 it is shown that the Navier–Stokes and
Burnett transport coefficients calculated by Catto and Simakov are special cases of
the complete set of coefficients for which Brey et al. (1981) gave general expressions
in terms of integrals of two-time correlation functions.5 Thus, the present series of
articles serves to unify a variety of previous research threads.

5A proviso is that Brey et al. (1981) did not include a magnetic field, but that is easy to add.
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I now return to an overview of the present Part 1. I illustrate the basic approach
in § 2 by deriving linearized transport equations for the unmagnetised one-component
plasma, restricting attention to dissipative fluxes that are of first order in the gradients.
Then in § 3 I extend the calculations to embrace multispecies and magnetised plasmas,
and I derive the linearized version of Braginskii’s correction equations.

The formalism employed in §§ 2 and 3 uses what is known as the Schrödinger
representation, which means that one takes time-independent velocity moments of
the time-dependent distribution function f (which is taken to evolve according to the
Landau kinetic equation). Alternatively, one can use the Heisenberg representation, in
which equations are written for time-dependent, random hydrodynamic observables
whose statistical behaviour evolves from statistics (velocity dependence) that reside
in the distribution function at some initial time. The averaged equations are the same
as before. However, the raw equations for the random variables can be cast into the
form of generalized Langevin equations, which include fluctuating forces and imply
a theory of hydrodynamic correlation functions. This is done in § 4. The body of the
paper concludes with a brief discussion in § 5.

Several appendices are included. In appendix A I review the traditional Chapman–
Enskog calculation for the one-component plasma, in appendix B I record various
properties of the linearized Landau collision operator, in appendix C I describe a
technically efficient covariant representation of the transport equations, in appendix D
I provide an example of the evaluation of the general formulas by considering
the electron heat flow in the limit of small collisionality, in appendix E I review
Braginskii’s tensorial decomposition of the stress tensor, in appendix F I consider
some important special cases of the linear eigenmodes of the Braginskii equations
and in appendix G I focus on some important caveats regarding the use of projection
operators. Key notation is summarized in appendix 2:I,6 which merges the definitions
from both Part 1 and Part 2.

This paper is intended to be useful to both graduate students just beginning their
study of classical plasma transport as well as seasoned researchers interested in
advanced techniques. Although it rederives some of Braginskii’s principal results and
quotes others of them for completeness, it is neither a complete replacement for
Braginskii’s article nor a comprehensive review of classical plasma transport theory.
For initial study of classical transport, a reasonable plan of attack would be to begin
by skimming the first half of Braginskii (1965) (through the end of §5, p. 262).
Additional perspective should then be provided from the present paper by §§ 1–3
and 5 as well as appendices A, B, D, E and F, with § 4 and appendices C and G
containing more advanced material. To fully appreciate the material in appendix G,
the reader may find it useful to first study the concise modern introduction to
non-equilibrium statistical mechanics given by Zwanzig (2001), particularly chap. 8
on projection operators.

The material in Part 1 is intended to be introductory, and the restrictions to linear
response and first-order transport coefficients are greatly simplifying. In fact, some
deep conceptual issues lurk in what may appear at first glance to be straightforward
analysis. If concerns arise, consult § 5 for brief discussion and see Part 2 for a more
thorough treatment.

6Sections relating to Part 2 are prefaced by ‘2:’ (e.g. appendix 2:H).
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2. Linearized hydrodynamics for the one-component plasma

In a one-component, weakly coupled7 plasma (for example, a discrete ion plasma
with smooth electron neutralizing background) in which the collision frequency ν
is ordered large, it is well known that Chapman–Enskog theory singles out the
number density, momentum density, and kinetic-energy density (or temperature, or
entropy density) as preferred hydrodynamic variables. That is, those quantities are
conserved by the Landau collision operator. Mathematically, with n being the spatially
uniform mean density, the velocity-dependent functions n, nmv, and (1/2)nmv2 are
the left null eigenfunctions of the collision operator (in terms of a natural scalar
product to be defined shortly). No dissipative transport is associated with the null
eigenfunctions. Rather, transport is carried by the non-hydrodynamic corrections to
the local Maxwellian distribution function. The traditional Chapman–Enskog approach
is reviewed in appendix A.

2.1. Basic idea of the hydrodynamic projection
These ideas can be codified by dividing a complete set of functions on the
single-particle velocity space into two orthogonal subspaces: the hydrodynamic
subspace H, spanned by the null eigenfunctions of the collision operator, and the
non-hydrodynamic, orthogonal, or vertical subspace O.8

The fluid evolution equations ‘live in the hydrodynamic subspace’. The non-
hydrodynamic part of the distribution function determines the values of the transport
coefficients. Transport coefficients enter the fluid equations because the dynamics of
the hydrodynamic and non-hydrodynamic subspaces are coupled by the evolution
equation for f . That coupling is a special case of the statistical closure problem
(Krommes 2015) for passive equations with random coefficients. (Such equations are
said to possess a stochastic nonlinearity.) Here the random variable is velocity and
the stochastic nonlinearity is the v · ∇f term in the kinetic equation.

The decomposition into hydrodynamic and non-hydrodynamic parts can be
expressed by the introduction of appropriate projection operators. If P projects
into H and Q .

= 1− P (where 1 is the identity operator) therefore projects into O, and
if the perturbed (denoted by 1) distribution function is written as 1f = 1fh + 1f⊥,
then 1fh = P1f and 1f⊥ =Q1f . The basic idea is illustrated in figure 1; the precise
realization of P is given in the next section.

The formulation described in the present paper focuses on the decomposition of the
one-particle distribution function fs(x, v, t), which lives in the so-called µ space (the
six-dimensional (6-D) phase space for one generic particle of species s). In contrast,
the instantaneous state of the entire collection of N particles can be described by a
single point in the so-called Γ space (of 6N dimensions). A well-known consequence
of the reduction from Γ space to µ space is that the kinetic evolution equation
for f is nonlinear (it involves the product E[ f ] f , where the electric field E is a
linear functional of f , as well as a nonlinear collision operator), which leads to
various complications. Γ -space dynamics, on the other hand, is formally linear,
being described by the Liouville equation. That linearity combined with the linearity
of projection operators was usefully exploited by Mori, who was able to write
exact equations for two-time correlation functions with apparent ease; ultimately, the

7Weakly coupled means that the plasma is almost an ideal gas (i.e. that the plasma discreteness parameter
εp
.
= 1/(nλ3

D) is very small). Here λD is the Debye length.
8The notion of a vertical projection is common in the modern theory of differential geometry; see, for

example, Fecko (2006).
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8 J. A. Krommes

FIGURE 1. Illustration of the P and Q projections. The kinetic-energy axis of the
hydrodynamic subspace is omitted for clarity.

transport coefficients are expressed in terms of various integrals over those correlation
functions. However, the simplicity is only formal. Mori’s projection operators involve
the full N-particle dynamics, and his equations contain nonlinearities to all orders; in
the general case, it is difficult to extract from them quantitative expressions for the
transport coefficients. As I shall show in Part 2, the formulas simplify in the limit
of weak coupling, which fortunately is appropriate for research on magnetic fusion
and various other applications. However, that still leaves the dichotomy between the
linearity of projection operators and the nonlinearity of µ-space dynamics to be dealt
with. It might seem that a projection-operator formalism is restricted to the derivation
of linearized transport equations. That is not correct, although the generalization is
non-trivial. I shall address nonlinear transport in Part 2. In the present paper, I restrict
my attention to linear response, where the basic features of the projection-operator
methodology can be explained in the simplest possible context.

2.2. Transport equations for the unmagnetised, one-component, weakly coupled
plasma

In this section I shall introduce the formalism by using projection methods to derive
the linearized fluid equations for the one-component plasma (OCP) in the limit of
weak coupling and in the electrostatic approximation with background magnetic field
B = 0, restricting my attention to fluxes that are of first order in the gradients. (An
even simpler example, the Brownian test particle, is discussed in § G.4.) It is well
known and easy to show that the fully nonlinear moment equations for the density n,
flow velocity u, and temperature T of the one-component, weakly coupled plasma are

∂tn(x, t)+∇ · (nu)= 0, (2.1a)

nm
du(x, t)

dt
= nqE−∇p−∇ ·π , (2.1b)

3
2

n
dT(x, t)

dt
=−p∇ ·u−∇ · q− (∇u) : π . (2.1c)
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Here9

n(x, t) .=
∫

dv nf (x, v, t), (2.2a)

nu(x, t) .=
∫

dv nvf (x, v, t), (2.2b)

3
2

nT(x, t) .=
∫

dv
1
2

nm w2f (x, v, t), (2.2c)

where w .
= v − u is the so-called peculiar velocity and p .

= nT is the pressure of an
ideal gas. The total advective time derivative is

d
dt
.
=
∂

∂t
+ u · ∇, (2.3)

and the stress tensor π and the heat-flow vector q are defined by

π
.
=

∫
dv (nmw)wf − pI, (2.4a)

q .
=

∫
dv

(
1
2

nmw2

)
wf . (2.4b)

These equations are closed in the collisional limit by the results

π
.
=−nmµ

(
(∇u)+ (∇u)T − 2

3(∇ ·u)I
)
, (2.5)

where T denotes transpose and µ is the kinematic viscosity10; and

q .
=−nκ∇T, (2.6)

where κ is the first-order thermal conductivity. The linearizations of these equations
around an absolute thermal equilibrium (which possesses no gradients or flows) of
density n0 = n and temperature T0 are

∂

∂t

(
1n
n0

)
+∇ ·1u= 0, (2.7a)

n0m
∂1u
∂t
= n0q1E−∇1p−∇ ·1π , (2.7b)

3
2

n0
∂1T
∂t
=−p0∇ ·1u−∇ ·1q, (2.7c)

9The inclusion of the mean density n in the definition (2.2a) of density is a normalization convention
that makes f dv dimensionless. Specifically, f is normalized such that V−1 ∫ dx dv f (x, v, t)= 1, where V is the
volume of the system. Thus, f differs, though inessentially, from a true probability density function (PDF),
whose normalization would not include the V−1 factor. An example of an f normalized with this convention
is the local Maxwellian given in (A 6).

In the general case of arbitrarily coupled plasma, there are potential-energy corrections to (2.2c). A kinetic
theory for such a system was derived by Forster & Martin (1970). One of the few deficiencies of Braginskii’s
review article is that he does not emphasize the restriction to a nearly ideal gas. The formalism used in Part 2
allows for arbitrarily strong coupling.

10In context, there should be no confusion between the kinematic viscosity and the mass ratio me/mi,
which I also denote by µ. The distinction is clearer in multispecies plasma, where the viscosities carry species
subscripts. I also use µ for the reduced mass µss′ as well as for a contravariant or covariant index of a
hydrodynamic vector.
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10 J. A. Krommes

where 1p .
= T01n+ n01T and

1π
.
=−n0mµ0((∇1u)+ (∇1u)T − 2

3(∇ ·1u)I), (2.8a)
1q .
=−n0κ0∇1T. (2.8b)

Specific formulas for the transport coefficients µ0 and κ0 are available (appendix A).
The immediate goal is to rederive these results from the projection-operator formalism.

The starting point is the nonlinear kinetic equation

Df
Dt

.
=
∂f
∂t
+ v · ∇f +E · ∂f =−C[ f ], (2.9)

where ∂
.
= (q/m)∂/∂v and C[ f ] is the collision operator,11 written here as a (spatially

local) nonlinear functional (denoted by the square brackets) of f . For present purposes,
one may think of C as the nonlinear Landau operator. However, although use of
the Landau kinetic equation is commonplace, it requires a non-trivial justification. It
appears to be adequate for the treatment of first-order and linear response in a weakly
coupled plasma with a statistically homogeneous background; more generally, however,
it is unclear that a spatially local collision operator even exists. Further explication of
this point is relegated to Part 2, as it lies well outside of the scope of this introductory
discussion.

The electric field E = −∇φ (I consider only the electrostatic approximation) is
obtained from Poisson’s equation

−∇
2φ(x, t)= 4πρ = 4π

∑
s

(nq)s

∫
dv fs(x, v, t). (2.10)

For the OCP, one allows perturbations to only one species, so a species label is
dropped in this section; the other species merely serve to provide an overall charge-
neutral background. A stationary and stable solution of the kinetic-equation–Poisson
system is the absolute Maxwellian,

fM(v)
.
= (2πv2

t )
−3/2e−v

2/2v2
t , (2.11)

where12 vt
.
= (T/m)1/2. Infinitesimal perturbations to that equilibrium obey

∂t1f + v · ∇1f +1E · ∂fM =−Ĉ1f , (2.12)

where Ĉ is the linearized Landau operator (discussed in appendix B). This is the
basic dynamical equation used in this article. (I shall add a constant background
magnetic field in § 3.) As a linear dynamical evolution equation, it is analogous to
the Schrödinger equation of quantum mechanics. There are, of course, important
differences: the Schrödinger equation is time reversible whereas the present equation
is time irreversible due to the presence of Ĉ, and the quantum-mechanical wave
function is a probability amplitude (whose squared modulus is a probability) whereas
f is directly an actual probability (density).

11The unconventional choice of minus sign on the right-hand side of (2.9) is made so that the collision
operator is effectively positive, consistent with the usual convention of a positive collision frequency. The
linearized operator is positive–semidefinite; see appendix B.

12Here and subsequently, I have dropped the 0 subscript on T0. This is partly to unclutter the notation;
however, there are also more significant reasons. First, it makes no difference whether coefficients of a linear-
response (1) quantity are evaluated with T or T0 (I only consider linear response in the present article).
Second, when one considers the theory of transport beyond linear order, one finds that coefficients are actually
evaluated with the total (local) temperature T(x, t). Thus, formulas written in terms of T rather than T0 will
readily generalize to the more complete second-order theory discussed in Part 2.

https://doi.org/10.1017/S0022377818000582 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000582


Projection-operator methods for classical transport. Part 1 11

2.2.1. Definition of the projection operator
In this and the next several sections I shall use the Schrödinger representation, in

which averages of time-independent functions of velocity are taken with the time
evolved f (t), which plays the role of a time-dependent state vector. It is useful to
treat those averages as projections, and it is convenient to realize those projections
by using a time-independent scalar product. I shall use a Dirac bra–ket notation with
a hidden weight function fM. Thus, for any functions A(v) and B(v),

〈A| .= A(v), (2.13a)
|A〉 .= A(v)fM(v), (2.13b)

〈A|L|B〉 .=
∫

dv dv A(v)L(v, v)B(v)fM(v), (2.13c)

where L is a linear operator with two-point kernel13 L(v, v′). When multispecies
plasmas are discussed later, the scalar product will be extended to include species
summations. Note that no complex conjugate appears in this definition, unlike the
analogous situation in quantum mechanics. This scalar product is ‘natural’ because
(appendix B) nĈ is self-adjoint with respect to it:

〈A|nĈ|B〉 = 〈B|nĈ|A〉. (2.14)

A special case of (2.13c) is obtained by specializing L to the identity operator I→
δ(v − v):

〈A|B〉 =
∫

dv A(v)B(v)fM(v), (2.15)

just the equilibrium velocity average of the product AB: 〈A|B〉 = 〈AB〉M. I shall often
drop the M subscript.

Note that the scalar product used in this paper is defined on just the velocity space.
That this is useful is a consequence of the assumptions that the collision operator is
spatially local and that no potential-energy contributions are included in the definition
of the hydrodynamic moments (see footnote 9 on page 9 and the discussion below).
In Part 2, I shall remove those restrictions and employ a more general scalar product
that generalizes the present one to also involve spatial integration.

Even for spatially local Ĉ, other operators as well as the bras and kets will in
general depend on space. The spatial dependence will often be removed by Fourier
transformation, so constructions such as 〈A|B〉 will be labelled by an (often implicit) x
or k.14

If one writes 1f .=1χ fM for unknown (dimensionless) 1χ , (2.12) becomes

∂t|1χ 〉 +v · ∇|1χ 〉 +|∂ ln fM〉 ·1E=−Ĉ|1χ 〉, (2.16)

where |∂ ln fM〉=−(q/T)|v〉. In collisional transport theory, the conservation properties
of the collision operator are crucial. For the Landau operator, those are15

〈nĂ|Ĉ= 0, (2.17)
13For example, if L .

= ∂/∂v, then L(v, v′)= ∂vδ(v − v′). Here ‘kernel’ is used in one of its two standard
meanings; it does not refer here to the null space of the operator.

14For example, we shall encounter the operator Lv
.
=−iv · ∇. For use with the scalar product, the kernel

of this operator is Lv(v, v
′)=−i[vδ(v − v′)] · ∇→ k · v δ(v − v′).

15In (2.14) and (2.17), the n is unnecessary, as it is a constant. It is retained so that the formula looks
identical to that for multispecies plasma (§ 3), where the scalar product includes a species summation.
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12 J. A. Krommes

where n is the spatially constant density of the equilibrium,

Ă .
= (1 PT K)T, (2.18)

P .
= mv, K .

= (1/2)mv2, and the breve accent is used to distinguish non-orthogonal
functions from more convenient orthogonal ones to be introduced shortly.16 Thus, 〈Ă|
are the five null left eigenfunctions of nĈ. (In fact, there is no need to distinguish
left and right eigenfunctions because for the Landau operator nĈ is self-adjoint with
respect to the chosen scalar product; see § B.1.) Those eigenfunctions span a preferred
five-dimensional hydrodynamic subspace H (see figure 1).

Clearly the definition of H is tied to the form of the collision operator that is
assumed. A consequence of assuming the Landau operator (appropriate for weak
coupling) is that no potential-energy contributions appear in the eigenfunctions. Thus,
the present H is not the true hydrodynamic subspace of the many-particle system.
This approximation is relaxed in Part 2.

From the definitions of n, u and T , it follows that

〈1| f /fM〉 = n/n, (2.19)

so

〈1|1χ〉 =1n/n. (2.20)

Similarly,

〈v|1χ〉 =1u (2.21)

(the absolute equilibrium has no flow). Finally,

〈K|1χ〉 =
3
2
1T +

3
2

T
(
1n
n

)
. (2.22)

Thus, the perturbed (kinetic) temperature can be extracted by
3
21T = 〈K ′|1χ〉, (2.23)

where

K ′ .=K − 〈K〉 = 1
2 mv2

−
3
2 T. (2.24)

This motivates the introduction of

A .
= (1 P′T K ′)T, (2.25)

where P′ = P − 〈P〉 = P; with this definition, the components of A are orthogonal.
Then the deviations of the statistically averaged hydrodynamic variables from their
equilibrium values are given by

1a .
= 〈A|1χ〉 =

(
1n
n
1pT 3

2
1T
)T

, (2.26)

where 1p .
=m1u.

16The choice of upper case for the velocity-dependent functions P and K is made for consistency with
the convention of Brey et al. (1981), whose approach I shall discuss in Part 2. Another notational possibility
would have been to use a tilde, a notation I have often used in other articles to denote a random variable.
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Projection-operator methods for classical transport. Part 1 13

These results lead one to define the hydrodynamic projection operator as

P .
= |AT

〉 ·M−1
· 〈A|, (2.27)

where the normalization matrix17

M
.
= 〈AAT

〉 =

1 0T 0
0 NpI 0
0 0T NT

 (2.28)

ensures that P2
= P; one easily calculates that

Np
.
= (mvt)

2, NT
.
=

3
2 T2. (2.29a,b)

The projection of the state vector is thus

P|1χ 〉 = |AT
〉 ·M−1

· 〈A|1χ〉 = |AT
〉 ·M−1

·1a, (2.30)

and the hydrodynamic variables can be extracted by taking the scalar product of A
with that projection:

1a(t)= 〈A|P|1χ(t)〉. (2.31)

The projection formalism can be couched in a manifestly covariant fashion that turns
out to be very convenient. Namely, if the components of A are labelled as Aµ, where
µ= 1, . . . , 5 (or µ ∈ {n, p, T}), and if (M−1)µν is treated as a metric tensor gµν that
lowers indices according to Aµ = gµνAν (where Einstein’s convention for summation
over repeated indices is adopted), then P can be written as

P= |Aµ〉 〈Aµ|. (2.32)

One has

〈Aµ|Aµ′〉 = δ
µ

µ′, (2.33)

the hydrodynamic projection of the state vector is

P|1χ(t)〉 = |Aµ〉1aµ(t) (2.34)

(cf. (2.30)), and the hydrodynamic variables themselves are

1aµ(t)= 〈Aµ|1χ(t)〉 = 〈Aµ|P|1χ(t)〉 (2.35)

(cf. (2.26) and (2.31)). This representation, which identifies the 1aµ values as
the contravariant components of a hydrodynamic vector, is further discussed in
appendix C.

17With an appropriate redefinition of A, M could be made the identity matrix. However, that is not
convenient for obtaining the conventional fluid perturbations according to (2.26), and it does not distinguish
between contravariant and covariant components (see appendix C). Moreover, it turns out that such a redefinition
does not naturally generalize to the formalism used in Part 2 for treating second-order effects.
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14 J. A. Krommes

2.2.2. Projecting the kinetic equation; the statistical closure problem
Because P is a time-independent linear operator, one can extract the linearized

fluid moment equations by applying P to (2.16), or equivalently by taking the time
derivative of (2.31). Define

L .
= L+ LE and L .

= Lv + LC, (2.36a,b)

where

iLv
.
= v · ∇, iLC

.
= Ĉ, iLE

.
=−(q/T)|v〉 · 〈EEE|, (2.37a−c)

and EEE is the linear operator that solves Poisson’s equation for 1E in terms of 1χ
according to 1E= 〈EEE|1χ〉; in Fourier space, the kernel of EEE is

EEEk(v, v
′)= εknq, εk

.
=−4π ik/k2 (2.38a,b)

(εk is the Fourier transform of the electric field of a unit point charge). Then the
hydrodynamic projection of the linearized kinetic equation is

∂tP|1χ 〉 +PiL|1χ 〉 = 0. (2.39)

The ultimate goal is to obtain a closed system for P|1χ 〉; that is called ‘solving the
closure problem’. That would be accomplished if one could move the P past the L
(i.e. if P and L commute – [P, L] .= PL − LP = 0). However, this is not entirely
possible. From (2.37), one sees that the 1E term is proportional to |v〉 and thus, given
the definition (2.27) of P, lies entirely in the hydrodynamic subspace [which is why
LE was broken out separately in (2.36)]. A consequence is that P and LE commute, so
there is no closure issue stemming from LE. However, the PiL term is problematical
because P and L .

= Lv + LC do not commute. Although for the OCP it is true that
[P, Ĉ] = 0 as a consequence of the conservation laws, that is not true in general,18

and it is never the case that [P, v] = 0. In order to see this, note that while Pv∝ |A〉
lies in the hydrodynamic subspace by construction, one has

vP∝ |vA〉 =

 |v〉
|v(mv)〉

|v( 1
2 mv2

−
3
2 T)〉

 . (2.40)

While the density component of this vector lies in the hydrodynamic subspace, as do
the diagonal elements of the momentum component [vv= (1/3)v2I + (vv− (1/3)v2I)]
and the (3/2)|v〉T term, the off-diagonal terms and the kinetic-energy flux |(1/2)mv2v〉
lie in the orthogonal subspace. This is the familiar problem of moment closure,
formalized here in terms of projection operators. It is one instance of the famous
statistical closure problem much discussed in analytical turbulence theory (Krommes
2002, 2015, and references therein), here involving averages over a random velocity
variable.

To deal with this difficulty, I follow Mori and insert the identity P+Q= 1 so that

PL|1χ 〉 = PL(P+Q)|1χ 〉 = PLP|P1χ 〉 +PLQ|Q1χ 〉 . (2.41)

18For the multispecies case discussed in § 3, [P, Ĉ] 6= 0 since P is chosen to project into a species-dependent
subspace but the conservation laws involve species summation.
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Projection-operator methods for classical transport. Part 1 15

(In writing the last form, I used P2
= P and Q2

= Q. I also slightly abused the
notation19 to write P|1χ 〉 ≡ |P1χ 〉.) Let us define the frequency matrix Ω as

Ω
.
= 〈A|L|AT

〉 ·M−1
; (2.42)

this is a normalized version of the hydrodynamic matrix element of PLP. The
nomenclature is consistent with the fact that under Fourier transformation v · ∇→
ik · v, which corresponds to the streaming frequency Ωv

.
= k · v. In general, the

‘frequency’ is complex because L involves the dissipative term LC
.
= −iĈ. However,

for the OCP Ĉ does not contribute to the frequency matrix since PĈ = 0 as a
consequence of the conservation laws. In any event, if the PLQ term in (2.41)
were to vanish, then one would have a matrix equation for |P1χ 〉 (or for the 1a
values) and the closure problem would be solved. Unfortunately, this is not the case
because, as shown above, [P, v] 6= 0. (This is one way of stating that the kinetic
equation is stochastically nonlinear in the velocity variable.) Thus, the dynamics in
the hydrodynamic subspace,

∂t|P1χ 〉 +|AT
〉 ·M−1

· iΩ · 〈A|P1χ〉 + PiLQ|Q1χ 〉 = 0 (2.43)

or, upon applying 〈A| to (2.43),

∂t1a+ iΩ ·1a+ 〈A|iLQ|Q1χ〉 = 0, (2.44)

is coupled to that in the orthogonal subspace. Note that only L (L sans LE) enters the
last term of (2.44); QLE = LEQ= 0 since LE ∝ |v〉 〈1| has components only in H.

In order to obtain a closed system, it is necessary to eliminate |Q1χ〉 in favour of
some function of 1a. Upon applying Q to (2.16), one obtains

∂t|Q1χ 〉 +QiLQ|Q1χ 〉 +QiLP|P1χ 〉 = 0. (2.45)

Since QiLQ is a linear operator, equation (2.45) can be solved by means of a Green’s
function:

|Q1χ 〉(t)=GQ(t; 0)|Q1χ(0)〉 −
∫ t

0
dt GQ(t; t)QiLP|P1χ(t)〉, (2.46)

where

GQ(t; t′)
.
=H(t− t′) exp[−QiLQ(t− t′)] (2.47)

(since Q and L are time independent). Here H(τ ) is the unit step function.20 Only
the time arguments are written explicitly in the previous two equations, although in
reality the kernels of two-point operators such as GQ also depend on two space and
two velocity variables, so convolutions over those variables are implied. Because the
background is spatially homogeneous and the equations are linear, one can Fourier
transform in space. (This is not necessary, but it makes some of the notation less
cumbersome.) It is conventional to ignore the initial condition |Q1χ(0)〉. Physically,

19Strictly speaking, the P should remain outside of the ket because it operates on the hidden fM as well
as on 1χ .

20H(τ )= 0 if τ < 0, 1/2 if τ = 0, or 1 if τ > 0.
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16 J. A. Krommes

this means that the system is prepared to lie entirely in the hydrodynamic subspace.
Then one obtains

∂t1ak(t)+ iΩk ·1ak(t)+
∫ t

0
dτ Σk(τ ) ·1ak(t− τ)= 0, (2.48)

where21

Σk(τ )
.
= 〈A|LkQGQ,k(τ )QLk|AT

〉 ·M−1. (2.49)

Although (2.48) is now closed in terms of 1a, that system does not yet have the
form of conventional linearized fluid equations because it is non-local in time. To
obtain the conventional form, one makes a Markovian approximation. In the time
domain, that means that one assumes that 1ak(t) varies much more slowly than the
characteristic decay time of Σk(τ ). Then (ignoring spatial or wavenumber dependence
for the moment)∫ t

0
dτ Σ(τ ) ·1a(t− τ)≈

(∫ t

0
dτ Σ(τ )

)
·1a(t)≈

(∫
∞

0
dτ Σ(τ )

)
·1a(t). (2.50)

The temporal non-locality can also be represented in frequency space. The one-sided
temporal Fourier transform of (2.48) (denoted by a hat) is

[−iωI + iΩk + Σ̂k(ω)] ·1âk(ω)=1ak(0). (2.51)

The temporal Markovian approximation in (2.50) becomes Σ̂(ω)≈ Σ̂(0).
Because Σk(τ ) depends on k, the inverse spatial Fourier transform of (2.48)

becomes a convolution in space and thus demonstrates several kinds of spatial
non-locality – one from the Lk operators, and one from GQ,k. The contribution from
the Lk operators is easy to understand. For the OCP, it is straightforward to see
that only Lv,k

.
= k · v contributes to (2.49) because the components of A are the null

eigenvectors of Ĉ. That means that Σk(τ )∝ k2. This is the Fourier representation of a
diffusion process, corresponding to the spatial operator −∇2, and is the expected result
for a conventional transport theory. (∇2 is non-local because it couples neighbouring
points in space.)

Remaining to discuss is the k dependence of GQ,k. Completely analogous to the
temporal Markovian approximation described above, conventional collisional transport
theory will emerge if one can make the spatial Markovian approximation GQ,k≈GQ,0.

To see whether these Markovian approximations are possible, let us look more
closely at Σk(τ ). For scale lengths that are long compared to the mean free path, one
can approximate exp[−Q(v · ∇+ Ĉ)Qτ ] → exp[−Q(ik · v + Ĉ)Qτ ] ≈ exp(−QĈQτ).
(This k → 0 limit is the spatial Markovian approximation.) For the OCP, one has
PĈ = ĈP = 0, so exp(−QĈQτ) → exp(−Ĉτ). If this operator were to act on an
element of H, which contains the null eigenfunctions of Ĉ, it would not decay and
one would be in grave difficulty. However, in Σk(τ ) this exponential is sandwiched
between two Q operators, giving the construction Q exp(−Ĉτ)Q. Those Q operators
‘protect’ Ĉ from the null space. Thus, the null eigenvalues of Ĉ do not contribute

21Elementary discussion of the role of the ‘mass operator’ Σ in more general contexts is given by Krommes
(2015). More advanced details can be found in Krommes (2002).
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Projection-operator methods for classical transport. Part 1 17

and the effect of Ĉ is roughly to provide a damping e−λτ , where λ is of the order of
the collision frequency ν. (For discussion and examples of this assertion, which for
the Landau operator is non-trivial, see § B.4.) Thus, since Σ(τ ) has a finite decay
time ∼ν−1, the temporal Markovian approximation is justifiable and we have been
led to a conventional set of time-local (Markovian) fluid equations:

∂t1ak(t)+ (iΩk + ηk) ·1ak(t)= 0, (2.52)

where (for generality and later application to multispecies plasmas I reinstate the
original construction exp(−QĈQτ))

ηk
.
=

∫
∞

0
dτ Σk(τ )≈ 〈A|LkQ(QĈQ)−1QLk|AT

〉 ·M−1, (2.53)

or covariantly

η
µ

ν,k = 〈A
µ
|LkQ(QĈQ)−1QLk|Aν〉. (2.54)

The result just obtained represents the lowest-order term in the Taylor expansion of
1a(τ ) in (2.50). In principle, one could carry that expansion to higher order; at second
order, one would ultimately obtain linear Burnett effects. However, I shall defer such
a calculation to Part 2.

To reemphasize and reiterate the role of the Q operators, I return to the formal
expression for η, which involves the inverse of the operator QĈQ applied to a quantity
in the orthogonal subspace O. It is important to understand the sense in which this
inverse exists. A quantity of the form |ψ 〉 .= (QĈQ)−1Q|1χ 〉 can be obtained as the
solution to the equation (QĈQ)|ψ〉=Q|1χ〉. For this equation to have a solution, the
source term on the right-hand side must be orthogonal to the left null eigenfunctions
of the operator on the left. That is true; both sides are annihilated by P. Thus, by
Fredholm’s alternative theorem, the equation has a solution, but it is not unique
because an arbitrary superposition

∑
i αi|i〉 of the null eigenfunctions |i〉 can be added

to |ψ 〉 without changing the equation. However, according to (2.53) or (2.54), one
requires Q|ψ〉, so the αi terms do not contribute. Thus, those terms may be set to 0,
leaving one with a unique solution.

To see that the formalism recovers the conventional linearized fluid equations for the
OCP, one needs to work out the various matrix elements. For variety, I shall here use
the spatial form of the operators, but the discussion could equally well be conducted
in k space. Let us begin with the frequency matrix:

iΩ = iΩv + iΩC + iΩE, (2.55)

where

iΩv
.
= 〈A|v · ∇|AT

〉 ·M−1, (2.56a)

iΩC
.
= 〈A|Ĉ|AT

〉 ·M−1, (2.56b)
iΩE

.
= 〈A|iLE|AT

〉 ·M−1. (2.56c)

In these expressions, the role of the M−1 is to change contravariant indices to covariant
ones. Thus, for example,

(iΩv)
µ
ν = 〈A

µ
|v · ∇|Aν〉. (2.57)
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18 J. A. Krommes

(Note that this mixed tensor has the dimensions of frequency.) For the OCP,
ΩC vanishes because 〈A| is a left null eigenfunction of Ĉ. The ΩE term is readily
shown to give rise to the electric-force term in the momentum equation. Finally, with
i, j, and k denoting Cartesian components of the momentum vector, one finds

〈A|vk|AT
〉 =

 0 Tδjk 0
Tδik 0 T2δik

0 T2δjk 0

 . (2.58)

Upon multiplying on the right by M−1, one finds

(iΩv)
µ
ν =

 0 m−1∇j 0
T∇i 0 2

3∇i

0 Tm−1∇j 0

 . (2.59)

Note that the spatial Fourier transform of this matrix is proportional to k.
To illustrate the content of Ω , consider the density component of (2.52). It is easy

to see that there is no η contribution because 〈1|(v ·∇+ Ĉ)Q=∇ · 〈v|Q+〈1|ĈQ= 0.
The last equality follows since |v〉 is in the hydrodynamic subspace, which is
orthogonal to Q, and since Ĉ conserves number. But Ωn

p couples density to
momentum, and one obtains

∂

∂t

(
1n
n

)
+∇ ·1u= 0, (2.60)

which reproduces the linearized continuity equation (2.7a). As another illustration,
consider the velocity component of (2.52). One readily finds that

∂1p
∂t
= q1E− n−1

∇1p+ · · · = 0, (2.61)

where 1p= T1n+ n1T and the centred dots denote the contribution from η, which
will be discussed in the next paragraph. The explicitly written terms reproduce the
correct non-dissipative (Euler) part of the linearized momentum equation (2.7b).
Similarly, the temperature projection leads to

3
2
∂1T
∂t
=−T∇ ·1u+ · · · , (2.62)

the explicitly written terms being the Euler part of the linearized temperature equation
(2.7c).

Now consider the dissipative contributions from η. I shall discuss the stress tensor
in detail, leaving the heat-flow vector as an exercise for the reader. One has (now
dropping the prime on v′ since there is no flow in the equilibrium, and specifically
considering the OCP)

ηp
ν =−〈mv|v · ∇QĈ−1Qv · ∇|Aν〉. (2.63)

The density component ηp
n vanishes because An = 1 and Q|v 〉 = 0. The temperature

contribution vanishes by a symmetry argument that uses the fact that Ĉ is rotationally
invariant. For the self-coupling ηp

p, note that

Qv · ∇|Ap〉 = (1− P)v · ∇|Ap〉 . (2.64)
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One has

Pv · ∇|Ap〉 = |Aµ〉〈Aµ|v · ∇|Ap〉 (2.65a)
= |An〉(iΩv)

n
p + |AT 〉(iΩv)

T
p (2.65b)

=
1
3 T−1
|v2
〉∇. (2.65c)

Thus,
Qv · ∇|Ap〉 = T−1

∣∣v v − 1
3v

2I
〉
· ∇, (2.66)

and then

ηp
p ·1p= n−1

∇ ·1π , (2.67)

where the linearized stress tensor is

1π =−nmm : ∇1u (2.68)

and the fourth-rank tensor m is

m
.
= v−2

t

〈
v v − 1

3v
2I
∣∣ Ĉ
−1 ∣∣v v − 1

3v
2I
〉
. (2.69)

This is the same result that follows from the traditional approach described in
appendix A. There the matrix element is written in terms of w .

= v − u, where u is
the lowest-order flow velocity. Here we are perturbing from an equilibrium with no
flow, so w→ v.

The quantity |mvv − (1/3)mv2I 〉 (see (2.66)) is called the subtracted momentum
flux; the subtraction arises from the P in Q = 1 − P. All dissipative transport
coefficients are defined in terms of subtracted fluxes; the physical reason is that
the P terms represent the fluxes that already exist in local thermal equilibrium, and
those must be subtracted from the total flux in order to obtain the gradient-driven
corrections that are responsible for the net transport (which determines the relaxation
of a small perturbation to thermal equilibrium). In classical Chapman–Enskog theory
(appendix A), subtracted fluxes arise when the first-order solvability conditions
(Euler equations) are used to simplify the correction equations by eliminating time
derivatives in favour of spatial gradients. The use of projection operators executes
that task substantially more efficiently.

The reduction of m to a form involving a single scalar viscosity coefficient µ is
given in appendix A. One thus recovers the proper expression (2.8a) for the linearized
stress tensor 1π of the unmagnetised OCP, where π is defined by (2.5). Similar
considerations lead to (2.8b) for the linearized heat flow.

I remind the reader that the present calculation of the dissipative fluxes is correct
only to first order in the gradients. Second-order fluxes are discussed in Part 2.

3. The Braginskii equations: Multispecies, magnetised, classical, collisional fluid
equations
I now turn to the important problem of classical transport in multispecies,

magnetised plasma (in the limit of weak coupling). This is somewhat more technically
complicated than is the OCP because of interspecies collisional coupling and the
loss of symmetry due to the magnetic field, but the basic idea of projection into
hydrodynamic and orthogonal subspaces still applies. Again, in this Part 1 I consider
only linear response and first-order dissipative effects. Nonlinear equations and Burnett
corrections will be considered in Part 2.
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3.1. Exact form of the moment equations, and summary of the results for a
two-species plasma

Before I consider perturbations from thermal equilibrium, it is useful to have the exact
form of the moment equations in mind. The starting point will be the Landau kinetic
equation for the one-particle distribution, including the effect of an external magnetic
field B (assumed here to be constant in space):

∂t fs + v · ∇fs + (E+ c−1v×B) · ∂ s f =−Cs[ f ], (3.1)

where as usual Ek=
∑

s(nq)s
∫

dv εkfs,k(v), ∂ s
.
= (q/m)s∂v, and C is the Landau collision

operator defined in (B 1). That operator conserves number density (separately for each
species), total (summed over species) momentum density and total kinetic-energy
density:

∑
s

ns

∫
dv

 δss
msv

1
2 msv

2

Cs[ f ] = 0. (3.2)

Upon taking the number-density, momentum-density and kinetic-energy-density
moments of (3.1), one is led to

∂tns +∇ · (nsus)= 0, (3.3a)

(nm)s
dsus

dt
= (nq)s(E+ c−1us ×B)−∇ps −∇ ·πs +Rs, (3.3b)

3
2

ns
dsTs

dt
=−ps∇ ·us −∇ · qs − πs : Ss +Qs, (3.3c)

where

p .
= nT, (3.4a)

ds

dt
.
=
∂

∂t
+ us · ∇, (3.4b)

S
.
=

1
2 [∇u+ (∇u)T], (3.4c)

and the stress tensor π , the interspecies momentum transfer R, the heat-flow vector q
and the heat generation Q are defined by

πs
.
=

∫
dv (nmw)sws fs − psI, (3.5a)

Rs
.
= −

∫
dv (nmw)sCs[ f ], (3.5b)

qs
.
=

∫
dv

(
1
2

nmw2

)
s

ws fs, (3.5c)

Qs
.
= −

∫
dv

(
1
2

nmw2

)
s

Cs[ f ], (3.5d)

with ws
.
= v−us. Braginskii uses the notation R≡Re. Conservation of total momentum

ensures that
∑

i Ri =−R. For a one-component plasma, R vanishes because the
collision operator conserves momentum for like-species collisions; similarly, Q vanishes
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for the OCP by energy conservation. In the general case, application of the
conservation laws leads to∑

i

Qi =−Qe −
∑

i

Ri · (ue − ui), (3.6)

which reduces to

Qe =−Qi +R · u (3.7)

(u .
= ue − ui) for a single species of ions.
For a two-species, strongly magnetised electron–ion plasma (charges qe = −e

and qi = Ze) possessing overall charge neutrality and with mass ratio µ � 1
and (ν/|ωc|)s � 1, Braginskii quotes the following results, which constitute an
approximate hydrodynamic closure (the numerical coefficients are valid for Z = 1).
Further discussion of the limits of validity of this closure is given at the end of this
section.

(i) The electron and ion collision times are

τe =
3m1/2

e T3/2
e

4
√

2π lnΛZ2e4ni
, τi =

3m1/2
i T3/2

i

4
√

2π lnΛZ4e4ni
. (3.8a,b)

(ii) The gyrofrequencies are ωcs
.
= (qB/mc)s. (In my convention, unlike Braginskii’s,

ωce is negative.) The gyroradii are ρs
.
= vts/|ωcs|, where vts

.
= (T/m)1/2s .

(iii) The interspecies momentum transfer is denoted by Re ≡ R and Ri = −R. It
consists of two parts, R=Ru +RT :
(1) The friction force Ru is, with u .

= ue − ui,

Ru =−(mn)eτ−1
e (αu‖ + u⊥), (3.9)

where α .
= 0.51.

(2) The thermal force RT is

RT =−βne∇‖Te +
3
2

ne

ωceτe
b̂×∇Te, (3.10)

where β .
= 0.71.

(iv) The electron heat flux is qe = qe,u + qe,T , where

qe,u = β(nT)eu‖ −
3
2
(nT)e
ωceτe

b̂× u, (3.11a)

qe,T =−ne

(
κ‖e∇‖Te + κ⊥e∇⊥Te +

5
2
v2

te

ωce
b̂×∇Te

)
, (3.11b)

where κ‖e = 3.16v2
teτe and κ⊥e = 4.66ρ2

e /τe. (The coefficient 4.66 is derived in
appendix D.)

(v) The ion heat flux is

qi =−ne

(
κ‖i∇‖Te + κ⊥i∇⊥Te +

5
2
v2

ti

ωci
b̂×∇Te

)
, (3.12)

where κ‖i = 3.9v2
tiτi and κ⊥i = 2ρ2

i /τi.
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(vi) The ion heat generation is

Qi =Q1
.
= 3

(
me

mi

)
τ−1

e ne(Te − Ti). (3.13)

(vii) The electron heat generation is

Qe =−R · u−Q1. (3.14)

(viii) The stress tensor and viscosity coefficients are discussed in appendix E.

In addition to the basic mass-ratio and magnetic-field orderings, Braginskii’s
equations have a restricted regime of validity. Even for linear response, they are
correct only to first order in the gradients. Nonlinearly, as stressed by Mikhaı̌lovskiı̌
(1967), Mikhaı̌lovskiı̌ & Tsypin (1971, 1984) and Catto & Simakov (2004),
Braginskii’s results correspond to a high-flow regime in which the mean flow
velocity u is of the order of the ion sound speed. When u is ordered smaller,
additional terms must be retained. (These points are not made clear in Braginskii’s
article; they are discussed in Part 2.)

3.2. The hydrodynamic projection for multispecies and magnetised plasma
The present goal is to rederive the linearized version of Braginskii’s closure by using
projection methods. However, before proceeding with a hydrodynamic projection, one
must decide whether to derive one-fluid or S-fluid equations, where S is the number of
species. Because the null space of the collision operator is five-dimensional, it would
be simplest to project into a five-dimensional, one-fluid hydrodynamic subspace. The
resulting single-fluid equations would be identical in form to those derived earlier
for the OCP except for the presence of the Lorentz force term. Unfortunately, such
a one-fluid hydrodynamics disguises the important fact that when the mass ratio is
small the physics of the electrons and the ions are quite different. Thus, following
Braginskii, I shall derive a set of S-fluid equations. However, this leads to technical
complications because one now has 5S equations although the null space remains
merely five-dimensional. A consequence is that the interspecies collisional coupling
described by R and Q results in some eigenvalues of the linearized problem being
of the order of a collision frequency ν (implying fast relaxation of some modes on
the kinetic time scale) instead of being proportional to k2 (implying slow relaxation
constrained by conservation laws).

To begin defining the relevant projection operator, let me introduce the natural scalar
product, which is the generalization of (2.13c) to include a species summation:

〈A|L|B〉 .=
∑

s

∫
dv
∑

s′

∫
dv′ As(v)Lss′(v, v

′)Bs(v)fM,s′(v
′). (3.15)

This is natural for several reasons:

(i) The linearized collision operator (times n) is self-adjoint with respect to it:

〈ψ |nĈ|χ〉 = 〈χ |nĈ|ψ〉 (3.16)

(see appendix B).
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(ii) For A defined as in (2.25), the conservation properties of Ĉ take the simple
form22

〈nA| Ĉ= 0. (3.17)

(iii) The first-order electric field follows as

1Ek = 〈EEEk|χk〉, (3.18)

where

EEEk,ss(v, v)
.
= (nq)sεk (3.19)

(independent of s, v, and v).

Although projections are often discussed in terms of scalar products, and the
scalar product (3.15) is natural from several points of view, its use in defining an
S-species projection operation is somewhat problematical because of the implied
species summation. If one insists on defining bras and kets in terms of a scalar
product, that summation must sometimes be inhibited in one way or another in
order that one end up with a species-dependent result. A definition that generalizes
naturally to the Γ -space theory discussed in Part 2 is the following. Subsume the
species index into a generalized field index: As ≡ Aµs → Aµ. (When a species index
is written explicitly, then the superscript refers to just the usual field index.) Then
define

P .
= |Aµ〉M−1

µµ′ 〈A
µ′
|. (3.20)

Also define

1aµ = 〈Aµ|1χ〉. (3.21)

Here one is treating 1χ as the collection of all 1χs values. Normally, the natural
scalar product would require that the s be changed to s and a summation over s be
done. However, Aµ depends on a specific species sµ, not the entire collection Aµs for
all s. A consistent interpretation is that the presence of a specific species index inhibits
the species summation in the scalar product. Effectively, Aµsµ behaves inside a scalar
product as the s-dependent quantity δsµ(s)A

µ

(s), where parentheses inhibit the summation
convention. Then

〈Aµ|1χ〉 =
∑

s

∫
dv δsµsA

µ
s (v)1χs(v)=

∫
dv Aµsµ(v)1χsµ(v)

.
=1aµ. (3.22)

To extract all hydrodynamic field components of specific species s, I shall use the
notation

as = 〈A1s|1χ〉, (3.23)

where the 1s inhibits the species summation in the scalar product.
Because A is defined in terms of purely kinetic quantities that do not couple species,

in fact Mµµ′

ss′ is diagonal in the species indices. It is also diagonal in the field indices

22The species sum included in the definition (3.15) is crucial to this result.
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because of the orthogonality built into the definition of A (see (2.28)). Thus, Mµµ′
=

M(µ)δ(µ)µ′ (Mµ .
=M(µ)(µ)) and

P=
∑
µ

|Aµ〉M−1
µ 〈A

µ
|. (3.24)

In Part 2, potential-energy contributions will be added to A, M will no longer be
diagonal, and (a space-dependent generalization of) (3.20) will be used.

Define the magnetic-field operator by

iM̂ .
= c−1v×B · ∂ =ωc

∂

∂ζ
, (3.25)

where ζ is the negative23 of the polar angle in velocity space. It is then a
straightforward exercise to show that the kinetic equation linearized around an
absolute Maxwellian can be written as

∂t|1χ 〉 + iL|1χ 〉 = 0, (3.26)

where

L .
= L+ LE + LM, L .

= Lv + LC, (3.27a,b)

with LM
.
= M̂. The projections of the kinetic equation are formally the same as (2.43)

and (2.45). Working out the components of the frequency matrix is straightforward.
There are no surprises for iΩv; it leads to the same (species-dependent) Euler
contributions as for the OCP. It is easy to show that (iΩM)

p
p gives rise to the usual

Lorentz force, while all other magnetic contributions to the frequency matrix vanish.24

It is shown in appendix B that

iΩC ·1a=ms

∑
s′

νss′(1us −1us′)+ 3
∑

s′

(
ms

Mss′

)
νss′(1Ts −1Ts′), (3.28)

where νss′ is a generalized interspecies collision frequency defined by (B 30) and
Mss′

.
=ms +ms′ . At this point, we have obtained

∂

∂t

(
1n
n

)
s

=−∇ ·1us, (3.29a)

(nm)s
∂1us

∂t
= (nq)s(1E+ c−11us ×B)−∇1ps − (nm)s

∑
s′

νss′(1us −1us′)

−〈nP′1s|PiLQ|Q1χ〉, (3.29b)

23ζ is defined such that it increases with time during ion gyration. A diagram illustrating the coordinates
of a gyrospiralling particle, originally published as figure 1 of Krommes (2012), can be found on Sheldon’s
whiteboard in Episode 14, Season 6 (January 31, 2013) of CBS’s The Big Bang Theory.

24M̂ conserves number and kinetic energy, but not vector momentum. However, the momentum integral
of M̂ lives solely in the hydrodynamic subspace. That is, upon integrating by parts,

〈Ap
s |iM̂s|1χs〉 = 〈msv|ωcsv× b̂ · ∂v |1χs〉 =−(mωc)s〈v× b̂|1χs〉 =−ωcs1ps × b̂.
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3
2

ns
∂1Ts

∂t
= −ps∇ ·1us − 3ns

∑
s′

(
ms

Mss′

)
νss′(1Ts −1Ts′)

−〈nK ′1s|PiLQ|Q1χ〉. (3.29c)

Obviously, the forms of the linearized fluid equations are beginning to emerge, with
the parts involving |Q1χ 〉 to be determined by closure. Note that only L .

= Lv + LC
enters those parts; it is easy to show that the magnetic-field operator does not couple
the subspaces, so PiM̂Q = QiM̂P = 0, and a similar result holds for LE. Also note
that the frequency-matrix term involving 1us − 1us′ in (3.29b) is not, in general,
the complete contribution to the interspecies momentum transfer. As is well known
(Braginskii 1965), the effective collision frequency for the parallel momentum transfer
differs by a numerical factor from the νss′ defined by (B 30); for Z = 1, that factor
is α = 0.51. The physics is that perturbations to an absolute Maxwellian background
do not in general merely produce a shifted Maxwellian; the v−3 dependence of the
electron–ion collision rate leads to a high-energy tail that enhances the parallel current
for fixed electric field. This manifests as a reduction in the effective νss′,‖. This effect
is not seen in the frequency-matrix portion of the hydrodynamic projection, which
only involves the perturbations of the quantities n, u and T that would appear in
a local Maxwellian distribution. Thus, the physics of the high-energy tail must be
contained in the last, |Q1χ 〉 term of (3.29b), as I shall now demonstrate.

3.3. Hydrodynamic closure
The straightforward generalization of (2.54) to the multispecies, magnetised case is

ηµν
.
=

∫
∞

0
dτ Σµ

ν (τ )≈ 〈A
µ
|LQ[Q(iM̂+ Ĉ)Q]−1QL|Aν〉, (3.30)

the only difference being the addition of the magnetic-field operator to Ĉ.25 A different
way of representing the content of (3.30) is to rewrite the solution for the orthogonal
projection,

|Q1χ 〉 ≈−[Q(iM̂+ Ĉ)Q]−1QiLP|P1χ 〉 . (3.31)

as the equation

(iM̂+QĈ)|Q1χ 〉 =−QiLP|P1χ 〉 . (3.32)

Here the result QiM̂Q= (1− P)iM̂Q= iM̂Q was used. Unlike in the OCP, one cannot
reduce QĈQ→ Ĉ because the present hydrodynamic projection inhibits the species
summation, so PĈ 6= 0. Following Braginskii, I now restrict the calculation to a single
species of ions. Then one finds

QiLP|P1χ 〉 =
1
2

∣∣∣∣v v − (v2/3)I
v2

t

〉
:W [1u] +

∣∣∣∣(1
2
v2

v2
t

−
5
2

)
v

〉
· ∇

(
1T
T

)
+QĈP|P1χ 〉, (3.33)

25In standard unmagnetized Chapman–Enskog theory (appendix A), the collision operator is ordered large,
whereas in practice it is often the case that iM̂� Ĉ (ωc� ν). The operators iM̂ and Ĉ appear symmetrically
in (3.30) because no assumption is made about their relative size. One might call this a maximal ordering.
However, the best way of thinking about the present methodology is not to focus on orderings of iM̂ or Ĉ,
but rather to recognize that one is taking the hydrodynamic limit ω, k→ 0. The operators iM̂ and Ĉ survive
that limit because they do not go to zero with k.
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where the traceless tensor used by Braginskii is

W [u] .=∇u+ (∇u)T − 2
3(∇ ·u)I. (3.34)

To simplify the last term of (3.33), use QĈP = ĈP − PĈP, where the last term
is evaluated in § B.2 and is given by (B 29). The quantity ĈP|1χ 〉 is evaluated in
§ B.3 for small mass ratio. For the electrons, the 1T part of QĈP|1χ〉 vanishes
to lowest order in the mass ratio; for the ions, QĈP|1χ〉 vanishes altogether to
lowest order. Thus, with the results of appendix B, all pieces of (3.32) for Q|1χ〉 are
known. To rearrange that equation into Braginskii’s form, use QĈ= Ĉ−PĈ and place
the PĈ terms on the right-hand side. For the electrons, one finds (cf. Braginskii’s
equation (4.12))

−(iM̂+ Ĉe)|Q1χ 〉 =
1
2

∣∣∣∣v v − (v2/3)I
v2

te

〉
:W[1ue] +

∣∣∣∣(1
2
v2

v2
te
−

5
2

)
v

〉
· ∇

(
1T
T

)
e

+
1
v2

teτe

∣∣∣∣[3
√

π

2

(vte

v

)3
− 1
]
v

〉
·1u− |v〉

1
v2

te
〈1ev|Ĉ

Lor
|Q1χ〉,

(3.35)

where the last term is the Lorentz approximation to PĈQ|1χ 〉; only the momentum
projection appears because the Lorentz collision operator conserves kinetic energy.
The coefficient of that term is just the lowest-order approximation to the electron
momentum transfer:

−|v〉
1
v2

te
〈1ev|Ĉ

Lor
|Q1χ〉 =

1
nT
|v〉 ·1R, (3.36)

where (see (3.5b))

1R .
=−〈(nm)ev1e|Ĉ

Lor
|Q1χ〉. (3.37)

For the ions, one finds that the QĈP term in (3.33) is negligible for small mass
ratio, so (cf. Braginskii’s equation (4.15))

−(iM̂+ Ĉii)|Q1χ〉 =
1
2

∣∣∣∣v v − (v2/3)I
v2

ti

〉
:W[1ui] +

∣∣∣∣(1
2
v2

v2
ti
−

5
2

)
v

〉
· ∇

(
1T
T

)
i

;

(3.38)

this is identical in form to the correction equation for the OCP (see (A 18b)).
Thus, the projection-operator methodology restricted to first-order processes has

reproduced Braginskii’s correction equations – as, of course, it must since physics
content is invariant to mathematical representation. Although we have not obtained
any new results, it is hoped that the use of projection operators clarifies the underlying
structure of the transport equations, the key import of the null eigenspace, and the
distinction between a perturbed local Maxwellian distribution and the true perturbed
distribution that includes a high-energy, non-Maxwellian tail driven by the various
thermodynamic forces.

From this point forward, the route to the final values of the transport coefficients,
namely the evaluation of the matrix elements (3.30), follows that of Braginskii and
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other authors. In general, numerical or approximate analytical work is required; there
is no need to repeat such analysis here. But as an illustration of the content of the
correction equations and with the goal of providing further insight into the various
orthogonal projections, I show in appendix D how to work out the perpendicular
electron heat flow q

⊥,e in the limit of small νe/|ωce|.

3.4. Onsager symmetries
Onsager’s symmetry theorem (Onsager 1931a,b; Casimir 1945; Krommes & Hu 1993)
is one of the deepest results in classical statistical physics. It is a statement about the
relaxation of an arbitrarily coupled N-body system slightly perturbed from a Gibbsian
thermal equilibrium. For the transport matrix η, it reads in the present covariant
notation

η̂µν(B)= η̂νµ(−B). (3.39)

Here η̂
.
= E · η, where E is the parity matrix such that under a time-reversal

transformation A → E · A. (In a diagonal representation, E(i)(i) = ±1 depending on
whether the ith variable is even or odd under time reversal. For my choice of A,
E = diag[1, − 1, 1] for each species.) Fundamentally, this symmetry is a consequence
of the time reversibility of the microscopic dynamics. It is critical to observe that
the theorem applies to the fully contravariant (or fully covariant) transport tensor, not
the mixed tensor ηµν that appears naturally in the hydrodynamic equations. Failure
to recognize this fact has led to confusion in the literature; a thorough discussion is
given by Krommes & Hu (1993, § III).

As a consistency check, I shall sketch a proof that the present representation,
involving weakly coupled dynamics represented by the Landau collision operator,
possesses Onsager symmetry (as already discussed by Braginskii from a more
traditional point of view). The fully contravariant version of (3.30) is

ηµν = 〈Aµ|LQ[Q(iM̂+ Ĉ)Q]−1QL|Aν〉. (3.40)

First suppose that instead of Aµ and Aν one had generic functions ψs and χs, where
as usual the s is to be summed over in the standard scalar product. (Such functions
would arise in a one-fluid hydrodynamics.) Then one could proceed by rearranging
the scalar product with the aid of adjoint operators as follows:

F[ψ, χ;B] .= 〈ψ |LQ[Q(iM̂+ Ĉ)Q]−1QL|χ〉 = 〈χ |L†Q†
[Q(iM̂+ Ĉ)Q]†−1Q†L†

|ψ〉.

(3.41)

With respect to the standard scalar product (which does not include complex
conjugation), the operators Q, nĈ, Lv

.
= −iv · ∇ and nLC

.
= −inĈ are self-adjoint,

whereas M̂ is anti-self-adjoint.26 Therefore,

F[ψ, χ;B] = 〈χ |LQ[Q(−iM̂+ Ĉ)Q]−1QL|ψ〉 = F[χ, ψ; −B]. (3.42)

This is a restricted form of Onsager’s symmetry. However, notice that if ψ and χ

were the hydrodynamic vector A, then the properties 〈nA|Ĉ = 0 (conservation) and
Ĉ|A〉 = 0 (null eigenvectors) remove the Ĉ from L and lead to the representation

F[A,AT
;B] =∇i〈A|viQ[Q(iM̂+ Ĉ)Q]−1Qvj|AT

〉∇j. (3.43)
26Lv and M̂ are diagonal in the species index, so nLv and nM̂ possess the same adjoint properties as

do Lv and M̂.
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Given the way A was constructed (its components are orthogonal), symmetry in
velocity space implies that there is no cross-coupling between elements with opposite
parity. Thus, Onsager’s symmetry (3.39) applies for the unhatted form of the transport
matrix in this case.

In the more interesting case in which one projects onto a particular species, the
transport matrix is constructed from the specific Aµ and Aν , whose species indices sµ
and sν are not to be summed. Because the outer summations are inhibited, one cannot
use the self-adjoint property of the Ĉ that appears in the L operators, nor can one
remove Ĉ from L by means of the species-summed conservation property; this implies
the existence of non-trivial cross-terms in the transport matrix. I shall illustrate for the
important special case of two species. One has

ηpeTe = −〈P′e|ĈeiQ(D̂−1)ieQ|K ′ev〉 · ∇, (3.44a)

ηTepe = −∇ · 〈K ′ev|Q(D̂
−1)eiQĈie|P′e〉, (3.44b)

where D̂ .
= [Q(−iM̂+ Ĉ)Q]−1. The inverse of the matrix

M
.
=

(
Â B̂
Ĉ D̂

)
, (3.45)

where Â, B̂, Ĉ and D̂ are non-commuting operators, is27

M−1
=

(
(Â− B̂D̂−1Ĉ)−1

−(D̂B̂−1Â− Ĉ)−1

−(ÂĈ−1D̂− B̂)−1 (D̂− ĈÂ−1B̂)−1

)
. (3.46)

Because of the complicated form of (3.46), it is not yet obvious that (3.44a)
and (3.44b) are equal to within a sign. To demonstrate that, use the momentum
conservation property

〈neP′e|Ĉei + 〈niP′i|Ĉie = 0 (3.47)

and the result ηTePe + ηTePi = 0, which follows from Ĉ|P′〉 = 0, to find

ηpeTe/T = n−1
e 〈niP′i|ĈieQ(D̂

−1
)ee|γev〉 · ∇, (3.48a)

ηTepe/T =∇ · 〈γev|(D̂
−1
)eeQĈei|P′i〉, (3.48b)

where γ (v)
.
= (1/2)mv2/T − 5/2 arises from the calculation of QK ′v. Since

both expressions now involve the common matrix element28 (D̂−1)ee = [Ĉ
′

ee −

Ĉ
′

ei(Ĉ
′

ii)
−1Ĉ

′

ie]
−1,where Ĉ

′ .
= iM̂ + Ĉ (cf. (3.46)), they can be easily compared. Upon

referring to the form (B 6) of the linearized Landau operator, one sees that an
integration by parts of 〈 niP′i|Ĉie in the expression (3.48a) introduces a minus sign

27When the operators commute, (3.46) correctly reduces to the familiar result(
A B
C D

)−1
=

1
∆

(
D −B
−C A

)
,

where ∆
.
= AD− BC.

28For small mass ratio, the second term of this element is O((me/mi)
1/2)� 1.
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and that the (3.48a,b) are otherwise equal with B→−B. Thus, we have recovered
(3.39). It is interesting to contemplate that the microscopic time reversibility used in
Onsager’s original (and more general) derivation shows up in the above proof as the
constraint of macroscopic momentum conservation.

Braginskii remarked upon the Onsager symmetry between the electron temperature-
gradient contribution to the friction force and the flow-driven contribution to the
electron heat flux. (Those effects are absent for the ions to lowest order in the mass
ratio.) He failed to mention that the stress tensor π also affords an example of the
symmetry. As discussed for the case of the OCP, π can be written for infinitesimal
perturbations as a fourth-order tensor m applied to ∇1u. The ultimate effect in the
momentum equation is −∇ ·π = −∇ ·m : (∇1u), which in Fourier space can be
written as (k · m · k) · 1u → ηi

j1uj
= ηij1uj; here the lowering of the index just

involves an index-independent normalization factor. As discussed in appendix E, m is
constructed from symmetrized tensor products of the matrices B

.
= b̂ b̂, δ⊥ .= I − b̂ b̂,

and β
.
= b̂×. The contributions to η that do not involve β are easily seen to be

symmetric and invariant under a change of sign of B. The remaining terms (i.e. the
gyroviscous stresses), involve either {δ⊥β} or {B β}, where the symmetrization is
denoted by the braces. Thus, the gyroviscous contributions to η involve k · {δ⊥β} · k
or k · {B β} · k. These tensors are antisymmetric because of the factor of β, but since
the gyroviscous terms are proportional to one power of the signed gyrofrequency,
symmetry is restored under the replacement B → −B. Therefore, all contributions
to ηij obey the Onsager symmetry (3.39).

4. Generalized Langevin equation for the hydrodynamics of magnetised plasmas

The hydrodynamic equations developed in the previous sections describe the
ensemble-averaged behaviour of the macroscopic observables. Underlying those
equations is a system of generalized Langevin equations for fluctuating quantities
whose means are the hydrodynamic variables. Langevin descriptions (Langevin 1908)
are fundamental to the theory of both classical and turbulent transport, as they neatly
capture and generalize the basic intuition associated with Brownian motion (Wang &
Uhlenbeck 1945), namely, the competition between random excitation and coherent
damping. In this section I shall develop a generalized Langevin equation for classical
transport.29 It will be seen that the transport coefficients are the time integrals of the
two-time correlations of the fluctuating forces that appear on the right-hand side of
the Langevin equation. Such a representation is fundamental and a core topic in
transport theory.

In the previous sections I used the Schrödinger representation, in which the state
vector |1χ(t)〉 changes with time while the hydrodynamic observables 〈A| are time
independent. In this section I shall instead use the Heisenberg representation, in which
averages are taken with the initial state |1χ(0)〉 while the observables become time
dependent, to develop an evolution equation for the random hydrodynamic observables
〈A(t)|. The mean of that equation (its contraction with |1χ(0)〉) reduces to the usual
fluid equations, but the random Langevin equation also contains fluctuating forces,
analogous to the Langevin theory for classical Brownian motion.

29The use of generalized Langevin equations in the context of statistical turbulence theory is reviewed by
Krommes (2002).
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4.1. Heisenberg versus Schrödinger representations
While the Heisenberg representation is familiar from quantum mechanics, there
are some technical differences in the present application that need to be appreciated;
therefore, I digress for a brief review. In quantum mechanics, the Schrödinger equation

ih̄ ∂tψ =Hψ (4.1)

can be written as

∂tψ =−iLψ, (4.2)

where L .
=H/h̄. For time independent H, the solution is given by

ψ(t)=G(t)ψ(0), (4.3)

where G(t) .= e−iLt. Because H is self-adjoint with respect to the usual complex-valued
scalar product, G is a unitary operator: GG†

= 1.
In statistical mechanics, the N-particle PDF PN(Γ , t), where Γ is the set of all

phase-space coordinates, obeys the Liouville equation

∂tPN(Γ , t)=−iLPN, (4.4)

where L is the Liouville operator. Thus, the state evolves as

PN(Γ , t)= e−iLtPN(Γ , 0). (4.5)

Since L is anti-self-adjoint with respect to a real-valued scalar product, time
dependence can be transferred to observables (functions of Γ that are to be averaged)
according to

〈A(Γ )〉 .=
∫

dΓ A(Γ )PN(Γ , t) (4.6a)

=

∫
dΓ A(Γ )e−iLtPN(Γ , 0) (4.6b)

=

∫
dΓ [eiLtA(Γ )]PN(Γ , 0) (4.6c)

= 〈A(t; Γ )〉0, (4.6d)

where A(t;Γ ) .= eiLtA(Γ ) and the average is now with respect to the initial PDF. Thus,
if the states are evolved with G(t) .= e−iLt, the trajectories evolve with G(−t). This
well-known result is a consequence of the fact that the microscopic dynamics is time
reversible.

In the present situation governed by the linearized Landau kinetic equation, the
state 1χ(v, t) again evolves according to an equation of the form (4.2), where
L .
= Lv + LC + LE + LM is given by (3.27). But L has no definite symmetry. The

operators Lv
.
= k · v and LC

.
= −iĈ are self-adjoint with respect to the natural

(real-valued) scalar product, LM is readily shown to be anti-self-adjoint, and the
electric-field operator LE ∝ |v〉〈1| has no symmetry. Thus, the best one can do is to
transfer the time dependence from the state to the observables according to

〈A|1χ(t)〉 = 〈A(t)|1χ(0)〉, (4.7)
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where

A(t) .=G†(t)A(0), (4.8)

with

G(t) .= e−iLt, G†(t) .= e−iL†t. (4.9a,b)

As a consistency check, note that the magnetic-field operator is a special case of the
Liouville operator and possesses the same (anti)symmetry as is demonstrated by (4.6).

4.2. Derivation of the generalized Langevin equation
To derive the generalized Langevin equation, consider the time evolution of the
hydrodynamic variables:

∂t 〈A(t)| =−i 〈L†A(t)| =−i 〈L†G†A(0)| =−i 〈G†L†A(0)|, (4.10)

the last result following since L commutes with G (the latter being constructed
from powers of L). As in previous manipulations, this result will be manipulated
by a judicious insertion of the identity P + Q = 1. If that were done directly in
the last form, virtually all of the symbols in the resulting expressions would be
adorned with daggers. That could be avoided by working with the adjoint of (4.10).
Alternatively, one can write formally

−i 〈G(t)†L†A(0)| =−i 〈A(0)|LG(t), (4.11)

anticipating that this bra will ultimately be combined with the Heisenberg state
|1χ(0)〉. Proceeding similarly to the manipulations in the Schrödinger-picture
projection, I rewrite this as

−i 〈A(0)|LG=−i 〈A(0)|L(P+Q)G. (4.12)

The P part of this becomes

−i〈A(0)|L|A(0)〉 ·M−1
· 〈A(0)|G=−iΩ · 〈A(t)|. (4.13)

For the Q part, Mori, Zwanzig, and others have shown that it is useful to express the
final G in (4.12) in terms of the modified propagator GQ defined by (2.47). To do so,
consider the Fourier transform of G(τ ),

Ĝ(ω)=
∫
∞

0
dτ eiωτe−iLτ

= [−i(ω−L+ iε)]−1, (4.14)

and use the identity, valid for arbitrary non-commuting operators A and B (assuming
that A−1 is defined),

(A+B)−1
=A−1

−A−1B(A+B)−1, (4.15)

with

A .
=−i(ω−QLQ+ iε), B .

= i(L−QLQ). (4.16a,b)
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Thus,30

Ĝ(ω)= ĜQ(ω)− ĜQ(ω)[i(L−QLQ)]Ĝ(ω). (4.17)

Now

L−QLQ=L− [(1− P)L(1− P)] = PL+LP− PLP. (4.18)

One requires QG for use in (4.12). Because QGQ=GQQ and QP= 0, the first and last
terms of (4.18) do not contribute to (4.17). Therefore, upon noting that LE and LM
do not contribute to QL, one finds

QG=QGQ −QGQiLPG. (4.19)

Upon inserting the explicit form of P into (4.19), one can rewrite the last term of
(4.12) as

−i 〈A(0)|LQGQ(t)− 〈A(0)|LQGQ(t)L|AT(0)〉 ·M−1
∗ 〈A(t)|, (4.20)

where ∗ denotes time convolution as well as dot product. The first term of (4.20) can
be written as a random force 〈 f (t)|, where

| f T(t)〉 .=−iG†
Q(t)QL†

|AT(0)〉 =QG†
Q(t)|Ȧ

T
(0)〉 . (4.21)

The last term of (4.20) can be written as

−〈A(0)|LQGQ(t)L|AT(0)〉 ·M−1
∗ 〈A(t)| =−Σ ∗ 〈A(t)|, (4.22)

where, upon recalling (4.21),

Σ(t) .= 〈f (t)f T(0)〉 ·M−1. (4.23)

In summary, we have found the exact generalized Langevin equation31

∂t 〈A(t)| + iΩ · 〈A(t)| +
∫ t

0
dτ Σ(τ ) · 〈A(t− τ)| = 〈 f (t)|. (4.24)

30The inverse Fourier transform of (4.17) leads to

G(τ )=GQ(τ )−

∫ τ

0
dτ GQ(τ )i(L−QLQ)G(τ − τ).

This, or (4.15), is part of a family of similar identities. For example, one also has

(A+B)−1
=A−1

− (A+B)−1BA−1.

And instead of using QLQ in the choices (4.16), one could choose QL instead. That leads to the identity

e−iLτ
= e−iQLτ

−

∫ τ

0
dτ e−iLτ iPLe−iQL(τ−τ).

Fox (1978) calls such identities disentanglement theorems and cites Feynman (1951). In the uses made of the
modified propagator in practice, the final Q in QLQ is never necessary. (Equation (2.45) could have been
written without the final Q before the second ket.) However, I prefer to work with the symmetrical construction
QLQ.

31More commonly, this is written without the explicit bra notation. Given my definition of a bra, the content
is identical; however, use of the bra emphasizes that the hydrodynamic observables are covectors, not vectors.
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To demonstrate compatibility with the previous results, one may apply |1χ(0)〉 to
(4.24), thus performing the statistical average. One needs

〈f (t)|1χ(0)〉 =−i〈A(0)|LGQ(t)Q|1χ(0)〉. (4.25)

This generates the same contribution to the P equation from the initial condition
that one would have found by retaining the first term of (2.46). When the system is
prepared in the hydrodynamic subspace, one has |Q1χ(0)〉 = 0 and the contribution
from the random force vanishes. The resulting equation,

(∂t + iΩ +Σ∗)〈A(t)|1χ(0)〉 = 0, (4.26)

is identical to that previously derived from the Schrödinger representation (see (2.48)).

4.3. Fluctuating hydrodynamics and transport coefficients
While (4.24) has the form of a generalized Langevin equation, it must not be assumed
that it is always justifiable to treat 〈 f (t)| as being white noise, as is often done in
simple models (for example, see the discussion of the Brownian test particle in
§ G.3). The random noise involves the modified propagator GQ, which encapsulates
complicated details of the dynamics. Generalized Langevin equations can be derived
for projections into essentially any subspace whatsoever, and the properties of 〈 f |
depend on the dimensionality of the subspace and the choice of variables A that
is made. (For some important caveats relating to the choice of projection operators,
see appendix G.) The issue is particularly clear when one follows Mori (1965) and
projects the Liouville equation. Then (4.24) merely describes an exact rearrangement
of the N-particle dynamics, with both (some) linear and nonlinear physics being buried
in f . Note that the precise way in which physics content is apportioned between Ω ,
Σ and f depends on the choice of the projection operator. In particular, for arbitrary P
there is a part of f that lives partly in the hydrodynamic subspace and whose mean
does not vanish. However, Zwanzig (2001, p. 156) shows that provided that one
chooses P as I have done (using the standard scalar product), that mean vanishes
to linear order. Furthermore, the specific choice of the hydrodynamic variables A
that I have used to build P ensures that the long-wavelength limit of Σ is well
behaved for the evolution of the conserved quantities. Thus, the exact generalized
Langevin equation (4.24) is useful for the treatment of linear perturbations from
thermal equilibrium, to which this paper is restricted. (In Part 2, I show how to
generalize the procedure to include nonlinear effects.)

Indeed, for the standard hydrodynamic projection, several classical results for neutral
fluids, as well as their extensions to magnetised plasmas, readily follow from the
previous results. The topic of hydrodynamic fluctuations and their relation to transport
coefficients has a long history that I shall not attempt to fully review here. In brief:
Landau & Lifshitz (1957, 1987) argued that the transport coefficients of a classical
fluid are intimately related to the two-time correlation functions of certain fluctuating
forces; for example, the thermal conductivity is related to the autocorrelation of
a random heat flow. Kadanoff & Martin (1963) stressed the importance of the
double (ordered) limit limω→0 limk→0 in extracting transport coefficients from certain
response formulas. (See the discussion of the plateau phenomenon in § G.3.) The
Landau–Lifshitz formulas were derived more systematically from kinetic theory by
Bixon & Zwanzig (1969), whose work was slightly generalized by Hinton (1970). A
review article that provides useful background is by Fox (1978).
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4.3.1. Transport coefficients as current–current correlations
To tie those discussions of hydrodynamic fluctuations to the present formalism,

compare (2.49) with formula (4.21), which defines the fluctuating force. One readily
sees that

Σµ
ν (τ )= 〈 f

µ(τ )fν(0)〉. (4.27)

To obtain the Markovian transport matrix ηµν , (3.30), one takes k, ω→ 0 in GQ (the
order of the limits is immaterial). To illustrate, first consider the unmagnetised OCP.
Then only Lv contributes to formulas (3.30) and (4.21). With ∇→ ik, one finds32

ηµν → k k : 〈Aµ|vQĈ−1Qv|Aν〉. (4.28)

If one writes f µ =∇ · Ĵ
µ

for generalized (subtracted) currents Ĵ
µ

, then one has

ηµν = k k : 〈Ĵ
µ

|Ĉ−1
|Ĵν〉. (4.29)

By the symmetry of the unmagnetised system, the expectation must be proportional
to the unit tensor,

〈Ĵ
µ

|Ĉ−1
|Ĵν〉 =Dµ

ν I, (4.30)

so one can obtain the generalized transport coefficients Dµ
ν by

Dµ
ν = k−2ηµν . (4.31)

As an example, the thermal conductivity follows as

κ = 〈ĴT
|Ĉ−1
|ĴT〉, (4.32)

where

ĴT .
=

(
1
2
v2

v2
t
−

5
2

)
vz. (4.33)

Note that (5/2)nT is the ideal-gas value of the enthalpy. The role of the enthalpy
subtraction and the thermodynamic interpretation of ĴT as a heat current is discussed
by Kadanoff & Martin (1963, p. 441).

4.3.2. Fluctuating forces and collision-driven fluxes
In the multispecies case, Ĉ also contributes to the L in f µ. That gives rise to a

fluctuating friction force δR and a fluctuating thermal force δq. The autocorrelation
of δR leads to the non-hydrodynamic part of the friction force. The cross-correlation
of δR and δq leads to the temperature-gradient-driven part of the momentum transfer
and, by Onsager symmetry, to the flow-driven part of the heat flow.

The existence of all of these effects was well known to Braginskii, who interpreted
the systematic Chapman–Enskog mathematics with simple physical pictures. Those
arguments are entirely correct, and I have nothing to add to the physics. However,
since Braginskii does not explicitly mention fluctuating forces in the sense of the

32For the OCP, QĈQ= Ĉ.
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present formalism, it is useful to understand the connection between the various
approaches. As an example, consider the temperature-gradient contribution to the
electron momentum transfer. This arises from

η
p
T =

∫
∞

0
dτ 〈 f p(τ )fT(0)〉 =

∫
∞

0
dτ 〈 f p(0)|GQ(τ )|fT(0)〉 (4.34)

when f p is evaluated with LC and fT is evaluated with Lv.
The streaming contribution to the fluctuating heat flow is

| fT(0)〉 = −iQLv|AT(0)〉 (4.35a)

= −Qv · ∇

(
3
2

T
)−1 ∣∣∣∣12 v2

v2
t
−

3
2

〉
(4.35b)

= −

(
3
2

T
)−1 ∣∣∣∣v (1

2
v2

v2
t
−

5
2

)〉
· ∇. (4.35c)

This describes the fact that a microscopic velocity stream carries with it the ideal-gas
value of the enthalpy, which must be subtracted from the kinetic-energy flux to give
the gradient-driven heat flow.

Next, one has ∫
∞

0
dτ lim

k→0
GQ(τ )| fT(0)〉 = [Q(iM̂+ Ĉ)Q]−1

| fT(0)〉 . (4.36)

For the parallel physics, this states that the characteristic autocorrelation time of the
fluctuations is the collision time, and it introduces the collisional mean free path λmfp
as the characteristic characteristic length. In Braginskii’s discussion, the macroscopic
temperature profile is expanded in the small ratio λmfp/L‖, L‖ being a macroscopic
parallel scale length. For perpendicular motions, the characteristic time scale is the
gyroperiod, the characteristic extent of the interactions is the gyroradius ρ .

= vt/|ωc|,
and in the limit of ν/|ωc| � 1 the net autocorrelation time is the gyroperiod reduced
by the small ratio33 ν/|ωc|, namely τac = (ν/|ωc|)|ωc|

−1.
The microscopic velocity stream mentioned above suffers the fluctuating friction

force

| fp(0)〉 =−QĈ|Ap〉 . (4.37)

For the electrons, one has

Ĉ|Ap〉 = Ĉei|T−1v〉 . (4.38)

The distinction here between the contravariant component Ap
= mv and covariant

component Ap = Ap/Np = v/T (see (2.28) and (2.29)) is important: the contravariant
component contains a mass, whereas the covariant one does not. For the latter, this
means that the conventional orderings in the mass ratio may be used, so Ĉei ≈ Ĉ

Lor

and

Ĉei|T−1v〉 ≈ 2T−1ν(v)|v〉 . (4.39)

33Gyration is non-dissipative. The ratio ν/|ωc| is the fractional amount of dissipation per cycle.
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Sans the temperature factor, this can be interpreted as the velocity-dependent friction
on a microscopic velocity stream, which is one of the principal ingredients in
Braginskii’s heuristic pictures (cf. Braginskii’s discussion of his figure 1). Note that
upon applying the Q that is required in (4.37), one obtains a ket that is orthogonal
to 〈v|:

1
v2

teτe

∣∣∣∣[3
√

π

2

(vte

v

)3
− 1
]
v

〉
. (4.40)

This is, in fact, exactly the ket that multiplies m1u in the second line of (3.35);
it describes the non-hydrodynamic part of the flow-driven tail on the perturbed
distribution function.

The net frictional effect on the microscopic heat flow is given by the cross-
correlation between the fluctuating friction force (4.40) and the fluctuating heat flow
(4.36). It is easy to see that that correlation gives rise to the same matrix element
calculated by Braginskii for the off-diagonal contribution to the heat flow.

5. Discussion
The purpose of this paper has been to describe the application of projection-operator

methods to classical plasma transport for the special case of linear response and the
Braginskii (or Navier–Stokes) transport coefficients.

In general, there are two routes to the derivation of irreversible transport coefficients:
(i) first derive an irreversible kinetic equation from the reversible Liouville equation,
then project into the hydrodynamic subspace; (ii) project the Liouville equation, then
perform a Γ -space ensemble average in order to obtain the irreversible decay of
correlation functions whose time integrals are the transport coefficients. In the present
paper, route (i) was followed: projection was done on the (linearized) irreversible
kinetic equation. (In Part 2, I shall instead follow route (ii).) It is useful to compare
method (i) with the traditional Chapman–Enskog approach, which is reviewed in
appendix A for the special case of the one-component plasma. Obviously, both
that method and the projection-operator approach capture the same physics and
make compatible predictions when their regimes of validity overlap. The traditional
approach allows for a background zeroth-order flow, so it contains nonlinear advective
derivatives. Those are absent in the linear-response formalism (developed via either
projection operators or in any other way), where perturbations are made to an absolute
Maxwellian distribution. However, both methods predict the same hydrodynamic fluxes
to first order in the gradients.

At the level of linear response, the principal difference in the formalisms is the way
in which the solvability constraints are satisfied. In the projection-operator method,
the frequency operator PLP leads to the Euler part of the hydrodynamic equations,
and use of the orthogonal projector Q in the correction terms replaces the traditional
Chapman–Enskog substitution of the partial time derivatives in the Euler equations by
spatial gradients (see (A 18a)). The projection-operator method provides an optimally
concise representation of that algebra, which leads to the subtracted fluxes.

It must be emphasized, however, that the methods are equivalent only when the
proper hydrodynamic projector is used. For classical transport, the natural projection
operator is clear; it is built from the null eigenvectors of the linearized collision
operator. However, one can project into any subspace whatsoever. Since the physics
is invariant to the mathematical representation, the same results must ensue in the
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long-wavelength, low-frequency limit regardless of the choice of P. However, one
must be extremely cautious because if the projection is chosen inaptly the Markovian
approximation will not be satisfied. This issue is explored in §§G.1–G.3. However,
a simple example given in § G.4 shows that provided that one projects at least into
all of the null subspace of the collision operator, a higher-dimensional Markovian
projection can also be used if one desires information additional to that contained in
the natural transport equations.

For the purposes of introduction and simplicity, the calculations in this paper
were restricted to linear perturbations and first-order dissipative processes, and they
assumed the validity of the Landau collision operator. That is not always adequate;
for example, it precludes consideration of convective amplification of locally unstable
fluctuations (Kent & Taylor 1969), even when the system is globally stable. Non-local
wave-induced transport (Rosenbluth & Liu 1976) is also omitted from the present
calculations. A few further words on those topics are given in Part 2.

Furthermore, the various approximations made in this paper may obscure some deep
conceptual issues and certain general properties of hydrodynamic transport theory. For
example, the transport matrix η was shown to be the infinite-time integral of the
two-time correlation function of certain fluctuating forces – but as defined in this
paper, those forces were not exact, being built from the Landau operator. In fact,
a generalization of these techniques defines the true η in terms of a certain exact
two-time correlation function. This is done in Part 2, where it is also shown how to
recover the present results in the limit of weak coupling.

A related point is the possible existence and construction of an exact hydrodynamic
invariant manifold embedded in the kinetic many-body system, as discussed by
Gorban & Karlin (2014). If that exists, it would be an attractor from which an
appropriate projection leads to an certain set of exact hydrodynamic equations. For
neutral fluids, this is apparently the case in the limit of vanishing Mach number and
Knudsen number34 (Gorban & Karlin 2014, and references therein), and this implies
that the plasma equations that were developed in the present paper are likely to
be good descriptions of physical reality. Calculation of Burnett effects (see Part 2)
is the next step in the asymptotic construction of such a manifold. However, an
invariant hydrodynamic manifold may not exist at all due to entanglement between
the hydrodynamic and non-hydrodynamic modes. The pursuit of such issues goes
well beyond the scope of this paper, but it is an interesting area for future research.

In conclusion, the projection-operator approach to the derivation of linearized
fluid equations is intuitive and technically efficient. It embeds the classical plasma
derivations of transport equations into more general and modern formulations of
statistical dynamics. Although projection is a linear operation, the methodology is
useful even for nonlinear response, as Brey et al. (1981) have shown. That topic
is addressed in Part 2, where it is shown how to obtain nonlinear fluid equations
and the second-order (Burnett) corrections to the classical transport coefficients. It
should also be clear that the formalism is not restricted to classical transport; one can
contemplate applications to neoclassical theory and to gyrokinetics (Krommes 2012),
for example. Projection-operator methods should be in the toolbox of every serious
plasma theorist.

34The Knudsen number, a measure of the strength of the gradients, is defined in appendix A.
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Appendix A. The traditional Chapman–Enskog calculation for the one-component
plasma

It is instructive to compare the traditional Chapman–Enskog approach to hydro-
dynamic equations and transport coefficients with the projection-operator formalism
described in the main text. In the present appendix, I present my own version of
the traditional calculation for the simplest case of the unmagnetised one-component
plasma (OCP). The procedure was described by Robinson & Bernstein (1962). In
essence, my discussion is little more than a transcription of their outline to the
notation of the present paper, but I have also included some additional pedagogical
content.

I assume that the plasma consists of discrete ions with a smooth neutralizing
electron background. Then the relevant collision operator is the ion–ion Landau
operator Cii; I shall subsequently drop the subscripts. That velocity-space operator
conserves the densities of number, momentum and kinetic energy without the necessity
for summation over species. The governing kinetic equation can be written as

Df
Dt
=−C[ f ], (A 1)

where D/Dt denotes the Vlasov operator defined in (2.9) and the brackets denote
functional dependence.

I shall use the method of multiple time and space scales (Chow 2007, and
references therein) and consider time variations slow with respect to the collision
time and spatial variations much longer than the collision mean free path λmfp, which
is taken to be much smaller than the box size or characteristic gradient scale length L.
I thus use an ordering parameter ε .= λmfp/L� 1 (ε is called the Knudsen number Kn)
and assume that

ν−1∂t =O(ε), λmfp∇=O(ε). (A 2a,b)

I also assume that the electric field is small enough that the entire left-hand side of
(A 1) is small. The method then proceeds by asymptotically expanding (A 1) order
by order in ε, using the multiple-scale definitions tn

.
= εnt and xn

.
= εnx. Although

in principle one could carry this process through all orders, I shall proceed only far
enough to calculate dissipative transport to first order in the gradients (i.e. to obtain
the Navier–Stokes transport coefficients). Then three physically distinct orders of
expansion are relevant:

(i) O(ε0): kinetic scales – irreversible phenomena related to 90◦ collisions: ω/ν =
O(1), kλmfp = O(1). On the kinetic time scale, the distribution function relaxes
to a local Maxwellian distribution. I shall assume that that process has gone to
completion (i.e. that ∂t0 and ∇0 vanish or, equivalently, that (A 2) holds).
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(ii) O(ε1): transit scales – reversible phenomena related to particles free streaming
across the distance L. The fundamental assumption is that L/λmfp= ε

−1
� 1. The

associated transit time scale is ttransit=L/vt= (L/λmfp)(λmfp/vt)= ε
−1ν−1, one order

longer than the kinetic time scale.35

(iii) O(ε2): transport scales – irreversible phenomena related to classical diffusion and
dissipation. If µ is a spatial transport coefficient with the classical random-walk
scaling µ ∼ λ2

mfpν, then the characteristic diffusion rate µ∇2
∼ µ/L2 satisfies

(µ/L2)/ν = (λmfp/L)2= ε2. It is not really necessary to introduce an x2 scale, but
it is convenient to do so for purposes of symmetry in the asymptotic expansion.

In the multiple-scale formalism, it is assumed that time and space variations can be
extended to independent variations on the multiple scales: f (x, t)= f ( x0, x1, x2, . . . ,
t0, t1, t2, . . . ). Thus,

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ · · · , (A 3)

and similarly for ∂/∂x. The distribution function is also expanded according to f =∑
∞

n=0 fnε
n. Because it is assumed that relaxation on the kinetic scale has already gone

to completion, one drops D/Dt0. Then, through O(ε2), one obtains

0 = −C[ f0], (A 4a)
Df0

Dt1
= −Ĉf1, (A 4b)

Df0

Dt2
+

Df1

Dt1
= −(Ĉf2 +C[ f1, f1]), (A 4c)

where Ĉ is the linearized collision operator (see appendix B) and the notation C[ f1, f1]

reflects the fact that the nonlinear Landau operator is actually a bilinear form.36

A.1. The kinetic time scale
The unique solution to (A 4a) is the local Maxwellian distribution

f0(x, v, t)= flM(v | x1, t1, x2, t2, . . .), (A 5)

where

flM(v | x, t)=
(

n′(x, t)
n

) [
[2π v′2t (x, t)]−3/2 exp

(
−
[v − u′(x, t)]2

2v′2t (x, t)

)]
, (A 6)

with v′2t (x, t) .= T ′(x, t)/m. Here the primed parameters specify the portions of the
density, flow velocity and temperature that are carried by the local Maxwellian. Below
I shall argue that they can be identified with the same quantities that are carried by
the full distribution f , so I shall subsequently drop the primes. It is physically most
instructive to isolate the density factor from the local Maxwellian. Thus, define F0 as
the factor in large brackets in (A 6), so

flM(v | x, t)=
(

n(x, t)
n

)
F0(v | x, t). (A 7)

Note that for the local Maxwellian the viscous stress π and the heat flow q vanish.
35With the definition t1

.
= εt, it takes a time of O(ε−1) to achieve an order-unity change in t1; thus, the

transit time scale is one order longer than the kinetic time scale.
36More generally, the Balescu–Lenard operator should be used; that is a more complicated nonlinear functional.

The Balescu–Lenard operator is discussed in appendix 2:G.
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A.2. The Transit time scale
The viscous stress and heat flow are determined by the first-order correction to the
local Maxwellian. Upon writing

f1 =

(n
n

)
χF0 (A 8)

and using F0 as the weight function in the natural scalar product defined by (2.13c),
one can write the first-order correction equation (A 4b) as(n

n

)
Ĉ|χ 〉 =−

D
Dt1

(n
n
|1〉
)
. (A 9)

If Ĉ were positive–definite, a unique solution to this equation would be guaranteed.
In fact, however, Ĉ is only positive–semidefinite since it has a five-dimensional null
space associated with the conservation laws. Thus, either the solution does not exist
or, if a certain solvability condition is satisfied, the solution exists but is not unique;
this is the Fredholm alternative. Solvability is ensured by asserting that the right-hand
side of (A 9) is orthogonal to the left null eigenvectors 〈Aµ|, where the Aµ are defined
in (2.25). Because F0 is a Gaussian function of w .

= v − u, it is technically more
convenient to use δAµ instead of Aµ, where δAµ(v) .= Aµ(w). Thus, the solvability
constraints are

n〈δAµ|Ĉ|χ〉 = 0=−
〈
δAµ

∣∣∣∣ D
Dt1

∣∣∣∣ n
〉
, (A 10)

where the D/Dt1 acts on both the explicit n as well as the space and velocity
dependence of F0 (which is hidden in the ket notation).

Those constraints determine the first-order evolution of the hydrodynamic variables
a′µ. It is easy to see that the required averages are nothing but the hydrodynamic
moments of the kinetic equation evaluated with first-order derivatives and with π
and q set to 0. These non-dissipative constraints are called the Euler equations. Thus,
for example, the first of the five Euler equations is the continuity equation

∂n
∂t1
+∇1 · (nu)= 0. (A 11)

When the first-order Euler equations are satisfied, a solution to (A 9) is guaranteed.
That solution is not unique, however, because an arbitrary linear superposition of the
null eigenvectors can be added. Thus,

|χ 〉 =

5∑
µ=1

αµ|Aµ〉 +|χ⊥〉, (A 12)

where 〈Aµ|χ⊥〉= 0. To the extent that the α coefficients are non-zero, they specify the
amounts of the hydrodynamic variables carried by the first-order distribution. However,
there are no further constraints on the α values at this order, nor will any emerge
at higher order. Thus, one is free to choose the αµ to vanish, and this freedom will
persist through all orders. This means that one can arrange things such that all of the
hydrodynamic variables are carried by the local Maxwellian; in other words, one may
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set n′= n, u′= u, and T ′= T . While this choice is not necessary, it is by far the most
convenient.

With the constraints satisfied, one must now solve (A 9). The right-hand side of that
equation can be simplified by carrying out the required partial time, space and velocity
derivatives, then using the first-order Euler equations to replace the terms in ∂/∂t1 by
terms in ∇1. The algebra is straightforward. However, it is instructive to sketch it
because there is an important lesson to be learned about the relation of this approach
to the projection-operator method. Equation (A 9) can be written as

Ĉ|χ 〉 =−
∣∣∣∣D ln n

Dt1

〉
−

∣∣∣∣D ln F0

Dt1

〉
. (A 13)

One has

D ln n
Dt1
= (∂t1 + v · ∇1) ln n. (A 14)

Also, since

ln F0 =−
w2

2v2
t
−

3
2

ln T + const., (A 15)

one has (upon temporarily dropping the 1 subscripts)

∂ ln F0

∂t
=

1
v2

t
w ·

∂u
∂t
+

(
1
2

w2

v2
t
−

3
2

)
∂ ln T
∂t

(A 16)

and similarly for v · ∇ ln F0. Upon using the Euler equations to replace the partial
time derivatives, one finds

∂t ln n = −∇ ·u+w · ∇ ln n, (A 17a)
∂t ln F0 = v−2

t w · [−u · ∇u+ (q/m)E− (nm)−1(T∇n+ n∇T)]

+

(
1
2

w2

v2
t

−
3
2

)
2
3
(u · ∇ ln T −∇ ·u). (A 17b)

In (A 13), some terms cancel and others combine as follows. One finds

Ĉ|χ 〉 = −( −1︸︷︷︸
∂t ln n

+ 1︸︷︷︸
∂t ln T

)∇ ·u|1〉 −( 1︸︷︷︸
Lv ln n

− 1︸︷︷︸
∂tu

)|w〉 ·∇ ln n

− ( −1︸︷︷︸
LE ln F0

+ 1︸︷︷︸
∂tu

)
q
T
|w〉 ·E

−
1
v2

t
|w w︸︷︷︸

Lvu

−
1
3 w2I︸︷︷︸
∂t ln T

〉 : ∇u−
∣∣∣∣( 1

2
w2

v2
t
−

3
2︸ ︷︷ ︸

Lv ln F0

− 1︸︷︷︸
∂tu

)
w

〉
· ∇ ln T (A 18a)

= −
1
v2

t

|w w− 1
3 w2I〉 : S1 −

1
T

∣∣∣∣(1
2

w2

v2
t

−
5
2

)
w
〉
· ∇1T, (A 18b)

where S is the rate-of-strain tensor,

S
.
=

1
2 [(∇u)+ (∇u)T], (A 19)
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and the underbraces indicate the origins of the various terms. Note that in each of
the pairwise combinations in (A 18a) the second term stems from a partial time
derivative (i.e. from the enforcement of an Euler equation). This is the present
algebra’s way of ensuring that the right-hand side of (A 9) is orthogonal to the null
eigenspace. In the projection-operator method, the same result is obtained by working
with the orthogonal projector Q. In that approach, there is no explicit elimination of
partial time derivatives; that is effectively done by the P term in Q = 1 − P in the
constructions QiLA. The physical reason for this subtraction is given in the paragraph
following (2.69).

Because Ĉ is linear and the right-hand side is linear in the gradients, the solution
to (A 18b) can be determined by linear superposition to be χ = χu + χT , where

χu = A(w) : S1, χT =B(w) · ∇1T, (A 20a,b)

where

|A〉 =−Ĉ−1 1
v2

t

∣∣∣∣w w−
1
3

w2I

〉
, |B〉 =−Ĉ−1 1

T

∣∣∣∣(1
2

w2

v2
t
−

5
2

)
w
〉
. (A 21a,b)

To evaluate these expressions, numerical work or approximate analytical methods
(such as variational techniques (Robinson & Bernstein 1962) or truncations of
expansions in orthogonal polynomials (Braginskii 1965)) are required.

A.3. The hydrodynamic regime

One can now proceed to O(ε2), where the effects of dissipation become apparent.
Upon rearranging (A 4c), one must solve(n

n

)
Ĉ|χ2〉 =−|F−1

0 C[ f1, f1])〉 −
D

Dt2

∣∣∣(n
n

)
1
〉
−

D
Dt1

∣∣∣(n
n

)
χ1

〉
. (A 22)

The solvability conditions are

〈n δAµ|Ĉ|χ2〉 = 0 = −
(

n
n

)(
〈n δAµ|F−1

0 C[ f1, f1]〉 +

〈
δAµ

∣∣∣∣ D
Dt2

∣∣∣∣ n
〉

+

〈
δAµ

∣∣∣∣ D
Dt1

∣∣∣∣ nχ1

〉)
. (A 23)

The first term on the right-hand side vanishes because of the conservation properties
of C.37 The second term involves the same algebra that was done at first order and
produces (sans a minus sign) the Euler moments in the x2 and t2 variables. Finally,
consider 〈

δAµ
∣∣∣∣ D
Dt1

∣∣∣∣ nχ1

〉
= 〈δAµ|∂t1 |nχ1〉 + 〈δAµ|v · ∇1|nχ1〉

+ 〈δAµ|E · ∂|nχ1〉. (A 24)

37The F−1
0 cancels against the hidden F0 in the ket.
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The first term on the right-hand side vanishes because |χ1〉 has been constructed to be
orthogonal to the null eigenfunctions.38 The last term also vanishes by orthogonality
upon integration by parts. The middle term can be written as ∇1 · Γ

µ
1 , where

Γ
µ

1
.
= n〈δAµv|χ1〉 = n〈δAµw|χ1〉 = (0 π q)T1 . (A 25)

Finally, add ε times the first-order solvability constraints (the first-order Euler
equations) and ε2 times the second-order solvability constraints, and use ε ∂t1 + ε

2∂t2
≈ ∂t (and similarly for ∂x). One thus reproduces the moment equations correct through
second order and with explicit expressions for the fluxes:

π =−nmm : S, q=−nκ · ∇T, (A 26a,b)

where

m
.
=

1
v2

t

〈
w w−

1
3

w2I

∣∣∣∣ Ĉ
−1
∣∣∣∣w w−

1
3

w2I

〉
, (A 27a)

κ
.
=

〈(
1
2

w2

v2
t
−

5
2

)
w
∣∣∣∣ Ĉ
−1
∣∣∣∣(1

2
w2

v2
t
−

5
2

)
w
〉
. (A 27b)

These tensors can be simplified by using symmetry considerations. The tensor m is
symmetric and traceless in both the first and the last pair of its indices, and it depends
on no preferred direction. The most general form of such a tensor is

mijkl = a δijδkl +µ(δilδjk + δikδjl), (A 28)

where a and µ are constants. Asserting the traceless condition leads to a=−2µ/3. An
expression for the scalar µ (kinematic viscosity) follows, for example, from m1221:

µ= v−2
t 〈wxwy|Ĉ

−1
|wxwy〉. (A 29)

Note that µ ∼ v2
t /ν, which is the correct random-walk scaling for an unmagnetised

transport coefficient. Contraction of mijkl with S leads to

π
.
=−nmµW , (A 30)

where

W
.
= (∇u)+ (∇u)T − 2

3(∇ ·u)I. (A 31)

Similar considerations lead to κ = κ I , where the thermal conductivity is

κ =

〈(
1
2

w2

v2
t

−
5
2

)
wz

∣∣∣∣ Ĉ
−1
∣∣∣∣(1

2
w2

v2
t

−
5
2

)
wz

〉
. (A 32)

This completes the review of the traditional Chapman–Enskog theory of the OCP,
where dissipation is calculated just to first order in the gradients. In principle, one
could proceed to higher order; at next order, the Burnett equations would emerge, but
I shall not do so here. That calculation is treated in Part 2 using a generalization of
the projection techniques described in the present paper.

The order-by-order Chapman–Enskog expansion constructs a one-particle distribution
function that is slaved to the five hydrodynamic variables. Clearly, that cannot be
the true distribution function of the kinetic system. Rather, the asymptotic procedure
(attempts to) construct an invariant hydrodynamic manifold to which the system
should quickly relax. For further discussion of this process, including the possibility
that it may fail, please consult Gorban & Karlin (2014, and references therein).

38One has 〈δAµ|∂t1 |nχ1〉= ∂t1 〈δA
µ
|nχ1〉− 〈(∂t1δA

µ)|nχ1〉. The first average vanishes directly by orthogonality.
One has ∂t1δA

µ
= (0, −m∂t1 uT, −mw · ∂t1 u− (3/2)∂t1 T)T. The velocity dependence of the last result involves

only 1 and w, both of which are elements of the null space. Therefore, the second average vanishes as well.
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Appendix B. The linearized Landau operator

The Landau collision operator39 is

CL
ss[ f ] =−2π (nm)−1

s S̄ss
∂

∂v
·

∫
dv U(v − v) ·

(
1

ms

∂

∂v
−

1
ms

∂

∂v

)
fs(v)fs(v), (B 1)

where

U(v)
.
= v−1(I − v̂ v̂) (B 2)

and

Sss
.
= (nq2)s(nq2)s lnΛss (B 3)

(obviously symmetric in s and s).40 The proper definition of the Coulomb logarithm
ln Λ is discussed by Krommes (2018a), who cites original references. Useful
properties of U, which is proportional to a projector into the direction perpendicular
to its argument, are

U(v)=
∂2v

∂v ∂v
,

∂

∂v
· U =−

2v

v3
. (B 4a,b)

CL is a bilinear operator on f , so it can be written as C[ f , f ] (I henceforth drop the
L superscript for brevity). If one writes f = (1+1χ)fM, then the operator linearized
around a Maxwellian involves(

1
m
∂

∂v
−

1
m
∂

∂v

)
[(1χ +1χ)fMf M]

=

(
1
m
∂1χ

∂v
−

v

T
(1χ +1χ)

)
fMf M − [(v, s)⇔ (v, s)]. (B 5)

The antisymmetrization introduces the relative velocity v − v, which is annihilated
by U(v − v). Thus, the linearized Landau operator is

Ĉ|1χ 〉 = −2π (nm)−1
s
∂

∂v
·
∑

s

Sss

∫
dv U(v − v)

·

(∣∣∣∣ 1
ms

∂1χs

∂v

〉
f M − [(v, s)⇔ (v, s)]

)
. (B 6)

In practice, mass-ratio expansions of Ĉ are often useful. For electron–ion collisions,
the ion integration velocity v is limited by the ion Maxwellian to be O(vti); thus, for
typical electron velocities v one has U(v − v)≈ U(v) and

Ĉei|1χ 〉 ≈−2π (nm)−1
e Sei

∂

∂v
· U(ve) ·

(
1

me

∣∣∣∣∂1χe

∂ve

〉
e

− |1〉e
1
mi

〈
1
∣∣∣∣∂1χi

∂vi

〉
i

)
. (B 7)

Terms of O(me/mi) have been neglected in the electron term. The explicit O(m−1
i )

ion term is not necessarily negligible because one does not yet know the size of
39A clear introduction to the Landau operator is given by Helander & Sigmar (2002, chap. 3). A pedagogical

compendium of useful properties of that operator is by Hazeltine (2006).
40The overline on S denotes evaluation with the mean density n. An S sans overline denotes evaluation

with the full density n.
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the 1χi on which the operator will act. (Indeed, in some later projection operations
one will need to insert 1χ values that are explicitly proportional to mass, so the mass
dependence will cancel out in those cases.) When the ion term is in fact negligible,
one obtains the Lorentz operator as usually defined:

Ĉei ≈ ĈLor .
= ν

(
v3

te

v3

)
L2, (B 8)

where L2 is the square of the angular momentum operator.41 The eigenfunctions of L2

are the spherical harmonics:

L2Ym
l (θ, φ)= l(l+ 1)Ym

l , (B 9)

with Ym
l (θ, φ)

.
= Pm

l (cos θ)eimφ , Pm
l (x) being the associated Legendre functions of

the first kind. The collision frequency ν is related to Braginskii’s collision rate τ−1
e ,

defined in (B 13) below, by ν = (3
√

2π/4)τ−1
e .

From the definition (3.5b) and with the aid of integration by parts, (B 7) generates
the electron momentum transfer R≈

∑
i Rei, where

Rei
.
=−2π Sei

(〈
U ·

1
me

∣∣∣∣∂1χe

∂ve

〉
Me

− 〈U〉Me ·
1
mi

〈
∂1χi

∂vi

〉
Mi

)
. (B 10)

A standard reference calculation assumes (illegitimately) that the distribution function
is a local (shifted) Maxwellian: flM

.
= (n/n)(2π v2

t )
−3/2 exp[−|v − u|2/2v2

t ] ≈ fM(1 +
v · u/v2

t ) for |u|/vt � 1. (This is incorrect because of the formation of high-energy
tails on f , as discussed and calculated later.) If 1χs= v · us/v

2
ts is inserted into (B 10),

the explicit mass dependence cancels (a possibility that was noted above) and one
finds with the aid of

〈U〉Me =
8π

3
(2π)−3/2v−1

te I (B 11)

that

Rei ≈−(mn)eτ−1
ei (ue − ui), (B 12)

where

1
τei

.
=

4
3

√
2π

(q2)e(nq2)i lnΛee

meTvte
(B 13)

(cf. the definition (B 30) below of the generalized collision rate νss′ , which holds for
arbitrary mass ratio). For the case of a single species of ions, Braginskii writes τei≡ τe.

For ion–electron collisions, one has

Ĉie|1χ 〉 ≈ −2π (nm)−1
i Sie

∂

∂vi
·

∫
dve

(
U(ve)− vi ·

∂

∂ve
U(ve)

)
·

(
1
mi

∣∣∣∣∂1χi

∂vi

〉
f M(ve)−

1
me

∣∣∣∣∂1χe

∂ve

〉
f M(vi)

)
(B 14a)

41Explicitly, in a spherical-polar (v, θ, φ) coordinate system one has L2
= −[(sin θ)−1∂θ sin θ ∂θ +

(sin2 θ)−1∂2
φ ]. See, for example, Gottfried (1966, p. 79).
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≈ −2π (nm)−1
i Sie

∂

∂vi
·

(
〈U〉Me ·

1
mi

∣∣∣∣∂1χi

∂vi

〉
︸ ︷︷ ︸

(a)

+ |vi〉 ·
1

me

〈
∂U

∂ve
·

∣∣∣∣∂1χe

∂ve

〉
︸ ︷︷ ︸

(b)

−
1

me

〈
U ·

∣∣∣∣∂1χe

∂ve

〉
|1〉

i︸ ︷︷ ︸
(c)

)
. (B 14b)

To understand the content of (B 14b), note that without linearization the ion–electron
operator is approximately

Cie[ f ] ≈−
(mn)e
(mn)i

τ−1
e

∂

∂vi
·

(
(vi − ui)fi +

Te

mi

∂fi

∂vi

)
−

1
(mn)i

R ·
∂fi

∂vi
, (B 15)

where it was assumed that the electron distribution is a local Maxwellian.42 The
linearization of this operator around absolute Maxwellians with equal electron and
ion temperatures is

1Cie[ f ] = −
(mn)e
(mn)i

τ−1
e

∂

∂vi
·

[
vi1fi︸︷︷︸
(a′)

+
T
mi

∂1fi

∂vi︸ ︷︷ ︸
(b′)

−1ui fi︸ ︷︷ ︸
(c′)

− vi

(
1Te

T

)
fi︸ ︷︷ ︸

(d′)

]

−
1

(mn)i

∂

∂vi
· (1R fi)︸ ︷︷ ︸

(e′)

. (B 16)

For consistency, (B 14b) should reduce to this when 1χe is taken to be the
perturbation of a local Maxwellian. That this is so is demonstrated in footnote 43.43

42If the approximation (B 12) is used for the momentum transfer, the operator assumes the appealing
Fokker–Planck form

Cie[ f ] ≈−
(mn)e
(mn)i

τ−1
e

∂

∂vi
·

(
(vi − ue)fi +

Te
mi

∂fi
∂vi

)
,

appropriate for a test ion moving through a sea of electrons with mean flow ue.
43 Here I sketch how (B 14b) reduces to (B 16). Term (a) in (B 14b) can be rewritten by pulling the

velocity derivative out of the ket according to

1
mi

∣∣∣∣ ∂1χi
∂vi

〉
=

1
mi

∂

∂vi
|1χi〉 +

vi
Ti
|1χi〉→

1
T

(
vi|1χi〉 +

T
mi

∂

∂vi
|1χi〉

)
for Ti = Te = T , which when (B 11) is used reproduces terms (a′) and (b′). To evaluate term (b), note that
for a local Maxwellian one has

1 ln fe =1χe = 1

[
ln
(ne

n

)
−
(v − ue)

2

2v2
te
−

3
2

ln(2πv2
te)

]

=
1ne

n
+

v ·1ue

v2
te
+

(
1
2
v2

v2
te
−

3
2

)
1Te
Te

.

Then term (b) involves 〈
∂U

∂ve
·

∣∣∣∣ ∂1χe
∂ve

〉
=

〈
∂U

∂ve
·

(
1ue

v2
te
+

ve

v2
te

1Te
Te

)〉
.
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B.1. Properties of the linearized Landau operator
The linearized Landau operator inherits the conservation laws of the full operator:

〈A|nĈ= 0, (B 17)

where the scalar product includes species summation (see (3.15)) and where

A .
= (1 P′T K ′)T. (B 18)

This also follows directly from (B 6) upon integration by parts. This means that Ĉ
has a five-dimensional null space, with 〈nA| defining the left null eigenvectors.44 For
further discussion of the spectrum of Ĉ, see § B.4.

It can easily be shown from (B 6) that nĈ is self-adjoint:45

〈ψ |n Ĉ|χ〉 = 〈χ |n Ĉ|ψ〉. (B 19)

Thus, upon taking the adjoint of (B 17), one finds that the right null eigenvectors are
|A〉:

Ĉ|A〉 = 0. (B 20)

B.2. Calculation of PĈP|1χ 〉

To calculate PĈP|1χ〉, the dissipative part of the frequency matrix (see (2.56b)), one
first evaluates ĈP|1χ〉, then applies P to that. Into the representation (B 6), one must
replace 1χ by its projected value according to

1χs→ 1
1ns

ns
+ v ·

1
v2

ts
1us +K ′s

1
T2
1Ts, (B 21)

so

1
ms

∂1χs

∂v
=

1
T
1us + v

1
T2
1Ts. (B 22)

Upon integration by parts, the 1ue term vanishes while the 1Te term reduces to v−2
te 〈U〉(1Te/Te) and leads

to term (d′). Finally, the momentum transfer is R=−
∫

dve (nmv)eCei[ f ], where

Cei[ f ] ≈−νv3
te
∂

∂ve
· U(ve − ui) ·

∂fe
∂ve

.

Then, after integration by parts,

1R=−(nm)eνv3
te

∫
dve

[
U ·

∂fe
∂ve
− ui ·

(
∂U

∂ve

)
·
∂fe
∂ve

]
.

The first term on the right-hand side is recognized as being proportional to term (c). It can thus be replaced
by a term of O(1R) [term (e′)] and a term of O(1ui) [term (c′)]. Thus, one has accounted for all of the
terms in (B 16). The reader can check that all of the coefficients work out correctly.

44A proof that these are the only null eigenvectors is (essentially) given by Montgomery & Tidman (1964,
§ 7.2).

45The need for the density factor can be seen from the elementary estimate for the collision frequency νss
of a test particle of species s colliding with field particles of species s: νss ∼ σss|vs − vs|ns, where σ is the
scattering cross-section. This formula is not symmetric in the density; symmetry is restored by multiplying
by ns.
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For like-species collisions, this vanishes under the antisymmetrization; this is a
manifestation of the conservation laws and the self-adjointness of nĈ. All of the
remaining integrals can be performed for arbitrary mass ratio in terms of the error
function and its derivative, but I shall not do so here; simplifications for small
mass ratio are given in the next section. However, the general result for PĈP|1χ 〉
is relatively simple. After integration by parts of PĈ = P∂v · Ĵ, one must apply
|v〉 mT−1

〈 I| + |K ′〉 mN−1
T 〈v| to ĴP|1χ 〉. It is clear from the formula (B 6) that one

requires the integrals

∫
dv dv fM(v)fM(v)

 U(v − v)
v · U(v − v)

v · U(v − v) · v

 . (B 23)

These are best done by transforming to the relative and centre-of-mass coordinates

w .
= v − v, W .

= (mv +m v)/M, (B 24a,b)

where M .
=ms +ms, so

v =W +
(

m
M

)
w, v =W −

(m
M

)
w, (B 25a,b)

and ∫
dv dv fM f M . . .=

∫
dW dwΦM(W)Φµ(w) . . . , (B 26)

where Φµ̂ is a Maxwellian with variance defined by σ 2
= T/µ̂ for µ̂=µ or M with

µ being the reduced mass, defined by

µ−1
ss
.
=m−1

s +m−1
s . (B 27)

It is then easy to show that

∫
dv dv fM(v)fM(v)

 U(v − v)
v · U(v − v)

v · U(v − v) · v

= 2
(

2
π

)1/2

v−1
tµ

(1/3)I0
v2

tM

 . (B 28)

The final result is

PĈP|1χ 〉 = |v〉N−1
v ·

∑
s′

νss′(1us′ −1us)

+ |K ′〉N−1
T

[
3
∑

s′

(
ms

Mss′

)
νss′(1Ts′ −1Ts)

]
, (B 29)

where the generalized collision rate is defined by

νss′
.
=

4
3

√
2π

q2
s (nq2)s′

msTvtµ
lnΛss′ . (B 30)
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B.3. Calculation of ĈP|1χ 〉

Ultimately, one requires QĈP|1χ〉= (1− P)ĈP|1χ〉, so one needs the action of Ĉ on
the hydrodynamic subspace. Major simplifications ensue for small mass ratio, which
was assumed by Braginskii. For electron–ion collisions, one has to lowest order U(v−
v) ≈ U(v), which projects into the direction perpendicular to v. That removes the
1Te term of P|1χ 〉, and the integral over v removes the 1Ti term, which is odd
in v. The second property of (B 4) can be used to simplify the divergence, and the
result can be written in terms of the small-me limit of the collision rate νei. Thus, for
small mass ratio one finds

ĈeiP|1χ 〉 ≈ 3
√

π

2
1

v2
teτei

∣∣∣∣(vte

v

)3
v

〉
·1u, (B 31)

where 1u .
=1ue −1ui, so the total flow-driven contribution to QĈP|1χ 〉 is

∑
i

1
v2

teτei

∣∣∣∣[3
√

π

2

(vte

v

)3
− 1
]

v

〉
·1u. (B 32)

We shall see in § 3.3 that this term behaves as a source that generates a contribution to
|Q1χ 〉 (see (3.35)). The physics of this result is that under perturbation the electron
distribution is not merely a shifted Maxwellian; a high-energy non-Maxwellian tail
develops because of the inverse velocity dependence of the electron–ion collision
frequency. Thus, in the unmagnetised plasma the approximation (B 10) is not correct;
the true shape of the perturbed distribution determines, for example, the values of α
in (3.9) and β in (3.10).

For ion–electron collisions, on the other hand, it is a straightforward calculation
using (B 14b) to show that to lowest order in the mass ratio Ĉie|1χ 〉 lies entirely
in the hydrodynamic subspace (i.e. that QĈP|1χ 〉 ≈ 0).

B.4. The spectrum of the linearized Landau operator and its relation to the
Markovian approximation

Lewis (1967) has shown that Ĉe has a continuous spectrum except for the five discrete
null eigenvalues. While many calculations involving Ĉ can be done without explicit
reference to its spectrum, the spectral representation is the most direct way to argue
for the validity of the Markovian approximation that is used in obtaining the standard
form of the transport equations (for example, see (2.53)). What one needs to determine
is whether a construction of the form

|K(v, τ )〉 .= e−QĈQτ
|Ŝ〉, (B 33)

where P|Ŝ 〉 = 0, decays on the collisional time scale. This is easy to argue in the
affirmative when the spectrum of Ĉ is discrete; however, a continuous spectrum
introduces some subtleties. Therefore, I shall provide some discussion.

Note that since |Ŝ〉 =Q|Ŝ〉 by assumption, one has

e−QĈQτ
|Ŝ〉 = e−QĈτ

|Ŝ〉 . (B 34)
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For simplicity, assume that PĈ= 0 (e.g. the case of self-collisions). Then QĈ= (1−
P)Ĉ= Ĉ. The simplest relevant example is the 1-D Fokker–Planck operator for a test
particle of mass M in a bath of temperature T:

Ĉi f .=−
∂

∂v

(
νv +Dv

∂

∂v

)
f , (B 35)

where the constant coefficients are related by the Einstein relation Dv = (T/M)ν. With
velocities being normalized to vT

.
= (T/M)1/2, (B 35) can be written as

Ĉi|1χ 〉 =−ν
∂

∂v

∣∣∣∣∂1χ∂v
〉
, (B 36)

where the implicit weight function is a Maxwellian with unit variance. From this
representation, it can easily be seen that the operator is self-adjoint with respect to the
standard scalar product. It is a 1-D model of the ion–electron collision operator Ĉie
with M = mi, T = Te, and ue = 0; it has a 1-D null eigenspace |1〉 associated
with density conservation. One can readily verify that the eigenfunctions are the
(probabilistic) Hermite polynomials:46

Ĉi|Hen(v)〉 = nν|Hen(v)〉, (B 37)

where n is a non-negative integer. Thus, Ĉi has a discrete spectrum, a property shared
with the linearized Boltzmann operator (which has a 5-D null space). To determine
the behaviour of (B 33) for this example operator, insert the completeness relation
(resolution of the identity)

δ(v − v)=

∞∑
n=0

Hen(v)
1
n!

Hen(v)

(
e−v2/4

(2π)1/4

)(
e−v

2/4

(2π)1/4

)
(B 38)

into (B 33):

|K(v, τ )〉 = e−Ĉiτ

∞∑
n=0

|Hen(v)〉
1
n!
〈Hen | Ŝ〉 (B 39a)

=

∞∑
n=1

e−nντ 1
n!

Ŝn|Hen(v)〉 . (B 39b)

(The n = 0 term is excluded because He0(v) = 1 and I have assumed that 〈1|Ŝ〉 =
0.) This clearly decays on the collisional time scale, so there is no difficulty with
justifying the Markovian approximation.

Now consider Ĉ = Ĉee. Lewis (1967) showed that the solution of ∂t| f 〉 = −Ĉee| f 〉
has the continuous spectral representation (mostly using Lewis’s notation)

| f 〉(c, t)=
∑
l,m

∫
∞

0
dρ(λl) Ψlm(c, λl)F̃lm(λl)e−λlτ , (B 40)

46The first few one-dimensional probabilistic Hermite polynomials in a standard normalization such that∫
∞

−∞
dvHen(v)Hen′ (v)(2π)−1/2e−v

2/2
≡〈Hen(v) |Hen′ (v)〉= n! δnn′ are He0(v)= 1, He1(v)= v, He2(v)= v

2
− 1.
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where τ is a dimensionless time (normalized to an electron–electron collision time),
ρ is the spectral measure47 dρ(λl)

.
= alλ

−1/2
l dλl,

F̃lm(λl)
.
=N−1

l

∫
∞

0
dcΨ ∗lm(c, λl)f (c, 0), (B 41a)

Ψlm(c, λl)
.
= c−1e−c2/2ψl(c, λ)Ym

l (θ, φ), (B 41b)

c .= v/(
√

2vt), the Ym
l are the spherical harmonics normalized such that

∫
dΩ Ym

l (Y
m′
l′ )
∗

= Nlδll′δmm′ , and the ψl(c, λl) are the eigenfunctions that solve a particular linear,
integro-differential, self-adjoint equation (Lewis’s equation (20)) deduced from the
collision operator linearized around a Maxwellian. Thus, functions u(c) that are
square-integrable on (0,∞) have the spectral (generalized Fourier) representation

u(c)=
∫
∞

0
dρ(λl) ψl(c, λl)ũ(λl), ũ(λl)=

∫
∞

0
dcψ∗l (c, λl)u(c). (B 42a,b)

Given that the measure ρ(λ) is continuous at λ= 0, the point λ= 0 can be excluded
from the integration in (B 40). Thus, as Lewis states, the spectral representation can
be shown to be complete for all perturbations conserving the densities of number,
momentum, and kinetic energy. Furthermore, since λ = 0 is absent, one finds from
(B 40) that perturbations decay on the collisional time scale;48 thus, the Markovian
approximation is justified (provided that the area under the curve is finite).

Note that the collisional decay described by (B 40) need not be exponential (unlike
the case of a discrete spectrum) because it involves a continuous superposition of
exponentials. A 1-D example is obtained by considering the operator Ĉ→−∂2

v , which
is the velocity-space diffusion part of the operator (B 35) written in dimensionless
variables with velocities normalized to vT and times normalized to ν−1. (Note that
this operator is not self-adjoint with respect to the standard scalar product.) Unlike
the operator (B 35), the diffusion operator has a continuous spectrum with plane-wave
eigenfunctions exp(iΛv) and eigenvalues49 λ = Λ2, Λ being the continuous Fourier
variable conjugate to v. As an illustration, consider the specific initial condition
f (v, 0) = v[(2π)−1/2e−v2/2

]. It is straightforward to solve the diffusion equation by
Fourier transformation to find

f (v, τ )= (1+ 2τ)−3/2v
1
√

2π
exp

[
−

1
2

(
v2

1+ 2τ

)]
. (B 43)

This function decays on the collisional time scale, although not exponentially, and∫
∞

0 dτ f (v, τ ) is finite.50

47The proportionality constant al is fixed by the chosen normalization of the 1-D eigenfunctions ψl.
48In general, one could contemplate non-physical initial conditions such that the decay was more complicated.

However, the specific QLP terms arising in the projection-operator formalism involve benign, low-order moments
of velocities scaled to vt. Their generalized Fourier transform (B 41b) thus involve λ values that are O(1) in
dimensionless units, leading to time dependence that is O(1) in τ (the collisional time scale).

49Notice that Lewis’s measure dρ ∝ λ−1/2dλ is proportional to dΛ, so the decay in (B 40) is exp(−Λ2τ),
just as for the diffusion operator. The physics is different, however, because for Ĉee polarization drag is
captured in the solution for ψl(λ), which is not a simple plane wave (cf. the first unnumbered equation after
Lewis’s equation (32)).

50Regarding long-time tails that arise from superpositions of exponentials, a closely related phenomenon
is the τ−d/2 tail on the velocity correlation function that arises in classical kinetic theory from the spatial
wavenumber superposition of slowly decaying hydrodynamic modes (Balescu 1975; Krommes & Oberman 1976;
Reichl 1998; Zwanzig 2001). A non-integrable τ−1 tail arises for d= 2, giving rise to vexing issues relating
to non-locality in 2-D hydrodynamics.
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Appendix C. Covariant representation of the hydrodynamic projection

Here I give justification and further discussion of the covariant representation of the
hydrodynamic projection.

In the Dirac bra–ket notation, kets |·〉 are conventionally interpreted as vectors,
while bras 〈·| are interpreted as covectors.51 In a finite-dimensional vector space
spanned by the basis vectors ei, vectors v are represented as v = viei, with the vi

being called the contravariant components. Similarly, covectors w are represented as
w= wiei, where the ei are the dual basis vectors and the wi are called the covariant
components. In Dirac notation, one writes |v 〉 = vi

|ei 〉 ≡ v
i
|i〉, the underlying basis

vectors being understood in the last notation. Similarly, 〈w| =wi 〈ei
| ≡wi 〈i|.

It is useful to introduce an adjoint operation † that changes vectors into covectors
(kets into bras) and vice versa:

|v〉† = 〈v|, or (vi
|i〉)† = vi 〈i|. (C 1)

Because in the application to hydrodynamics the natural scalar product is real valued,
no complex conjugate is taken in the execution of the adjoint operation.

The components Aµ of A (µ= 1, . . . , 5) are, in fact, the first few multidimensional
Hermite polynomials. Multiplied by fM, the complete set of those polynomials spans
the velocity space. Therefore, 〈Aµ| plays the role of a dual basis vector eµ, consistent
with the interpretation of a bra as a covector.

Define Mµν
= 〈AµAν〉. The inverse of this matrix is naturally written with lower

indices: (M−1)µν . Interpret this inverse as a metric tensor gµν and lower indices
according to Aµ= gµνAν . The ket |Aµ〉 is consistently interpreted as a basis vector eµ.

Given this notation, one can define the (dimensionless and self-adjoint) hydro-
dynamic projector

P= |Aµ〉 〈Aµ| ≡ |µ〉 〈µ|. (C 2)

The hydrodynamic projection of the state vector |1χ 〉 is then

P|1χ 〉 = |Aµ〉〈Aµ|1χ〉 = |Aµ〉1aµ, (C 3)

which defines the hydrodynamic variables 1aµ as the contravariant components of a
hydrodynamic vector.

The choice gµν = (M−1)µν is a special case of the Weinhold metric (Weinhold 1975,
1976). The use of that metric in the context of a covariant representation of Onsager
symmetries has been discussed by Krommes & Hu (1993).

Appendix D. An example of the calculation of some transport coefficients:
classical electron heat flow

Calculation of the classical electron heat flow in the limit of small52 ε
.
= νe/|ωce|

provides a good example of the use of the various formulas and gives insights that are

51For discussion of the distinction between vectors and covectors and of other related concepts, see a
modern textbook on differential geometry such as Fecko (2006). The presentation by Misner, Thorne & Wheeler
(1973) is particularly pictorial and pedagogical.

52The classical transport coefficients in the small-collisionality limit were considered by Rosenbluth &
Kaufman (1958) and Kaufman (1960).
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not available from purely numerical calculations. I repeat for convenience Braginskii’s
result quoted in § 3.1:53

q
⊥,e ≈−4.66neκ⊥,e∇⊥Te +

5
2

ne

(
cTe

eB

)
b̂×∇Te −

3
2
(nT)e
ωceτe

b̂×∇u, (D 1)

where κ⊥,e
.
= ρ2

e /τe has the usual random-walk scaling. (ρe
.
= vte/|ωce| is the electron

gyroradius.) I shall show that all of the numerical coefficients in this expression can
be calculated analytically by approximately solving (3.35) for small ε.

Linear superposition shows that the thermodynamic forces 1W .
=W[1u], ∇1T/T ,

and 1u drive independent contributions to |Q1χ〉. The 1R term (the last term
of (3.35); see (3.36)) also behaves as a thermodynamic force, but its magnitude is
determined as part of the solution. For the calculation of q, defined by (3.5c), vector
symmetry precludes a contribution from 1W. To calculate the ∇⊥1T-driven heat flux,
let |ψ〉 be the part of |Q1χ〉 driven by ∇⊥1T/T . Define t̂ .= ∇1T/T/(|∇1T|/T)
(this unit vector in the direction of the gradient is conventionally taken to lie in
the −x̂ direction), ψ .

= ψ/(|∇1T|/T), and R .
= R/(|∇1T|/T). Thus, with velocities

normalized to vte, one must solve

−(iM̂+ Ĉ)|ψ〉 = vte

∣∣∣∣(1
2
v2
−

5
2

)
v⊥

〉
· t̂+

1
nT
|v⊥〉 ·1R. (D 2)

The most general solution is

ψ = a(v)v⊥ · t̂+ b(v)v⊥ × t̂ · b̂, (D 3)

where a(v) and b(v) are unknown functions to be determined. Upon applying
iM̂ .
= ωce ∂/∂ζ to v⊥ = v⊥(sin ζ , −cos ζ )T, one finds iM̂v⊥ = ωcev × b̂ (M̂ rotates

perpendicular velocity vectors by angle ζ ). Upon rearranging (D 2) in anticipation of
iteration in small ε, one finds

|av⊥〉 × t̂ · b̂+ |bv⊥〉 · t̂= re

∣∣∣∣(1
2
v2
−

5
2

)
v⊥

〉
· t̂+

1
nωceT

|v⊥〉 ·1R[ψ]︸ ︷︷ ︸
O(ε)

+
1
ωce

Ĉ|ψ〉︸ ︷︷ ︸
O(ε)

,

(D 4)

where re
.
= vte/ωce (a negative quantity). Expand a and b in powers of ε (e.g. a =∑

∞

n=0 anε
n). One readily deduces that

a0 = 0, b0 =

(
1
2
v2
−

5
2

)
re. (D 5a,b)

At O(ε), one must satisfy

|a1v⊥〉 × t̂ · b̂+ |b1v⊥〉 · t̂=
1

nωceT
|v⊥〉 ·1R[b0v⊥ × t̂ · b̂] +

1
ωce

Ĉ|b0v⊥〉 × t̂ · b̂. (D 6)

From formula (3.37), one finds that the momentum transfer is given by 1R=R× t̂ · b̂,
where

R
.
=−(nmvt)e〈v⊥|ĈLor

|b0v⊥〉 (D 7)
53As a reminder, Braginskii’s gyrofrequencies are unsigned, whereas mine are signed.
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and ĈLor .
= νv−3L2. This integral can be evaluated by representing the 3-D velocity in

a spherical coordinate system (v, θ, φ) and recalling that the (l= 1, m= 1) spherical
harmonic is proportional to sin θ eiφ; thus, L2v⊥ = l(l + 1)v⊥ = 2v⊥. The resulting
integral is proportional to I⊥ by isotropy. With the result that the 3-D Maxwellian
average of vn is54

〈vn
〉 =

4π

(2π)3/2
2(n+1)/2Γ

(
n+ 3

2

)
, (D 8)

the matrix element can be calculated. The final result is

1R=
3
2

ne

ωceτe
b̂×∇1T, (D 9)

which agrees with Braginskii’s result for the perpendicular thermal force (see (3.10)).
Due to the rotational symmetry of Ĉ, the last term of (D 6) is proportional to v⊥×

t̂ · b̂. One therefore concludes that b1= 0. Contributions to a1 arise from all of the 1R
and the Ĉ= Ĉ

Lor

ei + Ĉee terms. I shall omit the algebra relating to Ĉ.
One can now undo the normalizations and proceed to calculate the heat flux

1q= 〈nK ′(v)v|ψ〉 (D 10)

(K ′(v) is defined by (2.24)) from

ψ =−av · ∇

(
1T
T

)
+ bv · b̂×∇

(
1T
T

)
. (D 11)

The diamagnetic flux (in the direction orthogonal to the gradient) is55

1q
∗
= −(nTvt)e〈K ′(v)v|b0(v)v〉 · b̂×∇

(
1T
T

)
(D 12a)

= −
5
2

ne

(
v2

te

ωce

)
b̂×∇1T =

5
2

ne

(
cTe

eB

)
b̂×∇1T. (D 12b)

Here I used the result (D 5) together with several instances of the formula (D 8); the
answer agrees with (3.11b) and (D 1). The flux in the direction of the gradient has
the form

1q
⊥
=−nκe∇⊥1T, (D 13)

where κe = Aκ⊥,e with

A .
=

1
3

〈(
1
2
v2
−

3
2

)
v2a1(v)

〉
. (D 14)

Given the solution for a1(v), it is straightforward to work out the required matrix
elements and find that

A=
3
2︸︷︷︸
1R

+
7
4︸︷︷︸

Ĉ
Lor
ei

+
√

2︸︷︷︸
Ĉee

≈ 4.66, (D 15)

54For even moments, formula (D 8) reduces to 〈v2n
〉 = (2n+ 1)!!.

55Matrix elements of the form 〈G(v)v v〉 are by symmetry equal to AI , where A= 〈G(v)v2
〉/3.
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which reproduces the numerical coefficient in (D 1). A message from (D 15) is that
all relevant thermodynamic forces, including self-collisions, contribute to the transport
coefficient.

A similar calculation leads to the perpendicular heat flow driven by 1u. A
difference is that there is no zeroth-order term; the 1u source term is already
O(ε). This implies that contributions from the momentum transfer and the explicit
collisional correction (the analogues of the last two terms in (D 4)) are O(ε2) and
can be neglected. Thus, with 1u=−|1u|x̂, one finds

b1 =−
1

v2
teωceτe

[
3
√

π

2

(vte

v

)3
− 1
]
. (D 16)

The matrix element with K ′ is readily calculated, and one recovers the last term of
(D 1).

A consequence of the fact that the 1u⊥-driven contributions to Qψ are O(ε) is
that the perpendicular friction force is given dominantly by its value projected into
the hydrodynamic subspace; see (3.29b). That is, the numerical coefficient in R⊥ =
−(nm)eτ−1

e 1u is 1. The physical explanation is that the rapid gyromotion rapidly
restores the local Maxwellian in a time that is short compared to the time to form
a high-energy tail.

Appendix E. Decomposition of the stress tensor

In the case of the one-component, weakly coupled plasma, the fourth-rank viscosity
tensor m was shown in appendix A to depend on a single scalar coefficient µ, the
kinematic viscosity, as a consequence of symmetry; from (A 28), one has

mijkl =µ
(
δilδjk + δikδjl −

2
3δijδkl

)
. (E 1)

A background magnetic field B breaks the symmetry and the representation of m
becomes more complicated. The most general form of m that is compatible with
rotational symmetry in the plane perpendicular to B can be argued to depend on the
three tensors

B
.
= b̂ b̂= bibj =

0 0 0
0 0 0
0 0 1

 , (E 2a)

δ⊥
.
= I − B≡ δ⊥ij =

1 0 0
0 1 0
0 0 0

 , (E 2b)

β
.
= b̂×=−εij3 =

0 −1 0
1 0 0
0 0 0

 , (E 2c)

where the matrix forms are valid in a coordinate system in which B is locally in the
z direction.

The tensor m is symmetric and traceless in both of its first and last pairs of indices.
Introduce a symmetrizing operation {. . .} that creates appropriately symmetric and
traceless tensors out of its argument. Then the most general representation of m is
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m=
∑4

p=0 nµpV p, where, using Cartesian tensor notation and Braginskii’s conventions
for coefficients and signs,

V 0
.
= 3{B B} = 3(Bij −

1
3δij)(Bkj −

1
3δkl), (E 3a)

V 1
.
= {δ⊥ δ⊥} = δ⊥ikδ

⊥

jl + δ
⊥

il δ
⊥

jk − δ
⊥

ij δ
⊥

kl , (E 3b)

V 2
.
= {δ⊥ B} = δ⊥ik Bjl + δ

⊥

il Bjk + Bikδ
⊥

jl + Bilδ
⊥

jk , (E 3c)

V 3
.
= −

1
2 {δ
⊥ β} =− 1

2(δ
⊥

ikβjl + δ
⊥

il βjk + βikδ
⊥

jl + βilδ
⊥

jk ), (E 3d)

V 4
.
= −{B β} =−(Bikβjl + Bilβjk + βikBjl + βilBjk). (E 3e)

The multiplicative factors of 3 and 1/2 are for later convenience. Note that the
construction {β β} is not independent because, for example, βijβkl = εij3εkl3 =

δ⊥ikδ
⊥

jl − δ
⊥

il δ
⊥

jk .
With these definitions, the V matrices obey the following properties: V p · V p′ = 0

for p 6= p′,

V 0 : V 0 = 2V 0, (E 4a)
V 1 : V 1 = 2V 1, (E 4b)
V 2 : V 2 = 2V 2, (E 4c)
V 3 : V 3 = −2V 1, (E 4d)
V 4 : V 4 = −2V 2, (E 4e)

and

V 0 + V 1 + V 2 = {I I} = δilδjk + δikδjl −
2
3δijδkl, (E 5)

which is the kinematic part of V (B= 0) (see (E 1)).
To calculate π , one needs to know the action of V i on ∇u. Because the V matrices

are symmetric in their last two indices, this is equivalent to calculating V i : S, where
S is defined by (3.4c). Note that δ⊥ and B are symmetric, whereas β is antisymmetric.
Then

V 0 : S = 3
(
B− 1

3 I
) (

B− 1
3 I
)
: S, (E 6a)

V 1 : S = 2S⊥ − δ
⊥ Tr S⊥, (E 6b)

V 2 : S = 2(δ⊥ · S · B+ B · S · δ⊥), (E 6c)
V 3 : S = δ⊥ · S · β − β · S · δ⊥, (E 6d)
V 4 : S = 2(B · S · β − β · S · B). (E 6e)

These are to be compared with Braginskii’s equations (4.42). Instead of S, he
uses W

.
= 2(S − (1/3)∇ ·u I), so that S = (1/2)W + (1/3)∇ ·u I . The last term,

proportional to the identity operator, does not contribute to V 0 (because S is dotted
with a traceless quantity), V 2 (because δ⊥ and B are orthogonal), or V 3 and V 4
(because of cancellations due to the antisymmetry). It contributes to V 1 a term(

2
3∇ ·u−∇⊥ · u⊥

)
δ⊥ =

(
∇‖u‖ − 1

3∇ ·u
)
δ⊥ = 1

2 Wzzδ
⊥. (E 7)

Thus, one finds

V 0 : S = 3
2

(
B− 1

3 I
) (

B− 1
3 I
)
:W , (E 8a)
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V 1 : S = δ⊥ ·W · δ⊥ + 1
2(b̂ ·W · b̂)δ

⊥, (E 8b)

V 2 : S = δ⊥ ·W · B+ B ·W · δ⊥, (E 8c)
V 3 : S = 1

2(δ
⊥
·W · β − β ·W · δ⊥), (E 8d)

V 4 : S = B ·W · β − β ·W · B. (E 8e)

These are equivalent to Braginskii’s equations (4.42). Note that each of the
constructions V i : S is symmetric, consistent with the overall symmetry of π .

The magnetic-field scalings of the µp viscosities are

µ0 ∼ B0 (parallel transport), (E 9a)
µ1, µ2 ∼ B−1 (non-dissipative gyroviscosities), (E 9b)
µ3, µ4 ∼ B−2 (cross-field transport). (E 9c)

It can be shown that µ1(ωc)=µ2(2ωc) and µ3(ωc)=µ4(2ωc). This is a consequence
of (i) the fact that the spherical harmonics are eigenfunctions of both Ĉ and iM̂, and
(ii) the aptly chosen tensorial decompositions of the V p matrices.

The non-dissipative gyroviscosities µ1 and µ2 emerge in collisionless Vlasov or
gyrokinetic theory as well. In the collisionless limit, a Chapman–Enskog-truncated
fluid description is inappropriate and gyrokinetics (Krommes 2012, and references
therein) provides a much superior approach. For further discussion, see Belova (2001).

Appendix F. Linear eigenmodes of the Braginskii equations
After Fourier analysis in space, the linearized Braginskii equations can be written

as

∂tak(t)= K k · ak, (F 1)

where K is a 5S × 5S square matrix. This leads to the 5S-dimensional eigenvalue
problem

det(K − λI)= 0, (F 2)

where I have dropped the k labels for simplicity. In this appendix I discuss some
aspects of the eigenmodes for first the unmagnetised one-component plasma (five
eigenmodes; § F.1), then a two-species plasma (ten eigenmodes) in the two limits
B = 0 (§ F.2) and ε

.
= ν/|ωc| � 1 (§ F.3). (Only special cases are considered for

the latter.) This knowledge is of intrinsic conceptual interest and is also useful for
numerical work with the Braginskii equations. While one might be most interested
in low-frequency phenomena, the Braginskii equations will not totally oblige; they
contain high-frequency eigenvalues as well: Langmuir oscillations for B = 0; hybrid
oscillations for B 6= 0. Those may limit the time step unless special care is used in
the formulation of the numerical algorithm.

For simple cases, the eigenvalue calculations can be done by hand. However, for
the most complicated situations the algebra becomes tedious. The determinant of
a ten-dimensional matrix all of whose entries are unique contains 10! ≈ 3.6 × 106

terms, each of which may be a complicated product. The matrices for the linearized
Braginskii equations are fortunately not full; nevertheless, the fully expanded
determinant for the B 6= 0 case contains more than 2500 terms. Those are of various
orders in the small parameters µ, ε, and k2, and one is interested only in the dominant
balances. Since diverse orderings are possible, machine-aided manipulations are useful
in sorting out the details.56

56I used MATHEMATICA to guide and check the algebra. The basic operation is Det[ ], which returns
the symbolic determinant of an n-dimensional square matrix; the result is an nth-order polynomial in the
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F.1. Eigenmodes of the unmagnetised one-component plasma
The eigenmodes of the hydrodynamic equations of a neutral fluid are well known;
however, they are non-trivially modified in the presence of the long-ranged Coulomb
force. I shall illustrate that for the unmagnetised one-component plasma. These results
are well known (Balescu 1975). However, lessons learned here generalize to the more
complicated multispecies and magnetised problems, which I shall discuss in later
sections.

The linearized continuity equation is

∂

∂t

(
1n
n

)
=−ik ·1u, (F 3)

the linearized momentum equation is

∂1u
∂t
=

q
m
1E− (nm)−1ik1p−µk21u−

(
1
3
µ+ ζ

)
k k ·1u (F 4)

(here I allow for a bulk viscosity ζ ) with 1E=−ik1φ, and the linearized temperature
equation is

∂

∂t

(
1T
T

)
=−

2
3

ik ·1u−
2
3
κk2

(
1T
T

)
. (F 5)

Decompose 1u into longitudinal and transverse components (with respect to k):

1u=1ulong
+1utrans, (F 6)

where

1ulong .
= k̂ k̂ ·1u, 1utrans .

= (I − k̂ k̂) ·1u= k̂× (1u× k̂). (F 7a,b)

These components decouple according to

λ1utrans
=−µk21utrans, (F 8)

which gives rise to two shear modes, each with λ=−µk2, and

λ

(
1n
n

)
=−ik1ulong, (F 9a)

λ1ulong
=−iω2

p
1
k

(
1n
n

)
− iv2

t k
(
1n
n
+
1T
T

)
−

(
4
3
µ+ ζ

)
k21ulong, (F 9b)

λ

(
1T
T

)
=−

2
3

ik1ulong
−

2
3
κk2

(
1T
T

)
. (F 9c)

Upon defining χµ
.
= 4µ/3+ ζ and χv

.
= κ/cv, where cv

.
= 3/2 is the specific heat at

constant volume for a three-dimensional ideal gas, (F 9a)–(F 9c) can be combined to

eigenvalue λ .= −iω. CoefficientList[ ] extracts the coefficients of λ. Each coefficient in that list can
be replaced by its dominant approximation with respect to a chosen variable by the user-defined module
reducelist[list_, var_]. That module expresses each term in list as a polynomial in var, then searches
the coefficient list of that polynomial and returns the lowest-order term that is non-zero. Consecutive uses of
that module for the various small parameters finally lead to relatively simple expressions for the characteristic
polynomial, from which the dominant balances can be easily recognized by the use of Kruskal diagrams.
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FIGURE 2. Kruskal diagram for the longitudinal modes of an unmagnetised one-
component plasma (see (F 10)), showing the balance between the terms in λ0 and λ1

(thermal-diffusion mode), and between λ1 and λ3 (plasma oscillations).

obtain the longitudinal dispersion relation

λ3
+ k2(χµ + χv)λ

2
+
(
ω2

p +
5
3 k2v2

t + (k
2χµ)(k2χv)

)
λ+ (ω2

p + k2v2
t )(k

2χv)= 0. (F 10)

Although a cubic equation has an explicit analytical solution, its interpretation is
opaque in general. Fortunately, of most interest is the hydrodynamic limit kλmfp→ 0.
Upon noting that each of µ and κ has the classical random-walk scaling v2

t /ν,
one can make (F 10) dimensionless by normalizing λ to ν, dividing by ν3, and
introducing57 δ

.
= (kvt/ν)

2
= (kλmfp)

2. One may treat k2 as O(δ). For the roots of
polynomials with small coefficients, an efficient and pictorial way of analysing the
dominant balances is to use a Kruskal diagram (Kruskal 1965) in which the terms in
the polynomial populate a 2-D lattice whose abscissa measures the powers of λ and
whose ordinate measures the powers of δ. Dominant balances are found by bringing
up lines from below until they rest on populated points. The Kruskal diagram for
(F 10) is shown in figure 2. The balance between the terms in λ1 and λ0 (I shall call
that the 1–0 balance) signifies a thermal-diffusion mode with

λ≈−k2χv =−k2κ/cv. (F 11)

The 3–1 balance leads to

λ2
=ω2

p +
5
3 k2v2

t +O(ε2). (F 12)

These are obviously plasma oscillations with real mode frequency Ωk ≈ ±ωp, but
with a thermal correction that is incorrect in the weakly coupled limit; the proper
coefficient (which follows from collisionless kinetic theory) is 3 rather than 5/3. The
error arises because in the limit of weak coupling these modes do not satisfy the
Markovian requirement |Ωk| � ν, so one should not be taking the ω= 0 limit of the
projection formalism.58 As is well known, the prediction (F 12) is easily rationalized
on physical grounds: 5/3 is the ratio of specific heats cp/cv = (d + 2)/d of a

57This is the square of the Chapman–Enskog expansion parameter used in appendix A.
58This point is well known in related contexts. For example, high-frequency conductivity has been treated

thoroughly by Dawson & Oberman (1962) and Dawson (1968).
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FIGURE 3. Kruskal diagram for the neutral gas, showing that the eigenmodes are a
thermal-diffusion mode (1–0 balance) and two sound waves (3–1 balance).

d-dimensional ideal gas for d = 3 whereas the correct coefficient of 3 corresponds
to d = 1. The Braginskii equations incorrectly assume that strong collisions have
isotropized the wave motion.59 Furthermore, although the Braginskii equations predict
(an incorrect formula for) dissipative collisional damping (not written in (F 12)),
collisionless Landau damping is absent.60

Of course, the plasma oscillations are a consequence of the long-ranged nature of
the Coulomb force. It is instructive to consider the limit of a neutral gas by letting
ω2

p→ 0. Then the dominant terms for λ0 and λ1 move up to ∞; the corresponding
Kruskal diagram is shown in figure 3. The 1–0 balance now leads to

λ=− 3
5 k2χv =−k2κ/cp, (F 13)

where cp
.
= 5/2 is the specific heat at constant pressure for a three-dimensional ideal

gas. This is again a thermal-diffusion mode, but with a thermodynamics that differs
from that of the OCP.61 The 3–1 balance leads to two sound waves:

λ=±kcs, (F 14)
59This observation is not made in the otherwise excellent massive tome on statistical mechanics by Balescu

(1975), who obtains in his §12.7 a result that reduces to the incorrect (F 12) for weakly coupled plasma.
60Hammett & Perkins (1990) discuss a useful method for incorporating collisionless effects into fluid

equations.
61The presences of cv in the plasma formula (F 11) and cp in the neutral-fluid result (F 13) are easy to

understand on physical grounds. In the neutral fluid, the dominant balance in the thermal-diffusion mode is
1n/n≈−1T/T (i.e. 1p≈ 0); the diffusion of heat occurs at constant pressure. In the plasma, the dominant
balance is instead between the electric force and the pressure force. Because of the long-ranged nature of the
Coulomb interaction, only a small amount of density fluctuations is required in order to provide a substantial
electric field at long wavelengths; as a consequence, in the plasma thermal-diffusion mode 1n/n�1T/T . The
density in a volume element of volume V containing N particles is n=N/V . Since no particles are exchanged
in a thermal-diffusion process, one has 1n/n=−1V/V . Since to lowest order 1n/n= 0, the process occurs
at constant volume. The dominant balances can be seen in a way that is more physical than the dispersion
relation (F 10) by eliminating 1n and 1T in (F 9b):

λ1u=
−iω2

p

k

(
−ik1u
λ

)
︸ ︷︷ ︸

(a)

−iv2
t k
(
−ik1u
λ︸ ︷︷ ︸

(b)

−
(2/3)ik1u
λ+ χvk2︸ ︷︷ ︸

(c)

)
−

(
4
3
µ+ ζ

)
k21u.

The neutral-fluid balance is between terms (b) and (c), while the plasma balance is between terms (a) and (c).
(In the latter, the O(k4) correction to λ=−χvk2 is required in order to balance the leading-order k−2 dependence
of each term.)
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where

c2
s
.
=

5
3v

2
t (F 15)

is the ideal-gas limit of the well-known result

c2
s =

(
cp

cv

)
1
m

(
∂p
∂n

)
T

=
1
m

(
∂p
∂n

)
s

, (F 16)

where s denotes entropy density. That long-range forces lead to profound modifications
in linear-response theory is well known; good discussions are given by Martin (1967,
1968).

F.2. Eigenmodes of a two-species magnetised plasma for B= 0
Next I address the generalization of the previous results to a two-species, unmagnetised
plasma. The linearized continuity equations are unchanged in form. To the linearized
momentum equations must be added the perturbed momentum transfer:

1Re =−(nm)eτ−1
e α(1ue −1ui)− βneik1Te, 1Ri =−1Re, (F 17a,b)

where α .
= 0.51 and β .

= 0.71. Also, to the linearized temperature equations must be
added a temperature equilibration term 1Q:

1Qe =−3
(

me

mi

)
τ−1

e (1Te −1Ti), 1Qi =−1Qe. (F 18a,b)

Finally, the electron heat flow must be generalized to

1qe =−neκek2ik1Te + β(nT)e(1ue −1ui). (F 19)

A decomposition into decoupled longitudinal and transverse components can be made
as before. The transverse dispersion relation leads to two pairs of eigenvalues, where
each pair obeys

λ2
+ (νe + νi + εe + εi)λ+ εiνe + εeνi + εeεi, (F 20)

where νe
.
= ατ−1

e , νi
.
= (me/mi)νe, and εs

.
= µsk2. The approximate solutions are a

momentum-decay mode (2–1 balance),

λ− =−(νe + νi)+O(ε), (F 21)

and a momentum-diffusion mode (1–0 balance),

λ+ =−

(
εiνe + εeνi

νe + νi

)
+O(ε2). (F 22)

If one assumes Te = Ti = T and writes µs = CsT/(msνs), where Cs is a constant, this
eigenvalue reduces to

λ+ =−T
(

Ci

me
+

Ce

mi

)(
1

νe + νi

)
k2, (F 23)

describing diffusion with a hybrid viscosity based on (essentially) the reduced mass
and the total collision frequency.

Remaining are six longitudinal eigenmodes, for which I merely quote the lowest-
order results:
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(i) two plasma oscillations (6–4 balance): λ=±iωp, where ω2
p
.
=
∑

s ω
2
ps and ωps

.
=

[4π(nq2/m)s]1/2;
(ii) two ion sound waves (4–2 balance): λ=±ikcs, where cs

.
= (ZTe/mi)

1/2;
(iii) a temperature-equilibration mode (2–1 balance): λ=−2γ , where γ .

= 2νie;
(iv) a thermal-diffusion mode (1–0 balance): λ = −(1/2)(ΣTe + ΣTi), where ΣTs

.
=

2k2κs/3= κs/cv.

F.3. Eigenmodes of a two-species magnetised plasma for ν/|ωc| � 1
Whereas for B = 0 decomposition of u into longitudinal and transverse components
is natural (k being the only vector in the problem other than u), for B 6= 0 a more
useful and physically meaningful decomposition is into compressional and vortical
components:

Ω‖
.
= ik‖u‖, Ω⊥

.
= ik⊥ · u⊥, Ω×

.
= i(k⊥ × u) · b̂. (F 24a−c)

Expressing the algebra in this way helps one to make contact with predictions of the
gyrokinetic formalism, in which vorticity plays a prominent role. In gyrokinetics,62

the perpendicular dielectric constant D⊥
.
= ω2

pi/ω
2
ci is assumed to be large.63 To

introduce D⊥ naturally, it is convenient to normalize frequencies to ωci and
wavenumbers to ρs

.
= cs/ωci.

I shall assume that ε .= νe/|ωce| is small. The normalized collision frequencies are
then νe

.
= νe/ωci = (|ωce|/ωci)(νe/|ωce|) = ε/µ, ν i

.
= νi/ωci = µνe = ε. For an optimal

ordering, I shall take ε=µε, where ε=O(1) with respect to µ. This makes νe=O(1)
in the mass-ratio ordering; later, one can do a subsidiary ordering with respect to ε.

When considering various limiting cases in the small parameters µ, ε, and δ
.
=

k
2 .
= k2ρ2

s (where k refers to either k‖ or k⊥), it is important to keep in mind that
the order of limits may matter. For example, any effect involving k2 is small relative
to the interspecies collisional relaxation rates as k→ 0. However, to ensure proper
cancellations relating to momentum conservation when evaluating det(K ), one must
first express all collision rates in terms of a common collision frequency. Since I am
treating νe as O(1), it is appropriate to replace ν i→µνe. Although the mass ratio µ
is very small and the full determinant contains terms of various orders in µ, most of
which can be neglected, the ordered limit limδ→0 limµ→0 will produce unusual answers
since it assumes that the k2 effects are large compared to the interspecies relaxation
rates. The proper hydrodynamic limit is limµ→0 limδ→0.

Regarding the hydrodynamic limit, note that classical transport assumes the ordering
k2λ2

mfp ∼ (λmfp/L)2 � 1, where λmfp
.
= vt/ν and L is a characteristic gradient scale

length. In the large-D⊥ limit, the natural dimensionless wavenumber that appears
is kρs. Since λmfp � ρs in a hot plasma and k⊥λmfp = (λmfp/ρs)(k⊥ρs) � k⊥ρs, the
requirement k⊥λmfp� 1 does not inevitably require k⊥ρs� 1. However, that limit is
implied by the assumption that k⊥L=O(1) provided that ρs/L� 1.

In general, I construct from the linearized Braginskii equations a 10 × 10 matrix
that acts on the column vector (1ne/ne, 1ni/ni, Ω‖e/ωci, Ω‖i/ωci, Ω⊥e/ωci, Ω⊥i/ωci,
Ω×e/ωci, Ω×i/ωci, 1Te/Te, 1Ti/Ti )

T. A complete description of the eigenvalues and
eigenvectors of that matrix for all possible limits in the multidimensional space of
small parameters is beyond the scope of this paper. Below I shall merely consider a
few illustrative special cases.

62For an introductory review of gyrokinetics with many references, see Krommes (2012).
63For some discussion of various regimes, see Krommes, Lee & Oberman (1986, § II).
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F.3.1. Magnetized eigenvalues in the limit of zero dissipation
When all of the dissipation parameters as well as the gyroviscous stresses are set to

zero (as discussed above, this is not the hydrodynamic limit because I hold k‖ and k⊥
finite), and with λ .= λ/ωci, one finds

K =



−λ 0 −1 0 −1 0 0 0 0 0
0 −λ 0 −1 0 −1 0 0 0 0

Ê‖ + k
2
‖

−Ê‖ −µλ 0 0 0 0 0 k
2
‖

0
−Ê‖ Ê‖ + τk

2
‖

0 −λ 0 0 0 0 0 τk
2
‖

Ê⊥ + k
2
⊥

−Ê⊥ 0 0 −µλ 0 −1 0 k
2
⊥

0
−Ê⊥ Ê⊥ + τk

2
⊥

0 0 −0 −λ 0 1 0 τk
2
⊥

0 0 0 0 1 0 −µλ 0 0 0
0 0 0 0 0 −1 0 −λ 0 0
0 0 −2/3 0 −2/3 0 0 0 −λ 0
0 0 0 −2/3 0 −2/3 0 0 0 −λ


,

(F 25)

where τ
.
= Ti/Te = 1 (the perturbations are around an absolute equilibrium with a

common temperature), Ê‖
.
=D⊥(k2

‖
/k2), and Ê⊥

.
=D⊥(k2

⊥
/k2). For small µ, large D⊥,

and small k2
⊥

, the characteristic polynomial is dominantly

(10/3)[D⊥(k2
⊥
/k2)]k

2
‖
λ

2
+D⊥(k2

‖
/k2)λ

4
+D⊥(k2

‖
/k2)λ

6
+µλ8

+µ3λ
10
= 0. (F 26)

Clearly, two eigenvalues vanish; those will be resolved when dissipation is included.
For the remaining eigenvalues, first balance with respect to small µ. The 10–8
balance gives λ

2
= −µ−2, which when the normalizations are unwrapped gives

ω2
= ω2

ce, the low-density limit of the upper hybrid wave. The 8–6 balance gives
λ

2
= −D⊥(k2

‖
/k2). These modes are the strongly magnetised limit of the plasma

oscillations; in gyrokinetics, they are known as the ωH modes. For the remaining
balances, which involve µ0, use a subsidiary ordering with respect to small k‖.
The 6–4 balance gives λ

2
= −1, the ion cyclotron wave. The 4–2 balance gives

λ
2
=−(10/3)k

2
‖
. These are the ion sound waves, but with a thermodynamic coefficient

that differs from the value of 1 that follows from collisionless kinetic theory. The
issue here is the same one that was raised in the discussion of the incorrect thermal
correction to the unmagnetised plasma oscillations (F 12); the Braginskii equations
are correct only for the collisional limit ω� ν.

F.3.2. Magnetized eigenvalues for purely perpendicular propagation with no dissipation
For purely perpendicular propagation, the characteristic polynomial derived from

(F 25) changes to D⊥µ λ
6
+µ λ

8
+µ3λ

10
= 0. The sound waves have disappeared; four

vanishing eigenvalues will be resolved by dissipation. Furthermore, the 8–6 balance is
now changed to λ

2
=−D⊥ (the order of the limits µ→ 0 and k‖→ 0 matters), or in

dimensional variables ω2
=ω2

pi; this is the low-density limit of the lower-hybrid waves.
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F.3.3. Magnetized eigenvalues for purely perpendicular propagation with dissipation
With all terms included, one finds K = (K (1...4)

10×4 , K (5,6)
10×2, K (7...10)

10×4 ), where

K (1...4) .
=

−λ 0 −1 0
0 −λ 0 −1

Ê‖ + k
2
‖

−Ê‖ −µ(λ+ ανe +
4
3Σ

u
0‖e +Σ

u
2⊥e) µανe

−Ê‖ Ê‖ + τk
2
‖

αν i −(λ+ αν i +
4
3Σ

u
0‖i +Σ2⊥i)

Ê⊥ + k
2
⊥

−Ê⊥ µ( 2
3Σ

u
0⊥e −Σ

u
2⊥e) 0

−Ê⊥ Ê⊥ + τk
2
⊥

0 2
3Σ

u
0⊥i −Σ

u
2⊥i

0 0 0 0
0 0 0 0
0 0 −

2
3(1+ β)

2
3β

0 0 0 −
2
3


,

(F 27a)
K (5,6) .

=

−1 0
0 −1

µ( 2
3Σ

u
0‖e −Σ

u
2‖e) 0

0 2
3Σ

u
0‖i −Σ

u
2‖i

−µ(λ+ νe +
1
3Σ

u
0⊥e +Σ

u
1⊥e +Σ

u
2‖e) µνe

ν i −(λ+ ν i +
1
3Σ

u
0⊥i +Σ

u
1⊥i +Σ

u
2‖i)

1 0
0 −1
−

2
3 0

0 −
2
3


,

(F 27b)

K (7...10) .
=



0 0 0 0
0 0 0 0
0 0 (1+ β)k

2
‖

0
0 0 −βk

2
‖

τk
2
‖

−1 0 k
2
⊥

0
0 1 0 τk

2
⊥

−µ(λ+ νe) µνe
3
2 k

2
⊥
µνe 0

ν i −(λ+ ν i) 0 −
3
2 k

2
⊥
µνe

µνe −µνe −(λ+ γ +Σ
T
e ) γ

0 0 γ −(λ+ γ +Σ
T
i )


. (F 27c)

Here νe ≡ νei = τ−1
e and νi ≡ νie = µνe; overlines denote normalizations with

respect to ωci; Σ
u

denotes quantities related to the stress tensor, with the numerical
subscripts following Braginskii’s notation (appendix E) and ‖ or ⊥ denoting k2

‖
or k2

⊥
,

e.g. Σ
u
2⊥e

.
= k2
⊥
µ2e/ωci (distinguish the mass ratio µ, which is unsubscripted, from the

classical viscosities µps, which are subscripted); Σ
T

denotes the full thermal-diffusion
coefficient (e.g. Σ

T
e
.
= (2/3)(k2

‖
κ‖e + k2

⊥
κ⊥e)/ωci); and γ .

= 2ν i.
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The general dispersion relation for arbitrary k‖/k⊥ is complicated, even in the
hydrodynamic limit, and will not be discussed here. The case of purely perpendicular
propagation, however, is analytically tractable. With k‖ = 0, small µ, and large D⊥,
one finds that the characteristic polynomial is dominantly

2δ3αD⊥ε3Σ
u
2⊥i(Σ

T
e +Σ

T
i )k

2
⊥
(1+ τ)λ+ 2δ2αD⊥ε2Σ

u
2⊥i(Σ

T
e +Σ

T
i )λ

2

+ 2δαD⊥ε2(2Σ
u
2⊥i +Σ

T
e +Σ

T
i )λ

3
+ 4αD⊥ε2λ

4

+αD⊥ελ
5
+D⊥µλ

6
+ αελ

7
+µλ

8
+ (2+ α)µ2ελ

9
+µ3λ

10
, (F 27d)

where I have inserted the hydrodynamic ordering parameter δ to explicitly remind one
of the order of the transport terms64 in k

2
⊥

. One eigenvalue vanishes; that is resolved
by viscous dissipation for small but non-zero k‖.

As stated above, the proper order of limits is limµ→0 limδ→0. With respect to δ, the
dominant balances are to set to zero either the first two lines of (F 27d) (balances A)
or the last term of the second line plus the last line (balances B). For the A balances,
all of the terms fall on a line in a δ-ordered Kruskal diagram, so there is no
asymptotic simplification for small δ. After one factors out 2αD⊥ε2 and sets δ = 1,
the A balances become

εΣ
u
2⊥i(Σ

T
e +Σ

T
i )k

2
⊥
(1+ τ)λ+Σ

u
2⊥i(Σ

T
e +Σ

T
i )λ

2
+ (2Σ

u
2⊥i +Σ

T
e +Σ

T
i )λ

3
+ 2λ

4
= 0.
(F 28)

With respect to ε, the dominant balances are 2–1 and 4–3–2. The 2–1 balance is

λ=−(1+ τ)k
2
⊥
ε or λ=−(1+ τ)k2

⊥
D⊥, (F 29)

where D⊥
.
= ρ2

i νi= ρ
2
e νe; this is the ambipolar cross-field density-diffusion mode. The

4–3–2 balance factors into

(λ+Σ
u
2⊥i)[λ+

1
2(Σ

T
e +Σ

T
i )] = 0, (F 30)

yielding a momentum-diffusion mode and a thermal-diffusion mode.
The B balances do not involve δ, so one is free to consider balances with respect

to µ. Upon factoring out λ
4

and replacing ε =µε, one has

4αD⊥µ2ε2
+ αD⊥µελ+D⊥µλ

2
+ αµελ

3
+µλ

4
+ (2+ α)µ3ελ

5
+µ3λ

6
= 0, (F 31)

which contains the balances 1–0, 4–3–2–1, and 6–4. The 1–0 balance yields

λ=−4µε =−4ε or λ=−4νi; (F 32)

this is an interspecies heat-relaxation mode. The 4–3–2–1 balance can be further
ordered with respect to large D⊥, yielding (i) the 2–1 balance

λ=−αε or λ=−ανe, (F 33)

which is an interspecies momentum-relaxation mode; and (ii) the 4–2 balance

λ
2
=−D⊥ or λ2

=−ω2
pi, (F 34)

64Since δ has been included explicitly, one must treat k2
⊥ as order unity in (F 27d).
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the lower-hybrid waves. Finally, the 6–4 balance yields

λ
2
=−µ−2 or λ2

=−ω2
ce, (F 35)

the upper-hybrid waves.
For the particular orderings I chose, the eigenmodes obtained for perpendicular

propagation are physically reasonable; clearly, though, other orderings will lead to
different results. In the general case, numerical work is essential. But the analytical
exploration of the linearized Braginskii equations provides a good example of several
important lessons from asymptotic analysis, namely that the order of limits can matter
and that dominant balances in polynomial equations can be usefully analysed in terms
of Kruskal diagrams.

Finally, I emphasize that not all of the Braginskii eigenmodes are hydrodynamic
(i.e. some modes such as the Langmuir oscillations do not vanish with k). In a
projection-operator formalism, such non-hydrodynamic modes must be treated with
care. See appendix G, especially § G.2, for more discussion.

Appendix G. Projection operators: caveats and further examples
As shown in the main text, an appropriate choice of projection operator leads to

a systematic derivation of multispecies transport theory, at least to first order in the
gradients. (See Part 2 for a discussion of second-order effects.) However, although the
projection method is quite powerful, it can be misused, as I shall show in §§ G.1–G.3
with several simple examples. Finally, in § G.4 I shall discuss the Brownian test
particle in terms of two possible projections. In this case, there is no misuse of the
formalism; both projections are viable. Understanding why that is so, in the face
of the caveats discussed in the next three subsections, should lead one to a deeper
appreciation for the overall content and consistency of the formalism.

G.1. Projection-operator methods and non-locality

In a 2-D vector space with basis vectors ex
.
= (1, 0)T and ey

.
= (0, 1)T, let ψ .

=

(ψx, ψy)
T obey

∂tψ + iL ·ψ = 0, (G 1)

where

L=

(
0 i
−i 0

)
. (G 2)

(Note that the eigenvalues of L are ±1, indicating oscillation.) The resulting dynamical
system is

ψ̇x =ψy, ψ̇y =−ψx. (G 3a,b)

These can be combined into the wave equation

ψ̈x +ψx = 0, (G 4)

so the variables oscillate sinusoidally with unit frequency.
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Let us try to recover (G 4) by projecting (G 1) into the x direction. That can be
accomplished by introducing the projection operator

P
.
= ex ⊗ eT

x =

(
1 0
0 0

)
. (G 5)

The standard equations apply:

∂tP ·ψ + (P · iL · P)P ·ψ =−(P · iL ·Q) ·Q ·ψ, (G 6a)
∂tQ ·ψ + (Q · iL ·Q) ·Q ·ψ =−(Q · iL · P) · P ·ψ . (G 6b)

Simple calculation shows that the frequency matrix P · L · P vanishes identically for
the present problem, so in spite of its name it is unrelated to the natural oscillation.
Furthermore, although the standard procedure is to eliminate Q · ψ by introducing
Green’s function GQ(τ )

.
=H(τ ) exp(−Q · iL ·Qτ), so

Q ·ψ(t)=−
∫ t

0
dτ GQ(τ ) ·Q · iL · P ·ψ(t− τ), (G 7)

it is easy to show that in the present problem Q ·L ·Q≡0. Thus, GQ(τ ) does not decay
in time, precluding the possibility of a Markovian description. Indeed, upon noting
that

Q · L · P = (I − P) · L · P = L · P =

(
0 0
−i 0

)
, (G 8)

one finds that

Q ·ψ(t)=−
∫ t

0
dt
(

0
ψx(t)

)
; (G 9)

then, with

P · L ·Q= P · L · (I − P)= P · L=

(
0 i
0 0

)
, (G 10)

one finds that (G 6a) becomes

0=
∂

∂t

(
ψx(t)

0

)
+

∫ t

0
dt
(
ψx(t)

0

)
. (G 11)

The desired x component can be extracted by dotting with eT
x . Of course, the non-local

integro-differential equation that results is equivalent to the second-order differential
equation (G 4).

This trivial example shows that it is not inevitable that a projected description
must be time-local or Markovian. Note that the original vector system (G 1)
of coupled ordinary differential equations (ODEs) is local in time; time-history
integration is introduced as a consequence of the projection.65 This is actually typical
behaviour when the system supports linear waves. Very special conditions must hold
in order that a projected system is Markovian. At least, what is required is that

65This phenomenon is well known in the theory of classical Brownian motion (Wang & Uhlenbeck 1945).
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Green’s function GQ(τ ) (an operator) decays sufficiently rapidly in time when acting
on the orthogonal subspace (as is required for (G 6b)), a property that is related to
the spectrum of QLQ. Note that QLQ will always possess a null space that is at least
p-dimensional, where p is the dimension of the projected subspace, since (QLQ)P= 0.
But if it also possesses a zero or very small eigenvalue in the Q direction (as in the
present example), some sort of non-locality must ensue. It is for this reason that for
applications to fluid equations Q is chosen to project into the directions orthogonal
to the null space of the collision operator.66

G.2. Projection operators and the dispersion relation of Langmuir oscillations
One of the wonderful yet dangerous features of the projection-operator formalism is
that one can project onto virtually anything. For the case of collisional transport, the
choice of projection operator is relatively obvious. In general, however, the formalism
can be confusing because the zero-frequency limit is not allowed for high-frequency
modes and because of the appearance of Q in the relevant Green’s function.

I remarked in § F.1 that the Braginskii equations predict an incorrect dispersion
relation for the Langmuir oscillations ω=Ωk≈±ωp as a consequence of a violation of
the Markovian approximation by those high-frequency modes. Before the Markovian
approximation is made, however, a projection-operator formalism must produce a
formally correct result, no matter into what space the dynamics is projected. The
proper dispersion relation, including both reactive and dissipative parts, must follow
from a correct evaluation of the frequency-dependent Σ̂(ω). I shall demonstrate this
by analysing the projection into the density subspace for the well-known model
problem of linearized, collisionless Vlasov response. Note that for a high-frequency
mode the null eigenspace of the collision operator is no longer relevant and cannot
be used to motivate a useful projection operator. Projecting into the 1-D density
subspace is the simplest operation that can be done, yet it demonstrates some
non-trivial manipulations.

Thus, consider67 P = |1〉 〈1| and project the perturbed kinetic equation (2.12),
assuming a collisionless electron plasma with neutralizing ion background. The
frequency matrix involves the single matrix element 〈1|v|1〉 = 0. The electric-field
term vanishes under P because it is a perfect derivative in velocity space. Thus, the
perturbed density evolves according to

−iω
(
1n̂(k, ω)

n

)
+ Σ̂(k, ω)

(
1+

1
k2λ2

De

)(
1n̂(k, ω)

n

)
=
1n(0)

n
, (G 12)

66Projection into the directions orthogonal to the null space of the collision operator is necessary but
not sufficient. When that operator is the linearized Landau operator (or the linearized Boltzmann operator
for neutral fluids), it is clear from the discussion in § B.4 that perturbations in the orthogonal directions
decay rapidly. But the famous example of the long-time algebraic tails of correlation functions (C(τ )∼ τ−d/2,
where d is the dimension of space) discovered by Alder & Wainwright (1970) shows that those familiar
operators omit essential physics. Specifically, collisional processes at the microscopic level excite long-lived
hydrodynamic excitations, and the nonlinear mode coupling of those fluctuations leads to a slow component
that does not lie in the null space of the standard operators. In magnetised plasmas, the phenomenon is called
the generation of convective cells and was treated by Krommes & Oberman (1976). (For a discussion of
the neutral-fluid problem, see Balescu (1975, § 21.5), Reichl (1998, § 11.A), Zwanzig (2001, chap. 9), and the
references listed in Krommes & Oberman (1976).) One method of attack is to augment the dimensionality
of the standard hydrodynamic projector P to include the extra slow directions, as was done by Krommes &
Oberman (1976). The resulting effect on the transport coefficients is particularly severe in two dimensions,
where the transport is distinctly non-local. (An attempt at a Markovian description leads to divergent transport
coefficients, η∼

∫
∞

0 dτ τ−1
∝ limτ→∞ ln τ .)

67A closely related version of this calculation is the discussion of Krommes (1975, appendix F), which
treats the short-time limit of the two-time correlation function of the many-body plasma.
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where68

Σ̂(k, ω) .= k · 〈vQ|[−i(ω1−Qk · vQ+ iε1)]−1
|Qv〉 · k. (G 13)

The term in (kλDe)
−2 arises from the Q projection of the 1E term in (2.12) upon using

Poisson’s equation to express 1E in terms of the electron charge density. In (G 13),
the left-most and right-most Q operators may be omitted if desired because Q= 1−P,
P|v〉 = 0, and 〈v|P= 0; for the same reason, it is sufficient to write Qk · vQ=Qk · v.
The matrix element, a second-rank tensor, depends only on k, so it must have the
form

〈v|[−i(ω1−Qk · vQ+ iε1)]−1
|v〉 = a(k)k̂k̂+ b(k)(I − k̂k̂). (G 14)

Only the k̂ k̂ term contributes to (G 13), so one must evaluate

Σ̂
.
= 〈k · v| [−i(ω1−Qk · v + iε1)−1

|Qk · v〉. (G 15)

Addition and subtraction of ω to the right-most ket leads to

Σ̂ =−iω〈k · v|(ω1−Qk · v + iε1)−1
〉. (G 16)

The term in angular brackets is similar, though not identical, to the integral that
defines the electrostatic susceptibility:

χ(k, ω) .=−(kλDe)
−2J(k, ω), (G 17)

where

J(k, ω) .=
〈

k · v
ω− k · v + iε

〉
. (G 18)

To simplify (G 16), use Q= 1− P and define the operators

A .
= (ω− k · v)1, B .

= Pk · v (G 19a,b)

so that

J = 〈BA−1
〉. (G 20)

Then

Σ̂/(−iω)= 〈B(A+B)−1
〉. (G 21)

With the aid of the operator identity (4.15), one finds Σ̂ =−iωI, where

I .= 〈B(A+B)−1
〉 = 〈BA−1

〉 − 〈BA−1B(A+B)−1
〉. (G 22)

Since B= |1〉 〈k · v|, the last term factors:

〈BA−1B(A+B)−1
〉 = 〈BA−1

〉〈B(A+B)−1
〉 = JI. (G 23)

68In this discussion I shall use the notation 1 instead of 1 for the identity operator in order to avoid
confusion with scalar functions of velocity.
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Thus, (G 22) becomes

I = J − JI, (G 24)

the solution of which is

I = J/(1+ J). (G 25)

Upon defining the electrostatic dielectric function as

D(k, ω) .= 1+ χ(k, ω)= 1− J(k, ω)/(k2λ2
De), (G 26)

one readily obtains the solution to (G 12) with the aid of (G 25):

1n̂(k, ω)
n

=

(
1+ J(k, ω)
−iωD(k, ω)

)
1n(0)

n
. (G 27)

Since one has

1+ J(k, ω)= 1+
〈

k · v
ω− k · v + iε

〉
=ω

〈
1

ω− k · v + iε

〉
, (G 28)

the final result is

1n̂(k, ω)
n

=
1

D(k, ω)

(∫
dv

fM(v)

−i(ω− k · v + iε)

)
1n̂(k, t= 0)

n
. (G 29)

This is to be compared with the exact solution of the linearized Vlasov problem:

1n̂(k, ω)
n

=
1

D(k, ω)

(
n
n

) ∫
dv

1f̂ (v, k, t= 0)
−i(ω− k · v + iε)

. (G 30)

As must be so, the results agree when the initial perturbation is chosen to have the
form

1f̂ (v, k, t= 0)=
(
1n̂(k, t= 0)

n

)
fM(v) (G 31)

(i.e. when only a density perturbation is imposed initially). The contribution from the
vertical part of 1f (0) is contained in the propagated initial-condition term that was
ignored in the elimination of Q|1χ 〉. That is, the system was prepared to lie in the
density subspace.

Results such as (4.15) or (G 25) show that one must be very careful to not confuse
unmodified propagators with ones modified with the orthogonal projector Q. Although
here I was working with the single-particle propagator, similar relations arise in many-
body physics, where the N-particle Liouville propagator arises; that was the original
situation discussed by Mori (1965). Some further interpretations and generalizations
of the formalism are discussed in appendices D and E of Krommes (1975).
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G.3. The plateau phenomenon; unmodified vs modified propagators
According to Kubo (1957), linear-response functions can be couched as two-time
correlations of time-dependent currents for which the time dependence is induced by
the Liouville propagator exp(−iLt). However, the transport coefficients discussed in
the present article involve currents defined with the modified propagator69 exp(−iQLQt).
The subtle but crucial difference relates to the distinction between ‘internal’ and
‘external’ response functions and to a behaviour known as the plateau phenomenon
(Berne 1971; Mazenko 1973, and references therein). Here I provide a brief
introduction.

The simplest illustration involves the familiar stochastic Langevin equation for the
random momentum p̃ of an unmagnetised test particle of mass M:

dp̃
dt
+ νp̃= f̃ ext(t), (G 32)

where f̃ ext is taken to be centred Gaussian white noise with covariance70

Fext(t, t′) .= 〈 f̃ ext(t)̃f ext(t′)〉 = 2Dpδ(t− t′); (G 33)

the constant Dp is the momentum-space diffusion coefficient (at short times, νt� 1,
the mean-square momentum fluctuations obey 〈δp2

〉(t)= 2Dpt). It is well known and
can be easily proven from (G 32) that on the collisional time scale the fluctuation level
saturates at the level 〈δp2

〉 = Dp/ν. The steady-state balance between kinetic energy
and the thermal energy of a bath at temperature T then leads to the Einstein relation
Dp/Mν = T .

The existence of that steady state leads to a peculiar but important property of the
two-time correlation function F(t, t′) of the total force

f̃ .=−νp̃+ f̃ ext. (G 34)

From

〈δp2
〉(t)=

∫ t

0
dt
∫ t

0
dt′ F(t, t′), (G 35)

one can calculate a running ‘total diffusion coefficient’ according to

Dtot
p (t)

.
=

1
2

d〈δp2
〉

dt
=

∫ t

0
dτ F(τ ). (G 36)

The fact that d〈δp2
〉/dt→ 0 as t→∞ implies that rigorously∫

∞

0
dτ F(τ )= 0. (G 37)

Since it is easy to see that F(τ )→Fext(τ ) as τ→0, (G 37) implies that F(τ ) possesses
a long, negative tail whose integrated contribution exactly cancels the diffusive
contribution embodied in Fext. This can be seen explicitly by direct calculation,
which shows that

F(τ )= 2Dp
(
δ(τ )− 1

2νe−ντ
)
. (G 38)
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FIGURE 4. Solid curve: the function F(τ ) (G 38) for Dp = 1; dotted curve: 4× 104F(τ )
(amplified so as to make the shape of the negative tail visible); dashed curve: the running
diffusion coefficient Dtot

p (τ ), showing that a plateau forms after a few autocorrelation times
and that the total area under F(τ ) goes to zero after a few collision times. The delta
function in (G 38) has been opened up to be a Gaussian with standard deviation σ =
(2/π)1/2/3, so that one unit in τ corresponds to 3 microscopic correlation times τac. In
these units, ν is chosen to be 10−5. The τ axis is linear for τ 6 1 and logarithmic for
τ > 1.

This function and its time integral are illustrated in figure 4.
The integral (G 37) is the one-sided Fourier transform of F(τ ) evaluated at ω = 0.

The one-sided transform of (G 38) is

F̂(ω)=Dp −Dp
ν

−i(ω+ iν)
, (G 39)

or, upon dividing by MT and invoking the Einstein relation,

Φ̂(ω)
.
= F̂(ω)/(MT)= ν − ν[−i(ω+ iν)]−1ν, (G 40)

where the last term has been written in a way that will be easy to compare with the
more general formula (G 55) derived later. Another interesting form is

Φ̂−1(ω)= ν−1
+ (−iω)−1. (G 41)

From either (G 40) or (G 41), one finds

Φ̂(0)= 0 (G 42)

as a signature of the long-time tail.
More generally, the constant ν could be replaced by a frequency-dependent

relaxation rate ν̂(ω) with ν̂(0)= ν. Then the message is that whereas ν̂(ω) approaches
a non-zero limit as ω→ 0, Φ̂(ω) vanishes in that limit.

The physical difference between ν̂(ω) and Φ̂(ω) is that ν̂(ω) describes an internal
polarization process whereas Φ̂(ω) describes the total response to an external
perturbation. This distinction is crucial to maintain for all response processes; a

69I did not work with the Liouville operator in the present paper. That is done in Part 2, where the salient
results of Part 1 are recovered from the Γ -space formalism.

70The abbreviation ext stands for external. It refers to the fact that physically f̃ ext arises from the random
motions of the bath particles, which are external relative to the identity of a test particle.
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lengthy pedagogical article that includes a discussion of conductivity is by Kubo
(1974).

The representations (G 40) or (G 41) might suggest that it is possible to extract the
relaxation coefficient ν (or Dp, via the Einstein relation) from the high-frequency limit
of Φ̂(ω):

ν = lim
ω→‘∞’

Φ̂(ω), (G 43)

where the inverted commas remind one that ω−1 > τac, where τac is the microscopic
autocorrelation time (the physical width of the delta function in (G 38)), since the
Langevin model is not valid for τ < τac. In the time domain, the statement is that
Dtot

p (t)≈Dp for τac< t� ν−1. This is a consequence of the plateau behaviour in which
Dtot

p (t) quickly rises to an essentially constant value, then slowly falls off as the effects
of the negative tail manifest. However, this works only for frequency-independent ν.
More generally, it is better to find ν = limω→0 ν(ω) from the subtracted form

ν−1
= lim

ω→0
[Φ̂−1(ω)− (−iω)−1

]. (G 44)

A generalization of this result is useful for multispecies plasmas, which contain
interspecies equilibration phenomena that occur on the collisional time scale.

Now consider the general projection-operator result for the frequency-dependent
hydrodynamic transport matrix:71

Σ̂(ω)
.
= 〈A|LQĜQ(ω)QL|A〉 ·M−1 (G 45)

and the corresponding function Φ̂(ω) defined with G(ω) instead of GQ(ω). These
matrices are related algebraically in a natural generalization of (G 40). To show this,
note that

Ĝ(ω)= [−i(ω−L+ iε)]−1, (G 46)

write L=PL+QL, and invoke the identity (4.15) with A .
=−i(ω−QL) and B .

= iPL
to find

Φ̂ = Σ̂ − 〈A|LQĜQiPLĜQL|A〉 ·M−1. (G 47)

The last term, sans minus sign, is explicitly

〈A|LQĜQi|AT
〉 ·M−1

· 〈A|LĜQL|AT
〉 ·M−1. (G 48)

In the first matrix element of (G 48), write

[−i(ω−QL)]−1
= (−iω)−1I − (−iω)−1

[−i(ω−QL)]−1iQL. (G 49)

The first term does not contribute because Q|A〉 = 0; the second term reproduces Σ̂ .
Thus,

Φ̂ = Σ̂ − Σ̂ · Ĉ, (G 50)
71In the following manipulations, it is easiest to use L everywhere, although the outermost L operators in

the scalar products may be replaced by L (recall the definitions of L and L given in (3.27)).
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where

Ĉ
.
= (−iω)−1

〈A|LĜQL|AT
〉 ·M−1. (G 51)

Insert the identity P + Q = 1 after the first L. The P term introduces the frequency
matrix, and the Q term reproduces Φ̂:

Ĉ = (−iω)−1Ω · 〈A|ĜQL|AT
〉 ·M−1

+ (−iω)−1Φ̂. (G 52)

Write

Ĝ= (−iω)−1
− (−iω)−1ĜiL. (G 53)

Again the first term does not contribute; the second term reproduces Ĉ. Upon solving
(G 52) for C, one finds

Ĉ = [−i(ωI −Ω)]−1
· Φ̂; (G 54)

then solving (G 47) for Φ̂ leads to

Φ̂ = Σ̂ − Σ̂ · [−i(ωI −Ω + iΣ̂)]−1
· Σ̂ . (G 55)

This generalizes (G 40). If the matrices are invertible, (G 55) can be written as

Φ̂−1
= Σ̂−1

+ [−i(ωI −Ω)]−1, (G 56)

which generalizes (G 41).
An alternative way of writing (G 55) is

Φ̂ = Σ̂ · [−i(ωI −Ω + iΣ̂)]−1
· [−i(ωI −Ω)]. (G 57)

Upon recalling that the determinant of a product is the product of the determinants,
one finds

det(Φ̂)= [det(Σ̂)][det (−i(ωI−Ω+iΣ̂))]−1
[det (−i(ωI−Ω))]. (G 58)

Thus, det (Φ̂(ωi))= 0 for any eigenvalue ωi of Ω . This generalizes (G 42). (For the
classical Langevin problem, Ω vanishes,72 so Φ̂ vanishes at ω= 0.)

Although the transport processes are naturally represented by the long-wavelength,
low-frequency limit of Σ̂ , it is also possible to extract them from Φ̂ if one is careful.
The Langevin example shows that Φ̂(0) is unrelated to Σ̂(0) for the special case of
vanishing frequency matrix, and the scalar version of (G 57) for non-zero Ω shows
that Φ̂(0) has at best a peculiar relation to Σ̂(0). To understand how to proceed, first
consider the classical neutral-fluid or OCP cases, for which Σ̂(0)= k2D (where D is
the matrix of transport coefficients) and Ω ∝ k. It follows that

D = lim
k,ω→0

k−2Σ̂k(ω)= lim
ω→0

lim
k→0

k−2Φ̂k(ω). (G 59)

72A well-known generalization is the harmonically bound Brownian particle, which does have a non-zero Ω .
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The order of limits is immaterial for Σ̂ , but the k→ 0 limit must be taken first for Φ̂.
(In (G 57), the k→ 0 limit removes the Ω and the second Σ̂ . The terms involving
ω then cancel, after which the ω→ 0 limit evaluates k−2Σ̂(0, ω) at ω = 0.) That
the ordered limit must be taken for Φ̂ agrees with the results of Kadanoff & Martin
(1963).

This discussion clarifies an argument used by Brey et al. (1981). They work in the
space–time domain rather than with Fourier transforms. They derive an expression
equivalent to (G 47), then assert73 that the term 〈 A|LQGQiP is negligible through
second order in the gradients because (when L is proportional to a gradient) it
involves GQ evaluated to zeroth order in the gradients (namely the identity operator)
and QP= 0. Thus, they are first taking the limit of small gradients (i.e. k→ 0). Then
they assert that ‘the time integral can be extended to infinity’ (i.e. they take the
ω→ 0 limit after passing to the limit of infinite system size).

The arguments of Brey et al. fail in the multispecies case where L contains the
collision operator, first because Ĉ does not tend to zero with the gradients, second
because QĈQ 6= Ĉ. Thus, the unmagnetised Braginskii transport coefficients involve
(QĈQ)−1 rather than Ĉ−1

=
∫
∞

0 dτ e−Ĉτ .
In the multispecies case, the frequency matrix contains terms that are of the order

of the collision frequency and do not vanish with k. That would not be a problem
if Σ̂k would vanish with k, in which case the ordered limit (G 59) would still work.
However, we know from the discussion at the end of § 3.2 that the physics of the
high-energy tail is contained in Σ̂k, and the contribution of that tail to the effective
collision frequency does not vanish with k. Thus, one has a situation analogous to the
Langevin model discussed at the beginning of the section. One could then resort to
the generalization of (G 44), which from (G 56) is

D−1
= lim

ω,k→0
k2
{Φ̂−1

− [−i(ωI −Ω)]−1
}, (G 60)

provided that the matrices are invertible.

G.4. Projection-operator analysis of the Brownian test particle
Analysis of the long-time statistical dynamics of the classical Brownian test particle
by projection-operator techniques provides probably the simplest non-trivial example
of the methodology and also provides further insights into the interactions between
null spaces and multidimensional projections. To the stochastic momentum equation
(G 32), adjoin

dx̃
dt
= ṽ = p̃/M. (G 61)

It is then well known that for times much longer than the collision time ν−1

x-space diffusion ensues:

〈δx2
〉→ 2Dt, where D= v2

T/ν. (G 62)

The exact solution of the (linear) Langevin system can also be obtained for all
times from one of two equivalent methods: (i) Recognize that x̃ and ṽ are jointly
Gaussian because they solve linear ODEs driven by Gaussian noise, then calculate

73Actually, they expand Σ̂ in terms of Φ̂, so the roles of GQ and G are reversed.
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the conditional means and variances by directly solving the ODEs and appropriately
averaging the solutions; (ii) solve the equivalent Fokker–Planck equation

∂f (x, v, t)
∂t

+ v
∂f
∂x
=−Ĉf , (G 63)

where Ĉ is given by (B 35).74

G.4.1. Projection into the density subspace
First consider how the x-space diffusion result (G 62) emerges from the natural

hydrodynamic projection-operator formalism. It is not difficult to show that Ĉ possesses
a single null eigenvalue, with eigenvector |He0 〉 = |1 〉 associated with probability
(or density) conservation. This motivates the projection of (G 63) onto the 1-D
density subspace, namely P = |1〉〈1|. The frequency ‘matrix’ Ω = k〈1|v|1〉 vanishes
by symmetry (or equivalently by the orthogonality of He0 and He1). Because the
eigenvalues of Ĉ are the Hermite polynomials and the Q projection excludes the null
space, the Markovian approximation is valid for time longer than ν−1, and one may
use the specialization of the result (2.54) to a single density diffusion coefficient. One
obtains

∂tn+ k2Dn= 0, (G 64)

where

D= 〈vQ|(QĈQ)−1
|Qv〉 = 〈v|Ĉ−1

|v〉 (G 65)

and I used the facts that PĈ= ĈP= 0 and Q|v〉 = (1− P)|v〉 = |v〉.75 The solution of
the differential equation

Ĉ|ψ〉 = |v〉 (G 66)

is easy to obtain and is just |ψ〉 = |v〉 /ν; then

D= 〈v|v〉/ν = v2
T/ν, (G 67)

in agreement with the known result (G 62).

G.4.2. Projection into a multidimensional subspace
Suppose that one does not recognize the one-dimensional nature of the null space.

What would happen if one would use a higher-dimensional projection?76 As an
example, I shall consider a 2-D projection into the density and velocity subspaces.
Namely, with velocities normalized to vT , project with P = |1 〉〈 1| + |v 〉〈 v|. The
frequency matrix becomes

Ω = k
(
〈1|v|1〉 〈1|v|v〉
〈v|v|1〉 〈v|v|v〉

)
= k

(
0 1
1 0

)
. (G 68)

74Equation (G 63) is a special case of a class of PDEs that can be solved exactly to yield a multivariate
Gaussian, as discussed by van Kampen (1981, § VIII.6). The key features are (i) the first-order terms are linear
in the independent variables, and (ii) the second-order terms involve only constant coefficients.

75Note that the last form of (G 65) does not follow from the previous one by setting Q−1Q= 1, since
projection operators other than the identity are not invertible (as follows from the property Q2

=Q).
76Higher-order moment closures were discussed by Grad (1958); a popular one is his system of 13 moment

equations. Grad’s method is discussed in the useful textbook on plasma kinetic theory by Ecker (1972, § IV.2).
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The Markovian approximation is even better justified (the Q projection comprises
Hermite polynomials of order 2 and above). The only surviving transport coefficient
can easily be shown to be ηvv/k

2
≡µ; it is easy to calculate, but its value will not be

needed to lowest order in the hydrodynamic limit. The projected system of equations
takes the form

∂tn+ iku= 0, (G 69a)
∂tu+ ikn+ k2µu=−νu, (G 69b)

where the right-hand side of the last equation arises because the collision operator
does not conserve momentum. The dispersion relation is

λ2
+ (ν + k2µ)λ+ k2

= 0. (G 70)

For k2
→ 0, the 1–0 balance is, upon undoing the velocity normalization, λ=−k2D

with D as in (G 67); this is the density diffusion mode. The 2–1 balance is λ=−ν,
which describes momentum relaxation.

Thus, although in this example it is natural and optimally efficient to project
into the 1-D density subspace, no harm is done by employing a higher-dimensional
projection77 as long as part of it projects into the complete null space of the collision
operator. If such a projection is treated in a mathematically consistent way, the
long-time transport must still emerge, though it is likely to arise in ways that
are mathematically different depending on the projection. For example, in the 1-D
projection diffusion is represented by the dissipative η coefficient, while in the density
plus momentum projection the η coefficient vanishes in the density equation and is
subdominant in the momentum equation; density diffusion arises from the coupling
between density and the momentum-dissipation effect represented by the explicit
momentum projection of the collision operator, which does not conserve momentum.

If one combines the insights of the present example with the caveats from the
earlier examples in this appendix, which show that it is problematical to project into
a subspace of dimension lower than that of the null space, one deduces that for a
Markovian treatment of long-time transport based on a collisional kinetic equation,
one must use a projection that at least spans all of the null space of the collision
operator but may be of higher dimensionality if additional information is desired. This
is a satisfying consistency. However, although the projection method is flexible and
intuitive, a solid physical understanding of the effects to be described is essential to
a successful exploitation of the techniques.
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