NORMALITY AND THE HIGHER NUMERICAL RANGE

MARVIN MARCCS, BENJAMIN N. MOYLS AND IVAN FHIPPENKO

1. Introduction. Let $M_{n}(\mathbf{C})$ be the vector space of all n-square complex matrices. Denote by (\cdot, \cdot) the standard inner product in the space \mathbf{C}^{n} of complex n-tuples. For a matrix $A \in M_{n}(\mathbf{C})$ and an n-tuple $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{C}^{n}$, define the c-numerical runge of A to be the set
(1) $W_{c}(A)=\left\{\sum_{k=1}^{n} c_{k}\left(A x_{k}, x_{k}\right) \mid\left\{x_{1}, \ldots, x_{n}\right\}\right.$ is an orthonormal basis of $\left.\mathrm{C}^{n}\right\}$
in the complex plane. Denote the eigenvalues of A by $\lambda_{1}, \ldots, \lambda_{n}$, and define the c-eigenpolygon of A to be the convex hull
(2) $P_{c}(A)=\mathscr{H}\left(\left\{\sum_{k=1}^{n} c_{k} \lambda_{\sigma(k)} \mid \sigma \in S_{n}\right\}\right)$,
where S_{n} is the symmetric group of degree n. The matrix A is said to be c-convex if $W_{c}(A)=P_{c}(A)$.

If

$$
m \in\{1, \ldots, n\} \quad \text { and } \quad c=\overbrace{(1, \ldots, 1}^{m}, \overbrace{0, \ldots, 0}^{n-m},
$$

then $W_{c}(A)$ and $P_{c}(A)$ are called the m-th numerical range of A and the m-th cigenpolygon of A respectively, and are denoted by $W_{m}(A)$ and $P_{m}(A)$. Thus
(3) $W_{m}(A)=\left\{\sum_{k=1}^{m}\left(A x_{k}, x_{k}\right) \mid x_{1}, \ldots, x_{m}\right.$ are m orthonormal vectors in $\left.\mathrm{C}^{n}\right\}$;
evidently $W_{1}(A)$ is the classical numerical range

$$
W(A)=\left\{(A x, x) \mid x \in \mathbf{C}^{n},\|x\|=1\right\} .
$$

Designating by $Q_{m, n}$ the set of all strictly increasing sequences of m integers chosen from $\{1, \ldots, n\}$, we have

$$
\begin{equation*}
P_{m}(A)=\mathscr{H}\left(\left\{\sum_{k=1}^{m} \lambda_{\omega(k)} \mid \omega \in Q_{m, n}\right\}\right) \tag{4}
\end{equation*}
$$

It was shown by C. A. Berger $[\mathbf{2}, \S 167]$ that the sets $W_{m}(A)$ are convex. Since $\sum_{k=1}^{m} \lambda_{\omega(k)} \in W_{m}(A)$ for all $\omega \in Q_{m, n}[1]$, it follows that
(5) $\quad W_{m}(A) \supset P_{m}(A)$.

Received February 21, 1977 and in revised form April 2, 1977.

The matrix A is said to be m-convex if $W_{m}(A)=P_{m}(A)$ (in case $m=1, A$ is simply said to be convex).

It is known that if $A \in M_{n}(\mathbf{C})$ is normal, then A is m-convex for $1 \leqq m \leqq n$ [1]. In the present paper, we obtain this result as a corollary of a theorem concerning the c-convexity of a matrix. Our main purpose is to discuss the question of a converse: does m-convexity for certain values of m imply normality? Initial results in this direction were previously obtained by two of the authors [6], who proved that convexity guarantees normality when $n \leqq 4$ but not when $n \geqq$).

2. Statement of results.

Theorem 1. Let $A \in M_{n}(\mathbf{C})$ be a normalmatrix, and let $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{C}^{n}$. Then

$$
\begin{aligned}
& \qquad W_{c}(A) \subset P_{c}(A) . \\
& \text { Moreover, if } c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{R}^{n}, \text { then } \\
& W_{c}(A)=P_{c}(A) \\
& \text { (i.e., } A \text { is } c \text {-convex). }
\end{aligned}
$$

An immediate corollary of this theorem is that if $A \in M_{n}(\mathbf{C})$ is normal, then A is m-convex for $1 \leqq m \leqq n$.

The following useful result contains the key idea in the proof of Theorem 3.
Theorem 2. Let $A \in M_{n}(\mathbf{C})$, and for any $\theta \in[0,2 \pi)$ set $A_{\theta}=e^{i \theta} A$. Let $m \in\{1, \ldots, n\}$. Then A is m-convex if and only if

$$
\begin{equation*}
\sum_{k=1}^{m} \lambda_{k}\left(\frac{A_{\theta}+A_{\theta}^{*}}{2}\right)=\sum_{k=1}^{m} r_{k}\left(A_{\theta}\right) \tag{6}
\end{equation*}
$$

for all $\theta \in\lfloor 0,2 \pi)$, where

$$
\lambda_{1}\left(\frac{A_{\theta}+A_{\theta}{ }^{*}}{2}\right) \geqq \ldots \geqq \lambda_{n}\left(\frac{A_{\theta}+A_{\theta}{ }^{*}}{2}\right)
$$

are the eigenvalues of the hermitian matrix $\left(A_{\theta}+A_{\theta}{ }^{*}\right) / 2$ and

$$
r_{1}\left(A_{\theta}\right) \geqq \ldots \geqq r_{n}\left(A_{\theta}\right)
$$

are the real parts of the eigenvalues of A_{θ}.
The principal result of this paper is the
Theorem 3. Let A C $M_{n}(\mathbf{C})$. Then A is normal if and only if A is m-convex for $1 \leqq m \leqq\lfloor n / 2\rfloor$, where $\mid\rfloor$ desiษnates the greatest integer function.

We conclude with a class of examples showing that Theorem 3 is, in general, the best possible.

Theorem 4. Let m be a fixed positive integer. For a given complex number ϵ, let A be the $(2 m+3)$-square complex matrix

$$
A=\operatorname{diag}\left(e^{k \omega i}: k=0, \ldots, 2 m\right)+\left[\begin{array}{cc}
0 & \epsilon \\
0 & 0
\end{array}\right],
$$

where $\omega=2 \pi /(2 m+1)$. Then
(i) A is m-convex if and only if $|\epsilon| \leqq 2 \cos (m \pi /(2 m+1))$;
(ii) if A is m-convex, then A is j-convex for $j=1, \ldots, m$;
(iii) A is $(m+1)$-convex if and only if A is normal (i.e., $\epsilon=0$).

Thus for appropriate $\epsilon \neq 0$, the $(2 m+3)$-square matrix A is j-convex for $1 \leqq j \leqq m=[(2 m+3) / 2]-1$ without being normal.

The methods employed in the proof of Theorem 4 illustrate the power of Theorem 2 as a computable criterion.
3. Preliminaries. This section contains information which will be used in the proofs in Section 4.

Recall that a matrix $S \in M_{n}(\mathbf{C})$ is doubly stochastic if S is a nonnegative matrix (i.e., $S_{i j} \geqq 0, i, j,=1, \ldots, n$) all of whose row and column sums are 1 . Recall also that a matrix $S \in M_{n}(\mathbf{C})$ is orthostochastic if there exists a unitary matrix $U \in M_{n}(\mathbf{C})$ such that $S_{i j}=\left|U_{i j}\right|^{2}, i, j=1, \ldots, n$. Although it is clear that every orthostochastic matrix is doubly stochastic, the converse is false [4, II.1.4.4].

Of central importance is
Birkhoff's Theorem [4, II.1.7]. The set Ω_{n} of all n-square doubly stochastic matrices is a convex polyhedron in $M_{n}(\mathbf{R})$ whose vertices are the n-square permutation matrices.

A characterization is available of main diagonals of normal matrices with prescribed eigenvalues:

Lemma 1 [4, II.4.1.3]. Let $A \in M_{n}(\mathbf{C})$ be a normal matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and set $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbf{C}^{n}$. Let

$$
E_{1}=\left\{\mu=\left(\left(A x_{1}, x_{1}\right), \ldots,\left(A x_{n}, x_{n}\right)\right) \in \mathbf{C}^{n} \mid x_{1}, \ldots, x_{n} \text { o.n. }\right\}
$$

and

$$
E_{2}=\left\{\mu=S \lambda \in \mathbf{C}^{n} \mid S \in M_{n}(\mathbf{C}) \text { orthostochastic }\right\}
$$

Then $E_{1}=E_{2}$.
Here and in what follows, "o.n." abbreviates the word "orthonormal".
A considerably more difficult result, due primarily to A. Horn [3], provides a characterization of main diagonals of hermitian matrices with prescribed eigenvalues (see also MI. Marcus, B. N. Moyls, and R. Westwick [5]):

Lemma 2. Let $C \in M_{n}(\mathbf{C})$ be a hermitian matrix with eigenvalues c_{1}, \ldots, c_{n}, and set $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{R}^{n}$. Let

$$
E_{1}=\left\{\mu=\left(\left(C x_{1}, x_{1}\right), \ldots,\left(C x_{n}, x_{n}\right)\right) \in \mathbf{R}^{n} \mid x_{1}, \ldots, x_{n} \text { o.n. }\right\}
$$

and

$$
E_{2}=\left\{\mu=S c \in \mathbf{R}^{n} \mid S \in \Omega_{n}\right\} .
$$

Then $E_{1}=E_{2}$.
We will have occasion to use the well-known Elliptical Range Theorem [7]. This states that if

$$
A=\left[\begin{array}{ll}
a & c \\
0 & b
\end{array}\right]
$$

is a 2 -square upper triangular complex matrix, then the numerical range $W(A)$ is the region bounded by an ellipse with foci at a and b, minor axis of length $|c|$, and major axis of length $\sqrt{|a-b|^{2}+|c|^{2}}$.

Finally, we remark that if $A \in M_{n}(\mathbf{C})$ and $m \in\{1, \ldots, n\}$, then

$$
W_{n-m}(A)=\operatorname{tr}(A)-W_{m}(A)
$$

and

$$
P_{n-m}(A)=\operatorname{tr}(A)-P_{m}(A),
$$

so that A is $(n-m)$-convex if and only if A is m-convex.

4. Proofs.

Proof of Theorem 1. Denote the eigenvalues of A by $\lambda_{1}, \ldots, \lambda_{n}$ and set

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbf{C}^{n} .
$$

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be any o.n. basis of \mathbf{C}^{n}, and set

$$
\mu=\left(\left(A x_{1}, x_{1}\right), \ldots,\left(A x_{n}, x_{n}\right)\right) \in \mathbf{C}^{n} .
$$

By Lemma 1, there exists an n-square doubly stochastic matrix S such that $\mu=S \lambda$. By Birkhoff's Theorem, S is a convex combination of the n-square permutation matrices; say

$$
S=\sum_{\sigma \in S_{n}} \alpha_{\sigma} P_{\sigma}
$$

where $\alpha_{\sigma} \geqq 0$ for all $\sigma \in S_{n}, \sum_{\sigma \in S_{n}} \alpha_{\sigma}=1$, and $P_{\sigma}=\left\{\delta_{i \sigma(j)}\right], \sigma \in S_{n}$. Then letting $\bar{c}=\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right)$, we have

$$
\begin{aligned}
\sum_{k=1}^{n} c_{k}\left(A x_{k}, x_{k}\right) & =(\mu, \bar{c}) \\
& =(S \lambda, \bar{c}) \\
& =\left(\sum_{\sigma \in S_{n}} \alpha_{\sigma} P_{\sigma} \lambda, \bar{c}\right) \\
& =\sum_{\sigma \in S_{n}} \alpha_{\sigma}\left(P_{\sigma} \lambda, \bar{c}\right) \\
& =\sum_{\sigma \in S_{n}} \alpha_{\sigma}\left(\sum_{k=1}^{n} \lambda_{\sigma-1}(k) c_{k}\right) \\
& =\sum_{\sigma \in S_{n}} \alpha_{\sigma-1}\left(\sum_{k=1}^{n} c_{k} \lambda_{\sigma(k)}\right) \quad \in P_{c}(A)
\end{aligned}
$$

We conclude that $W_{c}(A) \subset P_{c}(A)$.
Now assume that $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{R}^{n}$. Since $A \in M_{n}(\mathbf{C})$ is a normal matrix, there exists an o.n. basis $\left\{u_{1}, \ldots, u_{n}\right\}$ of \mathbf{C}^{n} such that

$$
A u_{k}=\lambda_{k} u_{k}, \quad k=1, \ldots, n .
$$

Let $C \in M_{n}(\mathbf{C})$ be a hermitian matrix with eigenvalues c_{1}, \ldots, c_{n}; there exists an o.n. basis $\left\{y_{1}, \ldots, y_{n}\right\}$ of \mathbf{C}^{n} such that

$$
C y_{k}=c_{k} y_{k}, \quad k=1, \ldots, n .
$$

Denote by $U_{n}(\mathbf{C})$ the group of n-square unitary matrices. We compute that

$$
\begin{aligned}
W_{c}(A) & =\left\{\sum_{k=1}^{n} c_{k}\left(A x_{k}, x_{k}\right) \mid x_{1}, \ldots, x_{n} \text { o.n. }\right\} \\
& =\left\{\sum_{k=1}^{n} c_{k}\left(A U y_{k}, U y_{k}\right) \mid U \in U_{n}(\mathbf{C})\right\} \\
& =\left\{\sum_{k=1}^{n}\left(A U C y_{k}, U y_{k}\right) \mid U \in U_{n}(\mathbf{C})\right\} \\
& =\left\{\sum_{k=1}^{n}\left(U^{*} A U C y_{k}, y_{k}\right) \mid U \in U_{n}(\mathbf{C})\right\} \\
& =\left\{\operatorname{tr}\left(U^{*} A U C\right) \mid U \in U_{n}(\mathbf{C})\right\} \\
& =\left\{\operatorname{tr}\left(U C U^{*} A\right) \mid U \in U_{n}(\mathbf{C})\right\} \\
& =\left\{\sum_{k=1}^{n}\left(U C U^{*} A u_{k}, u_{k}\right) \mid U \in U_{n}(\mathbf{C})\right\} \\
& =\left\{\sum_{k=1}^{n} \lambda_{k}\left(U C U^{*} u_{k}, u_{k}\right) \mid U \in U_{n}(\mathbf{C})\right\} \\
& =\left\{\sum_{k=1}^{n} \lambda_{k}\left(C x_{k}, x_{k}\right) \mid x_{1}, \ldots, x_{n} \text { o.n. }\right\} \\
& =\left\{(\lambda, S c) \mid S \in \Omega_{n}\right\} \quad(\text { by Lemma } 2) \\
& =\left\{\left(\lambda, \sum_{\sigma \in S_{n}} \alpha_{\sigma} P_{\sigma} c\right) \mid \alpha_{\sigma} \geqq 0 \text { for all } \sigma \in S_{n}, \sum_{\sigma \in S_{n}} \alpha_{\sigma}=1\right\}
\end{aligned}
$$

(by Birkhoff's Theorem)

$$
=\mathscr{H}\left(\left\{\sum_{k=1}^{n} c_{k} \lambda_{\sigma(k)} \mid \sigma \in S_{n}\right\}\right)
$$

$$
=P_{c}(A)
$$

This completes the proof.
Proof of Theorem 2. We begin by making some general observations. If $\theta \in[0,2 \pi)$ and $z \in W_{m}\left(A_{\theta}\right)$, say $z=\sum_{k=1}^{m}\left(A_{\theta} x_{k}, x_{k}\right)$ where x_{1}, \ldots, x_{m} are
o.n. vectors in \mathbf{C}^{n}, then

$$
\begin{align*}
\operatorname{Re} z & =\operatorname{Re} \sum_{k=1}^{m}\left(A_{\theta} x_{k}, x_{k}\right) \\
& =\sum_{k=1}^{m}\left(\frac{A_{\theta}+A_{\theta}{ }^{*}}{2} x_{k}, x_{k}\right) \tag{7}\\
& \in W_{m}\left(\frac{A_{\theta}+A_{\theta}{ }^{*}}{2}\right) .
\end{align*}
$$

Since $\left(A_{\theta}+A_{\theta}{ }^{*}\right) / 2$ is a hermitian matrix,
(9) $W_{m}\left(\frac{A_{\theta}+A_{\theta}{ }^{*}}{2}\right)=P_{m}\left(\frac{A_{\theta}+A_{\theta}{ }^{*}}{2}\right)$
is a closed real interval with right endpoint $\sum_{k=1}^{m} \lambda_{k}\left(\left(A_{\theta}+A_{\theta}{ }^{*}\right) / 2\right)$. We conclude from (8) and (9) that for all $z \in W_{m}\left(A_{\theta}\right)$,
(10) $\operatorname{Re} z \leqq \sum_{k=1}^{m} \lambda_{k}\left(\frac{A_{\theta}+A_{\theta}{ }^{*}}{2}\right)$.

In particular, by choosing o.n. vectors $x_{1}, \ldots, x_{m} \in \mathrm{C}^{n}$ such that

$$
r_{k}\left(A_{\theta}\right)=\operatorname{Re}\left(A_{\theta} x_{k}, x_{k}\right), \quad k=1, \ldots, m,
$$

we obtain

$$
\begin{equation*}
\sum_{k=1}^{m} r_{k}\left(A_{\theta}\right)=\operatorname{Re} \sum_{k=1}^{m}\left(A_{\theta} x_{k}, x_{k}\right) \leqq \sum_{k=1}^{m} \lambda_{k}\left(\frac{A_{\theta}+A_{\theta}{ }^{*}}{2}\right) . \tag{11}
\end{equation*}
$$

Now assume that A is m-convex, i.e., that $W_{m}(A)=P_{m}(A)$. Fix $\theta \in[0,2 \pi)$ and note that

$$
\begin{aligned}
W_{m}\left(A_{\theta}\right) & =W_{m}\left(e^{i \theta} A\right) \\
& =e^{i \theta} W_{m}(A) \\
& =e^{i \theta} P_{m}(A) \\
& =P_{m}\left(e^{i \theta} A\right)=P_{m}\left(A_{\theta}\right) .
\end{aligned}
$$

The vertices of the convex polygon $P_{m}\left(A_{\theta}\right)$ are sums of m eigenvalues of A_{θ}, and if $z \in P_{m}\left(A_{\theta}\right)$ then $\operatorname{Re} z$ is at most the largest real part of these vertices. Hence $z \in W_{m}\left(A_{\theta}\right)=P_{m}\left(A_{\theta}\right)$ implies
(12) $\operatorname{Re} z \leqq \sum_{k=1}^{m} r_{k}\left(A_{\theta}\right)$.

If x_{1}, \ldots, x_{m} are any m o.n. vectors in \mathbf{C}^{n}, it follows from (7) and (12) that

$$
\begin{equation*}
\sum_{k=1}^{m}\left(\frac{A_{\theta}+A_{\theta}^{*}}{2} x_{k}, x_{k}\right)=\operatorname{Re} \sum_{k=1}^{m}\left(A_{\theta} x_{k}, x_{k}\right) \leqq \sum_{k=1}^{m} r_{k}\left(A_{\theta}\right) . \tag{13}
\end{equation*}
$$

In view of (11), the equality (6) is obtained from (13) by choosing an o.n. basis of eigenvectors of the hermitian matrix $\left(A_{\theta}+A_{\theta}{ }^{*}\right) / 2$.

To prove sufficiency, assume the equality (6) holds for all $\theta \in[0,2 \pi$). Let l denote a fixed side of the convex polygon $P_{m}(A)$. It is easy to see that θ may be chosen so that (i) the side $e^{i \theta} l=l_{\theta}$ of $e^{i \theta} P_{m}(A)=P_{m}\left(A_{\theta}\right)$ is oriented vertically in the complex plane, and (ii) $P_{m}\left(A_{\theta}\right)$ is contained in the closed left half-plane determined by l_{θ}. Notice that the real part of a point on l_{θ} is precisely $\sum_{k=1}^{m} r_{k}\left(A_{\theta}\right)$. Then for any $z \in W_{m}\left(A_{\theta}\right)$, we have

$$
\begin{aligned}
\operatorname{Re} z & \leqq \sum_{k=1}^{m} \lambda_{k}\left(\frac{A_{\theta}+A_{\theta}^{*}}{2}\right) \quad(\mathrm{by}(10)) \\
& =\sum_{k=1}^{m} r_{k}\left(A_{\theta}\right) \quad(\mathrm{by}(6))
\end{aligned}
$$

Thus $W_{m}\left(A_{\theta}\right)=e^{i \theta} W_{m}(A)$ is contained in the closed left half-plane determined by $l_{\theta}=e^{i \theta} l$, so that $W_{m}(A)$ is contained in the closed left half-plane determined by l. Since l was a fixed but otherwise unspecified side of $P_{m}(A)$, it follows that $W_{m}(A)$ is contained in the intersection of the closed left half-planes determined by the sides of $P_{m}(A)$. Of course, this intersection is simply $P_{m}(A)$. Thus

$$
W_{m}(A) \subset P_{m}(A)
$$

By (5) we have

$$
W_{m}(A) \supset P_{m}(A)
$$

and the proof is complete.
Proof of Theorem 3. As has already been observed, the necessity of the conditions is an immediate consequence of Theorem 1.

Assume that A is m-convex for $1 \leqq m \leqq[n / 2]$. It follows from a remark in Section 1 that A is m-convex for $1 \leqq m \leqq n$. Note that the m-th numerical range, the m-th eigenpolygon, and the status of normality of a complex matrix are invariant under transformation of the matrix by a unitary similarity. We may therefore assume (by the Schur triangularization theorem) that the given matrix A is upper triangular, with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ arranged down the main diagonal to satisfy $\operatorname{Re} \lambda_{i} \leqq \operatorname{Re} \lambda_{j}$ for $1 \leqq i \leqq j \leqq n$. The proof will be completed by showing that A is in fact diagonal.

Suppose A has a nonzero off-diagonal element $\epsilon=A_{i j}(i<j)$. Set

$$
B=A-\lambda_{j} I \quad \in M_{n}(\mathbf{C})
$$

(I is the n-square identity matrix). It is clear that
(i) B has eigenvalues

$$
\mu_{k}=\lambda_{k}-\lambda_{j}, \quad k=1, \ldots, n
$$

with

$$
\operatorname{Re} \mu_{i} \leqq 0 \quad \text { and } \quad \mu_{j}=0 ;
$$

(ii) B is upper triangular with $B_{i j}=\epsilon \neq 0$; and
(iii) B is m-convex for $1 \leqq m \leqq n$.

Now let m_{0} be the number of eigenvalues of B having positive real part: obviously $0 \leqq m_{0} \leqq n-2$. Choose $\omega \in Q_{m_{0}, n}$ so that $\mu_{\omega(1)}, \ldots, \mu_{\omega\left(m_{0}\right)}$ are these eigenvalues (if $m_{0}=0$, then ω is the "empty sequence" which assumes no values). Set

$$
x_{k}=e_{\omega(k)}, \quad k=1, \ldots, m_{0}
$$

where e_{t} denotes the t-th standard basis vector in \mathbf{C}^{n} (1 in position $t, 0$'s elsewhere). We have
(14) $\left(B x_{k}, x_{k}\right)=\mu_{\omega(k)}, \quad k=1, \ldots, m_{0}$.

By the Elliptical Range Theorem,

$$
W\left(\left[\begin{array}{cc}
\mu_{i} & \epsilon \\
0 & \mu_{j}
\end{array}\right]\right)
$$

is the region bounded by an ellipse with foci at μ_{i} and $\mu_{j}=0$ whose minor axis has length $|\epsilon|$. Since $|\epsilon|>0$, it follows that there exists $z \in W\left(\left[\begin{array}{cc}\mu_{i} & \epsilon \\ 0 & \mu_{j}\end{array}\right]\right)$ for which $\operatorname{Re} z>0$. Hence there exists a unit vector $x_{m_{0+1}} \in \mathbf{C}^{n}$, having nonzero components only in positions i and j, such that
(15) $\operatorname{Re}\left(B x_{m_{0}+1}, x_{m_{0}+1}\right)<0$.

Observe that since $\omega(k) \neq i, j$ for $k=1, \ldots, m_{0}$, the vectors $x_{1}, \ldots, x_{m 0}$, $x_{m 0+1}$ in \mathbf{C}^{n} are o.n.

By virtue of the fact that B has precisely m_{0} eigenvalues with positive real part $\left(\mu_{\omega(1)}, \ldots, \mu_{\omega\left(m_{0}\right)}\right)$ and at least one eigenvalue with zero real part ($\mu_{j}=0$), in the notation of Theorem 2 we compute

$$
\begin{align*}
\sum_{k=1}^{m_{0}+1} r_{k}(B) & =\sum_{k=1}^{m_{0}} \operatorname{Re} \mu_{\omega(k)} \\
& =\sum_{k=1}^{m_{0}} \operatorname{Re}\left(B x_{k}, x_{k}\right) \quad(\mathrm{by}(14)) \\
& <\sum_{k=1}^{m_{n+1}} \operatorname{Re}\left(B x_{k}, x_{k}\right) \quad(\mathrm{by}(15)) \\
& =\sum_{k=1}^{m_{0}+1}\left(\frac{B \pm}{2} B^{*} x_{k}, x_{k}\right) \\
& \in W_{m_{0}+1}\left(\frac{B \pm B^{*}}{2}\right) . \tag{16}
\end{align*}
$$

Since $\left(B+B^{*}\right) / 2$ is a hermitian matrix,

$$
\begin{equation*}
W_{m_{0}+1}\left(\frac{B+B^{*}}{2}\right)=P_{m_{0}+1}\left(\frac{B+B^{*}}{2}\right) \tag{17}
\end{equation*}
$$

is a closed real interval with right endpoint $\sum_{k=1}^{m}+1 \lambda_{k}\left(\left(B+B^{*}\right) / 2\right)$. Hence from (16) and (17),

$$
\sum_{k=1}^{m_{0}+1} r_{k}(B)<\sum_{k=1}^{m_{0}+1}\left(\frac{B+B^{*}}{2} x_{k}, x_{k}\right) \leqq \sum_{k=1}^{m_{0}+1} \lambda_{k}\left(\frac{B+B^{*}}{2}\right) .
$$

In view of (iii) above, this contradicts Theorem 2 . We conclude that the upper triangular matrix A can have no nonzero off-diagonal element ϵ, completing the proof.

Proof of Theorem 4 . For a given $\theta \in[0,2 \pi)$ we have

$$
A_{\theta}=e^{i \theta} A=\operatorname{diag}\left(e^{(\theta+k \omega) i}: k=0, \ldots, 2 m\right)+\left[\begin{array}{cc}
0 & e^{i \theta} \epsilon \\
0 & 0
\end{array}\right]
$$

and

$$
\frac{A_{\theta}+A_{\theta}^{*}}{2}=\operatorname{diag}(\cos (\theta+k \omega): k=0, \ldots, 2 m)+\frac{1}{2}\left[\begin{array}{cc}
0 & e^{i \theta} \epsilon \\
e^{-i \theta_{\bar{\epsilon}}} & 0
\end{array}\right]
$$

Let \mathscr{L}_{θ} denote the set of eigenvalues of $\left(A_{\theta}+A_{\theta}{ }^{*}\right) / 2$, and let \mathscr{R}_{θ} denote the set of real parts of the eigenvalues of A_{θ}. Then

$$
\mathscr{L}_{\theta}=\{\cos (\theta+k \omega) \mid k=0, \ldots, 2 m\} \cup\left\{\frac{|\epsilon|}{2},-\frac{|\epsilon|}{2}\right\}
$$

and

$$
\mathscr{R}_{\theta}=\{\cos (\theta+k \omega) \mid k=0, \ldots, 2 m\} \cup\{0,0\} .
$$

Now assume that A is m-convex. If m is even, set $\theta=0$, while if m is odd, set $\theta=\pi$. In either situation the regular odd-order convex polygon $P_{1}\left(A_{\theta}\right)$ has precisely $m+1$ vertices with positive real part, and these are symmetrically positioned with respect to the real axis. When m is even, a minimal positive real part occurs for $k=m / 2$ and has the value

$$
\begin{aligned}
\cos (\theta+k \omega) & =\cos \left(0+\frac{m}{2} \frac{2 \pi}{2 m+1}\right) \\
& =\cos \left(\frac{m \pi}{2 m+1}\right) .
\end{aligned}
$$

When m is odd, a minimal positive real part occurs for $k=(m+1) / 2$ and again has the value

$$
\begin{aligned}
\cos (\theta+k \omega) & =\cos \left(\pi+\frac{m+1}{2} \frac{2 \pi}{2 m+1}\right) \\
& =\cos \left(\frac{(2 m+1) \pi+(m+1) \pi}{2 m+1}\right) \\
& =\cos \left(\frac{(3 m+2) \pi}{2 m+1}\right) \\
& =\cos \left(2 \pi-\frac{m \pi}{2 m+1}\right) \\
& =\cos \left(-\frac{m \pi}{2 m+1}\right) \\
& =\cos \left(\frac{m \pi}{2 m+1}\right)
\end{aligned}
$$

Let $k_{0}, \ldots, k_{2 m}$ be a permutation of the integers $0, \ldots, 2 m$ such that

$$
\begin{aligned}
\cos \left(\theta+k_{0} \omega\right) \geqq \ldots & \geqq \cos \left(\theta+k_{m-1} \omega\right) \\
& =\cos \left(\theta+k_{m} \omega\right) \\
& =\cos \left(\frac{m \pi}{2 m+1}\right) .
\end{aligned}
$$

If $|\epsilon|>2 \cos (m \pi /(2 m+1))$, then the largest sum of m elements of \mathscr{L}_{θ} is

$$
\sum_{i=0}^{m-2} \cos \left(\theta+k_{i} \omega\right)+\frac{|\epsilon|}{2},
$$

while the largest sum of m elements of \mathscr{R}_{θ} is only

$$
\sum_{i=0}^{m-2} \cos \left(\theta+k_{i} \omega\right)+\cos \left(\frac{m \pi}{2 m+1}\right) .
$$

In view of Theorem 2 , this contradicts our assumption that A is m-convex and establishes the "necessity" portion of (i).

Next, assume that $|\epsilon| \leqq 2 \cos (m \pi /(2 m+1))$. It is not hard to observe that for any $\theta \in[0,2 \pi), P_{1}\left(A_{\theta}\right)$ has either m or $m+1$ vertices with real part at least $\cos (m \pi /(2 m+1))$. (Rotation through successive angles θ of $P_{1}(A)$ for $m=2$ may prove illuminating.)

I pon inspection of the sets \mathscr{L}_{θ} and \mathscr{R}_{θ} subject to the indicated bound on $|\epsilon|$, we conclude that for any integer $j \in\{1, \ldots, m\}$, the largest sum of j elements of \mathscr{L}_{θ} equals the largest sum of j elements of \mathscr{R}_{θ}. It follows from Theorem 2 that A is j-convex for $j=1, \ldots, m$. This proves the "sufficiency" portion of (i) and, combined with the "necessity" portion of (i), estallishes (ii).

To prove (iii), we first remark trivially that if A is normal, then A is ($m+1$)-convex by Theorem 3 . Conversely, assume that A is $(m+1)$ convex. If m is even, set $\theta=\pi$, while if m is odd, set $\theta=0$. In either situation the regular odd-order convex polygon $P_{1}\left(A_{\theta}\right)$ has precisely m vertices with positive real part: let $0 \leqq k_{1}<\ldots<k_{m} \leqq 2 m$ be the integers k for which $\cos (\theta+k \omega)>0$. Then the largest sum of $m+1$ elements of \mathscr{L}_{θ} is
(18) $\sum_{i=1}^{m} \cos \left(\theta+k_{i} \omega\right)+\frac{|\epsilon|}{2}$,
while the largest sum of $m+1$ elements of \mathscr{R}_{θ} is

$$
\begin{equation*}
\sum_{i=1}^{m} \cos \left(\theta+k_{i} \omega\right) \quad(+0) \tag{19}
\end{equation*}
$$

By Theorem 2, the sum (18) must not exceed the sum (19). Hence $\epsilon=0$ and A is normal.
5. Examples. Our first example indicates that for a normal matrix $A \in M_{n}(\mathbf{C})$ and a nonreal n-tuple $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{C}^{n}$, the proper inclusion

$$
W_{c}(A) \subsetneq P_{c}(A)
$$

may obtain (see Theorem 1).

I. Let

$$
A=\operatorname{diag}(i, 1,0) \in M_{3}(\mathbf{C})
$$

and

$$
c=(1, i, 0) \in \mathbf{C}^{3}
$$

Then

$$
P_{c}(A)=\mathscr{H}(2 i,-1,1,0, i),
$$

and Lemma 1 may be used to compute that no point on the line segment joining $2 i$ and -1 (other than the two endpoints) belongs to $W_{c}(A)$.

We conclude with two concrete illustrations of the content of Theorem 4.
II. Let $m=1$, so that $2 m+1=3$ and $2 m+3=5$. Then $\omega=2 \pi / 3$ and

$$
A=\operatorname{diag}\left(1, e^{2 \pi i / 3}, e^{4 \pi i / 3}\right)+\left[\begin{array}{cc}
0 & \epsilon \\
0 & 0
\end{array}\right]
$$

From Theorem 4 we see that A is convex if and only if $|\epsilon| \leqq 2 \cos \pi / 3=1$, and A is 2 -convex if and only if A is normal ($\epsilon=0$).
III. Let $m=2$, so that $2 m+1=5$ and $2 m+3=7$. Then $\omega=2 \pi / 5$ and

$$
A=\operatorname{diag}\left(1, e^{2 \pi i / 5}, e^{4 \pi i / 5}, e^{6 \pi i / 5}, e^{8 \pi i / 5}\right)+\left[\begin{array}{cc}
0 & \epsilon \\
0 & 0
\end{array}\right]
$$

From Theorem 4 we see that A is 2 -convex if and only if $|\epsilon| \leqq 2 \cos 2 \pi / 5 \doteq$.618; if A is 2 -convex then it is convex; and A is 3 -convex if and only if A is normal $(\epsilon=0)$. This particular example was the point of departure for our investigation.

References

1. P. A. Fillmore and J. P. Williams, Some conexity theorems for matrices, Glasgow Math. J. $12(1971), 110-117$.
2. P. R. Halmos, A Hilbert spare problem book (Van Nostrand Co., Inc., 1967).
3. A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. \% β (19.24), 620-630.
4. M. Marcus and H. Minc, A surcey of matrix theory and matrix inequalities (Prindle, Weber and Schmidt, Inc., Boston, 1964).
5. M. Marcus, B. N. Moyls, and R. Westwick, Some extreme calue result for indefinite hermitian matrices, II, Illinois J. Math. 2 (1958), 408-414.
6. B. N. Moyls and M. Marcus, Field conexxity of a square matrix, Proc. Amer. Math. Soc. θ (1955), 981-983.
7. F. D. Murnaghan, On the field of alues of a square matrix, Proc. Nat. Acad. Sci. 18 (1932), 246-248.

University of California,
Santa Barbara, California

