NORMALITY AND THE HIGHER NUMERICAL RANGE

MARVIN MARCUS, BENJAMIN N. MOYLS AND IVAN FILIPPENKO

1. Introduction. Let $M_n(\mathbf{C})$ be the vector space of all *n*-square complex matrices. Denote by (\cdot, \cdot) the standard inner product in the space \mathbf{C}^n of complex *n*-tuples. For a matrix $A \in M_n(\mathbf{C})$ and an *n*-tuple $c = (c_1, \ldots, c_n) \in \mathbf{C}^n$, define the *c*-numerical range of A to be the set

(1)
$$W_c(A) = \left\{ \sum_{k=1}^n c_k(Ax_k, x_k) | \{x_1, \ldots, x_n\} \text{ is an orthonormal basis of } \mathbf{C}^n \right\}$$

in the complex plane. Denote the eigenvalues of A by $\lambda_1, \ldots, \lambda_n$, and define the *c-eigenpolygon of A* to be the convex hull

(2)
$$P_{c}(A) = \mathscr{H}\left(\left\{\sum_{k=1}^{n} c_{k}\lambda_{\sigma(k)} | \sigma \in S_{n}\right\}\right)$$

where S_n is the symmetric group of degree *n*. The matrix *A* is said to be *c*-convex if $W_c(A) = P_c(A)$.

If

$$m \in \{1, \ldots, n\}$$
 and $c = \overbrace{(1, \ldots, 1, 0, \ldots, 0)}^{m}$,

then $W_c(A)$ and $P_c(A)$ are called the *m*-th numerical range of A and the *m*-th eigenpolygon of A respectively, and are denoted by $W_m(A)$ and $P_m(A)$. Thus

(3)
$$W_m(A) = \left\{ \sum_{k=1}^m (Ax_k, x_k) | x_1, \dots, x_m \text{ are } m \text{ orthonormal vectors in } \mathbf{C}^n \right\};$$

evidently $W_1(A)$ is the classical numerical range

$$W(A) = \{ (Ax, x) | x \in \mathbf{C}^n, ||x|| = 1 \}.$$

Designating by $Q_{m,n}$ the set of all strictly increasing sequences of *m* integers chosen from $\{1, \ldots, n\}$, we have

$$(4) \qquad P_m(A) = \mathscr{H}\left(\left\{\sum_{k=1}^m \lambda_{\omega(k)}|\omega \in Q_{m,n}\right\}\right)$$

It was shown by C. A. Berger [2, §167] that the sets $W_m(A)$ are convex. Since $\sum_{k=1}^{m} \lambda_{\omega(k)} \in W_m(A)$ for all $\omega \in Q_{m,n}$ [1], it follows that

(5)
$$W_m(A) \supset P_m(A)$$
.

Received February 21, 1977 and in revised form April 2, 1977.

419

The matrix A is said to be *m*-convex if $W_m(A) = P_m(A)$ (in case m = 1, A is simply said to be convex).

It is known that if $A \in M_n(\mathbb{C})$ is normal, then A is *m*-convex for $1 \leq m \leq n$ [1]. In the present paper, we obtain this result as a corollary of a theorem concerning the *c*-convexity of a matrix. Our main purpose is to discuss the question of a converse: does *m*-convexity for certain values of *m* imply normality? Initial results in this direction were previously obtained by two of the authors [6], who proved that convexity guarantees normality when $n \leq 4$ but not when $n \geq 5$.

2. Statement of results.

THEOREM 1. Let $A \in M_n(\mathbb{C})$ be a normal matrix, and let $c = (c_1, \ldots, c_n) \in \mathbb{C}^n$. Then

$$W_c(A) \subset P_c(A).$$

Moreover, if $c = (c_1, \ldots, c_n) \in \mathbf{R}^n$, then

$$W_c(A) = P_c(A)$$

(i.e., A is c-convex).

An immediate corollary of this theorem is that if $A \in M_n(\mathbb{C})$ is normal, then A is *m*-convex for $1 \leq m \leq n$.

The following useful result contains the key idea in the proof of Theorem 3.

THEOREM 2. Let $A \in M_n(\mathbb{C})$, and for any $\theta \in [0, 2\pi)$ set $A_{\theta} = e^{i\theta}A$. Let $m \in \{1, \ldots, n\}$. Then A is m-convex if and only if

(6)
$$\sum_{k=1}^{m} \lambda_k \left(\frac{A_{\theta} + A_{\theta}^*}{2} \right) = \sum_{k=1}^{m} r_k(A_{\theta})$$

for all $\theta \in [0, 2\pi)$, where

$$\lambda_1\left(\frac{A_{\theta}+A_{\theta}^*}{2}\right) \geq \ldots \geq \lambda_n\left(\frac{A_{\theta}+A_{\theta}^*}{2}\right)$$

are the eigenvalues of the hermitian matrix $(A_{\theta} + A_{\theta}^*)/2$ and

 $r_1(A_{\theta}) \geq \ldots \geq r_n(A_{\theta})$

are the real parts of the eigenvalues of A_{θ} .

The principal result of this paper is the

THEOREM 3. Let $A \in M_n(\mathbb{C})$. Then A is normal if and only if A is m-convex for $1 \leq m \leq \lfloor n/2 \rfloor$, where $\lfloor - \rfloor$ designates the greatest integer function.

We conclude with a class of examples showing that Theorem 3 is, in general, the best possible.

NORMALITY

THEOREM 4. Let m be a fixed positive integer. For a given complex number ϵ , let A be the (2m + 3)-square complex matrix

$$A = \text{diag} \ (e^{k\omega i} \colon k = 0, \ldots, 2m) \dotplus \begin{bmatrix} 0 & \epsilon \\ 0 & 0 \end{bmatrix}$$

where $\omega = 2\pi/(2m+1)$. Then

- (i) A is m-convex if and only if $|\epsilon| \leq 2 \cos (m\pi/(2m+1));$
- (ii) if A is m-convex, then A is j-convex for j = 1, ..., m;

(iii) A is (m + 1)-convex if and only if A is normal (i.e., $\epsilon = 0$).

Thus for appropriate $\epsilon \neq 0$, the (2m + 3)-square matrix A is j-convex for $1 \leq j \leq m = \lfloor (2m + 3)/2 \rfloor - 1$ without being normal.

The methods employed in the proof of Theorem 4 illustrate the power of Theorem 2 as a computable criterion.

3. Preliminaries. This section contains information which will be used in the proofs in Section 4.

Recall that a matrix $S \in M_n(\mathbb{C})$ is *doubly stochastic* if S is a nonnegative matrix (i.e., $S_{ij} \geq 0, i, j, = 1, ..., n$) all of whose row and column sums are 1. Recall also that a matrix $S \in M_n(\mathbb{C})$ is *orthostochastic* if there exists a unitary matrix $U \in M_n(\mathbb{C})$ such that $S_{ij} = |U_{ij}|^2$, i, j = 1, ..., n. Although it is clear that every orthostochastic matrix is doubly stochastic, the converse is false [4, II.1.4.4].

Of central importance is

BIRKHOFF'S THEOREM [4, II.1.7]. The set Ω_n of all n-square doubly stochastic matrices is a convex polyhedron in $M_n(\mathbf{R})$ whose vertices are the n-square permutation matrices.

A characterization is available of main diagonals of normal matrices with prescribed eigenvalues:

LEMMA 1 [4, II.4.1.3]. Let $A \in M_n(\mathbf{C})$ be a normal matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$, and set $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbf{C}^n$. Let

$$E_1 = \{ \mu = ((Ax_1, x_1), \ldots, (Ax_n, x_n)) \in \mathbf{C}^n | x_1, \ldots, x_n o.n. \}$$

and

 $E_2 = \{ \mu = S\lambda \in \mathbf{C}^n | S \in M_n(\mathbf{C}) \text{ orthostochastic} \}.$

Then $E_1 = E_2$.

Here and in what follows, "o.n." abbreviates the word "orthonormal".

A considerably more difficult result, due primarily to A. Horn [3], provides a characterization of main diagonals of hermitian matrices with prescribed eigenvalues (see also M. Marcus, B. N. Moyls, and R. Westwick [5]):

LEMMA 2. Let $C \in M_n(\mathbf{C})$ be a hermitian matrix with eigenvalues c_1, \ldots, c_n , and set $c = (c_1, \ldots, c_n) \in \mathbf{R}^n$. Let

$$E_1 = \{ \mu = ((Cx_1, x_1), \ldots, (Cx_n, x_n)) \in \mathbf{R}^n | x_1, \ldots, x_n \text{ o.n.} \}$$

and

$$E_2 = \{ \mu = Sc \in \mathbf{R}^n | S \in \Omega_n \}$$

Then $E_1 = E_2$.

We will have occasion to use the well-known Elliptical Range Theorem [7]. This states that if

$$A = \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$$

is a 2-square upper triangular complex matrix, then the numerical range W(A) is the region bounded by an ellipse with foci at a and b, minor axis of length |c|, and major axis of length $\sqrt{|a-b|^2 + |c|^2}$.

Finally, we remark that if $A \in M_n(\mathbf{C})$ and $m \in \{1, \ldots, n\}$, then

$$W_{n-m}(A) = \operatorname{tr} (A) - W_m(A)$$

and

$$P_{n-m}(A) = \operatorname{tr} (A) - P_m(A),$$

so that A is (n - m)-convex if and only if A is m-convex.

4. Proofs.

Proof of Theorem 1. Denote the eigenvalues of A by $\lambda_1, \ldots, \lambda_n$ and set

 $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbf{C}^n.$

Let $\{x_1, \ldots, x_n\}$ be any o.n. basis of \mathbb{C}^n , and set

 $\mu = ((Ax_1, x_1), \ldots, (Ax_n, x_n)) \in \mathbf{C}^n.$

By Lemma 1, there exists an *n*-square doubly stochastic matrix S such that $\mu = S\lambda$. By Birkhoff's Theorem, S is a convex combination of the *n*-square permutation matrices; say

$$S = \sum_{\sigma \in S_n} \alpha_{\sigma} P_{\sigma}$$

where $\alpha_{\sigma} \geq 0$ for all $\sigma \in S_n$, $\sum_{\sigma \in S_n} \alpha_{\sigma} = 1$, and $P_{\sigma} = \lfloor \delta_{i\sigma(j)} \rfloor$, $\sigma \in S_n$. Then letting $\bar{c} = (\bar{c}_1, \ldots, \bar{c}_n)$, we have

$$\sum_{k=1}^{n} c_{k}(Ax_{k}, x_{k}) = (\mu, \bar{c})$$

$$= (S\lambda, \bar{c})$$

$$= \left(\sum_{\sigma \in S_{n}} \alpha_{\sigma} P_{\sigma} \lambda, \bar{c}\right)$$

$$= \sum_{\sigma \in S_{n}} \alpha_{\sigma} (P_{\sigma} \lambda, \bar{c})$$

$$= \sum_{\sigma \in S_{n}} \alpha_{\sigma} \left(\sum_{k=1}^{n} \lambda_{\sigma^{-1}(k)} c_{k}\right)$$

$$= \sum_{\sigma \in S_{n}} \alpha_{\sigma^{-1}} \left(\sum_{k=1}^{n} c_{k} \lambda_{\sigma(k)}\right) \in P_{c}(A).$$

We conclude that $W_c(A) \subset P_c(A)$.

Now assume that $c = (c_1, \ldots, c_n) \in \mathbf{R}^n$. Since $A \in M_n(\mathbf{C})$ is a normal matrix, there exists an o.n. basis $\{u_1, \ldots, u_n\}$ of \mathbf{C}^n such that

 $Au_k = \lambda_k u_k, \quad k = 1, \ldots, n.$

Let $C \in M_n(\mathbb{C})$ be a hermitian matrix with eigenvalues c_1, \ldots, c_n ; there exists an o.n. basis $\{y_1, \ldots, y_n\}$ of \mathbb{C}^n such that

 $Cy_k = c_k y_k, \quad k = 1, \ldots, n.$

Denote by $U_n(\mathbf{C})$ the group of *n*-square unitary matrices. We compute that

$$W_{c}(A) = \left\{ \sum_{k=1}^{n} c_{k}(Ax_{k}, x_{k}) | x_{1}, \dots, x_{n} \text{ o.n.} \right\}$$

$$= \left\{ \sum_{k=1}^{n} c_{k}(AUy_{k}, Uy_{k}) | U \in U_{n}(\mathbf{C}) \right\}$$

$$= \left\{ \sum_{k=1}^{n} (AUCy_{k}, Uy_{k}) | U \in U_{n}(\mathbf{C}) \right\}$$

$$= \left\{ \operatorname{tr} (U^{*}AUC) | U \in U_{n}(\mathbf{C}) \right\}$$

$$= \left\{ \operatorname{tr} (U^{*}AUC) | U \in U_{n}(\mathbf{C}) \right\}$$

$$= \left\{ \operatorname{tr} (UCU^{*}A) | U \in U_{n}(\mathbf{C}) \right\}$$

$$= \left\{ \sum_{k=1}^{n} (UCU^{*}Au_{k}, u_{k}) | U \in U_{n}(\mathbf{C}) \right\}$$

$$= \left\{ \sum_{k=1}^{n} \lambda_{k}(UCU^{*}u_{k}, u_{k}) | U \in U_{n}(\mathbf{C}) \right\}$$

$$= \left\{ \sum_{k=1}^{n} \lambda_{k}(Cx_{k}, x_{k}) | x_{1}, \dots, x_{n} \text{ o.n.} \right\}$$

$$= \left\{ (\lambda, Sc) | S \in \Omega_{n} \right\} \quad \text{(by Lemma 2)}$$

$$= \left\{ \left(\lambda, \sum_{\sigma \in S_{n}} \alpha_{\sigma} P_{\sigma} c \right) | \alpha_{\sigma} \ge 0 \text{ for all } \sigma \in S_{n}, \sum_{\sigma \in S_{n}} \alpha_{\sigma} = 1 \right\}.$$

$$(by Birkhoff's Theorem)$$

$$= \mathscr{H}\left(\left\{\sum_{k=1}^{n} c_k \lambda_{\sigma(k)} | \sigma \in S_n\right\}\right)$$
$$= P_c(A).$$

This completes the proof.

Proof of Theorem 2. We begin by making some general observations. If $\theta \in [0, 2\pi)$ and $z \in W_m(A_{\theta})$, say $z = \sum_{k=1}^m (A_{\theta}x_k, x_k)$ where x_1, \ldots, x_m are

o.n. vectors in \mathbf{C}^n , then

$$\operatorname{Re} z = \operatorname{Re} \sum_{k=1}^{m} (A_{\theta} x_{k}, x_{k})$$

(7)
$$= \sum_{k=1}^{m} \left(\frac{A_{\theta} + A_{\theta}^{*}}{2} x_{k}, x_{k} \right)$$

(8)
$$\in W_m\left(\frac{A_{\theta}+A_{\theta}^*}{2}\right).$$

Since $(A_{\theta} + A_{\theta}^*)/2$ is a hermitian matrix,

(9)
$$W_m\left(\frac{A_\theta + A_{\theta^*}}{2}\right) = P_m\left(\frac{A_\theta + A_{\theta^*}}{2}\right)$$

is a closed real interval with right endpoint $\sum_{k=1}^{m} \lambda_k ((A_{\theta} + A_{\theta}^*)/2)$. We conclude from (8) and (9) that for all $z \in W_m(A_{\theta})$,

(10) Re
$$z \leq \sum_{k=1}^{m} \lambda_k \left(\frac{A_{\theta} + A_{\theta}^*}{2} \right)$$
.

In particular, by choosing o.n. vectors $x_1, \ldots, x_m \in {f C}^n$ such that

$$r_k(A_{\theta}) = \operatorname{Re} (A_{\theta}x_k, x_k), \quad k = 1, \ldots, m_{\theta}$$

we obtain

(11)
$$\sum_{k=1}^{m} r_k(A_{\theta}) = \operatorname{Re} \sum_{k=1}^{m} (A_{\theta} x_k, x_k) \leq \sum_{k=1}^{m} \lambda_k \left(\frac{A_{\theta} + A_{\theta}^*}{2} \right).$$

Now assume that A is *m*-convex, i.e., that $W_m(A) = P_m(A)$. Fix $\theta \in [0, 2\pi)$ and note that

$$W_m(A_{\theta}) = W_m(e^{i\theta}A)$$

= $e^{i\theta}W_m(A)$
= $e^{i\theta}P_m(A)$
= $P_m(e^{i\theta}A) = P_m(A_{\theta}).$

The vertices of the convex polygon $P_m(A_{\theta})$ are sums of *m* eigenvalues of A_{θ} , and if $z \in P_m(A_{\theta})$ then Re *z* is at most the largest real part of these vertices. Hence $z \in W_m(A_{\theta}) = P_m(A_{\theta})$ implies

(12) Re
$$z \leq \sum_{k=1}^{m} r_k(A_{\theta}).$$

If x_1, \ldots, x_m are any *m* o.n. vectors in \mathbb{C}^n , it follows from (7) and (12) that

(13)
$$\sum_{k=1}^{m} \left(\frac{A_{\theta} + A_{\theta}^*}{2} x_k, x_k \right) = \operatorname{Re} \sum_{k=1}^{m} \left(A_{\theta} x_k, x_k \right) \leq \sum_{k=1}^{m} r_k(A_{\theta}).$$

In view of (11), the equality (6) is obtained from (13) by choosing an o.n. basis of eigenvectors of the hermitian matrix $(A_{\theta} + A_{\theta}^*)/2$.

NORMALITY

To prove sufficiency, assume the equality (6) holds for all $\theta \in [0, 2\pi)$. Let l denote a fixed side of the convex polygon $P_m(A)$. It is easy to see that θ may be chosen so that (i) the side $e^{i\theta}l = l_{\theta}$ of $e^{i\theta}P_m(A) = P_m(A_{\theta})$ is oriented vertically in the complex plane, and (ii) $P_m(A_{\theta})$ is contained in the closed left half-plane determined by l_{θ} . Notice that the real part of a point on l_{θ} is precisely $\sum_{k=1}^{m} r_k(A_{\theta})$. Then for any $z \in W_m(A_{\theta})$, we have

$$\operatorname{Re} z \leq \sum_{k=1}^{m} \lambda_k \left(\frac{A_{\theta} + A_{\theta}^*}{2} \right) \quad (by \ (10))$$
$$= \sum_{k=1}^{m} r_k(A_{\theta}) \quad (by \ (6)).$$

Thus $W_m(A_\theta) = e^{i\theta}W_m(A)$ is contained in the closed left half-plane determined by $l_\theta = e^{i\theta}l$, so that $W_m(A)$ is contained in the closed left half-plane determined by l. Since l was a fixed but otherwise unspecified side of $P_m(A)$, it follows that $W_m(A)$ is contained in the intersection of the closed left half-planes determined by the sides of $P_m(A)$. Of course, this intersection is simply $P_m(A)$. Thus

$$W_m(A) \subset P_m(A).$$

By (5) we have

 $W_m(A) \supset P_m(A),$

and the proof is complete.

Proof of Theorem 3. As has already been observed, the necessity of the conditions is an immediate consequence of Theorem 1.

Assume that A is *m*-convex for $1 \leq m \leq \lfloor n/2 \rfloor$. It follows from a remark in Section 1 that A is *m*-convex for $1 \leq m \leq n$. Note that the *m*-th numerical range, the *m*-th eigenpolygon, and the status of normality of a complex matrix are invariant under transformation of the matrix by a unitary similarity. We may therefore assume (by the Schur triangularization theorem) that the given matrix A is upper triangular, with eigenvalues $\lambda_1, \ldots, \lambda_n$ arranged down the main diagonal to satisfy Re $\lambda_i \leq \text{Re } \lambda_j$ for $1 \leq i \leq j \leq n$. The proof will be completed by showing that A is in fact diagonal.

Suppose A has a nonzero off-diagonal element $\epsilon = A_{ij}$ (i < j). Set

 $B = A - \lambda_j I \quad \in M_n(\mathbf{C})$

(I is the *n*-square identity matrix). It is clear that

(i) *B* has eigenvalues

$$\mu_k = \lambda_k - \lambda_j, \quad k = 1, \ldots, n$$

with

Re $\mu_i \leq 0$ and $\mu_j = 0$;

- (ii) B is upper triangular with $B_{ij} = \epsilon \neq 0$; and
- (iii) B is m-convex for $1 \leq m \leq n$.

Now let m_0 be the number of eigenvalues of *B* having positive real part: obviously $0 \leq m_0 \leq n-2$. Choose $\omega \in Q_{m_0,n}$ so that $\mu_{\omega(1)}, \ldots, \mu_{\omega(m_0)}$ are these eigenvalues (if $m_0 = 0$, then ω is the "empty sequence" which assumes no values). Set

$$x_k = e_{\omega(k)}, \quad k = 1, \ldots, m_0$$

where e_t denotes the *t*-th standard basis vector in \mathbb{C}^n (1 in position *t*, 0's elsewhere). We have

(14)
$$(Bx_k, x_k) = \mu_{\omega(k)}, \quad k = 1, \ldots, m_0.$$

By the Elliptical Range Theorem,

$$W\left(\begin{bmatrix} \mu_i & \epsilon \\ 0 & \mu_j \end{bmatrix}\right)$$

is the region bounded by an ellipse with foci at μ_i and $\mu_j = 0$ whose minor axis has length $|\epsilon|$. Since $|\epsilon| > 0$, it follows that there exists $z \in W\left(\begin{bmatrix} \mu_i & \epsilon \\ 0 & \mu_j \end{bmatrix}\right)$ for

which Re z > 0. Hence there exists a unit vector $x_{m_0+1} \in \mathbb{C}^n$, having nonzero components only in positions *i* and *j*, such that

(15) Re $(Bx_{m_0+1}, x_{m_0+1}) < 0.$

Observe that since $\omega(k) \neq i$, j for $k = 1, ..., m_0$, the vectors $x_1, ..., x_{m_0}$, x_{m_0+1} in \mathbb{C}^n are o.n.

By virtue of the fact that *B* has precisely m_0 eigenvalues with positive real part $(\mu_{\omega(1)}, \ldots, \mu_{\omega(m_0)})$ and at least one eigenvalue with zero real part $(\mu_j = 0)$, in the notation of Theorem 2 we compute

(16)

$$\sum_{k=1}^{m_0+1} r_k(B) = \sum_{k=1}^{m_0} \operatorname{Re} \mu_{\omega(k)}$$

$$= \sum_{k=1}^{m_0} \operatorname{Re} (Bx_k, x_k) \quad (by (14))$$

$$< \sum_{k=1}^{m_0+1} \operatorname{Re} (Bx_k, x_k) \quad (by (15))$$

$$= \sum_{k=1}^{m_0+1} \left(\frac{B+B^*}{2}x_k, x_k\right)$$

$$\in W_{m_0+1}\left(\frac{B+B^*}{2}\right).$$

Since $(B + B^*)/2$ is a hermitian matrix,

(17)
$$W_{m_0+1}\left(\frac{B+B^*}{2}\right) = P_{m_0+1}\left(\frac{B+B^*}{2}\right)$$

is a closed real interval with right endpoint $\sum_{k=1}^{m_0+1} \lambda_k ((B + B^*)/2)$. Hence from (16) and (17),

$$\sum_{k=1}^{m_0+1} r_k(B) < \sum_{k=1}^{m_0+1} \left(\frac{B+B^*}{2} x_k, x_k \right) \leq \sum_{k=1}^{m_0+1} \lambda_k \left(\frac{B+B^*}{2} \right) \,.$$

In view of (iii) above, this contradicts Theorem 2. We conclude that the upper triangular matrix A can have no nonzero off-diagonal element ϵ , completing the proof.

Proof of Theorem 4. For a given $\theta \in [0, 2\pi)$ we have

$$A_{\theta} = e^{i\theta}A = \text{diag } (e^{(\theta + \lambda \omega)i}: k = 0, \dots, 2m) \dotplus \begin{bmatrix} 0 & e^{i\theta} \\ 0 & 0 \end{bmatrix}$$

and

$$\frac{A_{\theta} + A_{\theta}^{*}}{2} = \operatorname{diag} \left(\cos \left(\theta + k \omega \right) : k = 0, \dots, 2m \right) \div \frac{1}{2} \begin{bmatrix} 0 & e^{i\theta} \\ e^{-i\theta} \\ \epsilon & 0 \end{bmatrix}.$$

Let \mathscr{L}_{θ} denote the set of eigenvalues of $(A_{\theta} + A_{\theta}^*)/2$, and let \mathscr{R}_{θ} denote the set of real parts of the eigenvalues of A_{θ} . Then

$$\mathscr{L}_{\theta} = \{\cos (\theta + k\omega) | k = 0, \dots, 2m\} \cup \left\{ \frac{|\epsilon|}{2}, -\frac{|\epsilon|}{2} \right\}$$

and

$$\mathscr{R}_{\theta} = \{\cos (\theta + k\omega) | k = 0, \ldots, 2m\} \cup \{0, 0\}.$$

Now assume that A is m-convex. If m is even, set $\theta = 0$, while if m is odd, set $\theta = \pi$. In either situation the regular odd-order convex polygon $P_1(A_{\theta})$ has precisely m + 1 vertices with positive real part, and these are symmetrically positioned with respect to the real axis. When m is even, a minimal positive real part occurs for k = m/2 and has the value

$$\cos (\theta + k\omega) = \cos \left(0 + \frac{m}{2} \frac{2\pi}{2m+1}\right)$$
$$= \cos \left(\frac{m\pi}{2m+1}\right).$$

When m is odd, a minimal positive real part occurs for k = (m + 1)/2 and again has the value

$$\cos \left(\theta + k\omega\right) = \cos \left(\pi + \frac{m+1}{2} \frac{2\pi}{2m+1}\right)$$
$$= \cos \left(\frac{(2m+1)\pi + (m+1)\pi}{2m+1}\right)$$
$$= \cos \left(\frac{(3m+2)\pi}{2m+1}\right)$$
$$= \cos \left(2\pi - \frac{m\pi}{2m+1}\right)$$
$$= \cos \left(-\frac{m\pi}{2m+1}\right)$$
$$= \cos \left(\frac{m\pi}{2m+1}\right)$$

Let k_0, \ldots, k_{2m} be a permutation of the integers $0, \ldots, 2m$ such that

$$\cos (\theta + k_0 \omega) \ge \ldots \ge \cos (\theta + k_{m-1} \omega)$$
$$= \cos (\theta + k_m \omega)$$
$$= \cos \left(\frac{m\pi}{2m+1}\right).$$

If $|\epsilon| > 2 \cos (m\pi/(2m+1))$, then the largest sum of *m* elements of \mathscr{L}_{θ} is

$$\sum_{i=0}^{m-2} \cos \left(\theta + k_i \omega\right) + \frac{|\epsilon|}{2},$$

while the largest sum of m elements of \mathscr{R}_{θ} is only

$$\sum_{i=0}^{m-2} \cos \left(\theta + k_i \omega\right) + \cos \left(\frac{m\pi}{2m+1}\right).$$

In view of Theorem 2, this contradicts our assumption that A is *m*-convex and establishes the "necessity" portion of (i).

Next, assume that $|\epsilon| \leq 2 \cos (m\pi/(2m+1))$. It is not hard to observe that for any $\theta \in [0, 2\pi)$, $P_1(A_{\theta})$ has either *m* or m+1 vertices with real part at least $\cos (m\pi/(2m+1))$. (Rotation through successive angles θ of $P_1(A)$ for m=2 may prove illuminating.)

Upon inspection of the sets \mathcal{L}_{θ} and \mathcal{R}_{θ} subject to the indicated bound on $|\epsilon|$, we conclude that for any integer $j \in \{1, \ldots, m\}$, the largest sum of j elements of \mathcal{L}_{θ} equals the largest sum of j elements of \mathcal{R}_{θ} . It follows from Theorem 2 that A is j-convex for $j = 1, \ldots, m$. This proves the "sufficiency" portion of (i) and, combined with the "necessity" portion of (i), establishes (ii).

NORMALITY

To prove (iii), we first remark trivially that if A is normal, then A is (m + 1)-convex by Theorem 3. Conversely, assume that A is (m + 1)-convex. If m is even, set $\theta = \pi$, while if m is odd, set $\theta = 0$. In either situation the regular odd-order convex polygon $P_1(A_{\theta})$ has precisely m vertices with positive real part: let $0 \leq k_1 < \ldots < k_m \leq 2m$ be the integers k for which $\cos(\theta + k\omega) > 0$. Then the largest sum of m + 1 elements of \mathcal{L}_{θ} is

(18)
$$\sum_{i=1}^{m} \cos \left(\theta + k_i \omega\right) + \frac{|\epsilon|}{2}$$
,

while the largest sum of m + 1 elements of \mathscr{R}_{θ} is

(19)
$$\sum_{i=1}^{m} \cos \left(\theta + k_{i}\omega\right) \quad (+0).$$

By Theorem 2, the sum (18) must not exceed the sum (19). Hence $\epsilon = 0$ and A is normal.

5. Examples. Our first example indicates that for a normal matrix $A \in M_n(\mathbb{C})$ and a nonreal *n*-tuple $c = (c_1, \ldots, c_n) \in \mathbb{C}^n$, the proper inclusion

$$W_{c}(A) \subsetneq P_{c}(A)$$

may obtain (see Theorem 1).

I. Let

$$A = \operatorname{diag} (i, 1, 0) \in M_3(\mathbf{C})$$

and

 $c = (1, i, 0) \in \mathbb{C}^3.$

Then

$$P_{c}(A) = \mathscr{H}(2i, -1, 1, 0, i),$$

and Lemma 1 may be used to compute that no point on the line segment joining 2i and -1 (other than the two endpoints) belongs to $W_{c}(A)$.

We conclude with two concrete illustrations of the content of Theorem 4.

II. Let
$$m = 1$$
, so that $2m + 1 = 3$ and $2m + 3 = 5$. Then $\omega = 2\pi/3$ and

$$A = \operatorname{diag} (1, e^{2\pi i/3}, e^{4\pi i/3}) \dotplus \begin{bmatrix} 0 & \epsilon \\ 0 & 0 \end{bmatrix}$$

From Theorem 4 we see that A is convex if and only if $|\epsilon| \leq 2 \cos \pi/3 = 1$, and A is 2-convex if and only if A is normal $(\epsilon = 0)$.

III. Let
$$m = 2$$
, so that $2m + 1 = 5$ and $2m + 3 = 7$. Then $\omega = 2\pi/5$ and

$$A = \text{diag } (1, e^{2\pi i/5}, e^{4\pi i/5}, e^{6\pi i/5}, e^{8\pi i/5}) \div \begin{bmatrix} 0 & \epsilon \\ 0 & 0 \end{bmatrix}.$$

From Theorem 4 we see that A is 2-convex if and only if $|\epsilon| \leq 2 \cos 2\pi/5 \approx$. 618; if A is 2-convex then it is convex; and A is 3-convex if and only if A is normal ($\epsilon = 0$). This particular example was the point of departure for our investigation.

References

- P. A. Fillmore and J. P. Williams, Some convexity theorems for matrices, Glasgow Math. J. 12 (1971), 110–117.
- 2. P. R. Halmos, A Hilbert space problem book (Van Nostrand Co., Inc., 1967).
- **3.** A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620-630.
- 4. M. Marcus and H. Mine, A survey of matrix theory and matrix inequalities (Prindle, Weber and Schmidt, Inc., Boston, 1964).
- M. Marcus, B. N. Moyls, and R. Westwick, Some extreme value results for indefinite hermitian matrices, II, Illinois J. Math. 2 (1958), 408-414.
- B. N. Moyls and M. Marcus, Field convexity of a square matrix, Proc. Amer. Math. Soc. 6 (1955), 981–983.
- 7. F. D. Murnaghan, On the field of values of a square matrix, Proc. Nat. Acad. Sci. 18 (1932), 246-248.

University of California, Santa Barbara, California