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NORMALITY AND THE HIGHER NUMERICAL RANGE 

MARVIN MARCUS, BENJAMIN N. MOYLS AND IVAN FILIPPENKO 

1. Introduction. Let Mn(C) be the vector space of all w-square complex 
matrices. Denote by (• , •) the standard inner product in the space Cn of 
complex n-tuples. For a matrix A Ç Mn(C) and an w-tuple c = (ci,. . . , c„) t Cn, 
define the c-numerical range of A to be the set 

(1) WC(A) = ) ]C ck(Axk, xk) \{xi, . . . , xn] is an orthonormal basis of Cn( 

in the complex plane. Denote the eigenvalues of A by Xi, . . ., \n, and define 
the c-eigenpolygon of A to be the convex hull 

(2) PC(A) =tf ^ |g a ( »ke s, 
where Sn is the symmetric group of degree n. The matrix A is said to be c-convex 
iîWc(A) = PC{A). 

If 
m n — m 

m G {1, . . . ,n] and c = (1, . .. , 1, 0,. . ., 0), 

then WC(A) and PC(A) are called the m-th numerical range of A and the m-th 
eigenpolygon of A respectively, and are denoted by Wm(A) and Pm(A). Thus 

Cm | 
(3) Wn(A) = | g (A X/c, Xjc ) |^i, • • • , xm are m orthonormal vectors in C n | ; 

evidently W\(A) is the classical numerical range 

W{A) = {(Ax,x)\x Ç Cn, \\x\\ = 1}. 

Designating by Qmt7l the set of all strictly increasing sequences of m integers 
chosen from {1, . . . , n), we have 

(4) Pm{A) = ^ ( { g W ) l « € Qn,,nf) 

It was shown by C. A. Berger [2, § 167] that the sets Wm(A) are convex. Since 
Z™=i W ) € Wm(A) for all co Ç QmM [1], it follows that 

(5) Wm(A)DPm(A). 
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The matrix A is said to be m-convex if Wm(A) = Pm(A) (in case m = 1, A is 
simply said to be convex). 

I t is known tha t if A £ M n ( C ) is normal, then 4̂ is m-convex for 1 ^ m ^ w 
[1]. In the present paper, we obtain this result as a corollary of a theorem con­
cerning the c-convexity of a matrix. Our main purpose is to discuss the question 
of a converse: does m-convexity for certain values of m imply normali ty? 
Initial results in this direction were previously obtained by two of the authors 
[6], who proved tha t convexity guarantees normali ty when n S 4 bu t not when 
n ^ 5. 

2. S t a t e m e n t of r e s u l t s . 

T H E O R E M l.LetA £ Mn(C) be a normal matrix, and let c = (ci, . . . , cn) 6 Cn. 
Then 

WM) CPc(A). 

Moreover, if c = (ci, . . . , cn) G Rw, / /^n 

wcU) = PcU) 

(i.e., ./I is c-convex). 

An immediate corollary of this theorem is t ha t if A (E Mn(C) is normal, then 
A is m-convex for 1 S rn ^ n. 

The following useful result contains the key idea in the proof of Theorem 3. 

T H E O R E M 2. Le* ,4 € Mn(C), and for any 6 Ç [0, 2TT) ^ ^ = eiBA. Let 

m Ç {1, . . . , w}. 77^w ̂ 4 is m-convex if and only if 

(6) £ xi^-±^) = £ rt(̂ ,) 
k=l \ l / k=l 

for all 6 Ç [0, 2TT), where 

i,(éi±&) Ï ... * ».(^±^) 

r/rc //zc eigenvalues of the hermitian matrix (Ae + Ae*)/2 and 

ri(Ae) è . . . è r„G4<0 

arc //?<? ra/7 ^«r/s of the eigenvalues of Ae-

The principal result of this paper is the 

T H E O R E M 3. Let A Ç il/„.(C). 77zew 4̂ is normal if and only if A is m-convex 
for 1 ^ m ^ [n/2], where [ ] designates the greatest integer function. 

W e conclude with a class of examples showing tha t Theorem 3 is, in general, 
the best possible. 
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T H E O R E M 4. Let m be a fixed positive integer. For a given complex number e, 
let A be the (2m + 3)-square complex matrix 

A =diag(^:A = 0,. . . f2w) + [ j QJ , 
where w = 2ir/(2m + 1). Then 

(i) A is m-convex if and only if |e| ^ 2 cos (mw/(2m + 1 ) ) ; 
(ii) if A is m-convex, then A is j-convex for j = 1, . . . , m; 

(iii) A is (m + 1)-convex if and only if A is normal (i.e., e = 0) . 
Thus for appropriate e ^ O , the (2m + 3)-square matrix A is j-convex 

for 1 ^ j ^ m = [(2m + 3) /2] — 1 without being normal. 

T h e methods employed in the proof of Theorem 4 illustrate the power of 
Theorem 2 as a computable criterion. 

3. Pre l iminar ie s . This section contains information which will be used in 
the proofs in Section 4. 

Recall t ha t a matrix S G Mn(C) is doubly stochastic if 5 is a nonnegative 
matrix (i.e., Sij ^ 0, i,j, = 1, . . . , n) all of whose row and column sums are 1. 
Recall also tha t a matr ix 5 G Mn(Q) is orthostochastic if there exists a uni tary 
matrix £/ G M"n(C) such tha t 5 ^ = \Uij\2, i, j = 1, • • • , w. Although it is 
clear t ha t every orthostochastic matr ix is doubly stochastic, the converse is 
false [4, 11.1.4.4]. 

Of central importance is 

B I R K H O F F ' S T H E O R E M [4, 11.1.7]. The set Q,n of all n-square doubly stochastic 
matrices is a convex polyhedron in Mn(R) whose vertices are the n-square permu­
tation matrices. 

A characterization is available of main diagonals of normal matrices with 
prescribed eigenvalues: 

LEMMA 1 [4, 11.4.1.3]. Let A G Mn(C) be a normal matrix with eigenvalues 
Xi, . . . , Xn, and set X = (Xi, . . . , Xw) G Cn. Let 

Ei = {M = ((Axu xi), . . . , (Axn, xn)) G Cn\xl} . . . , xn o.n.} 

and 

E2 = {M = SX G Gn\S G Mn(C) orthostochastic}. 

Then E\ = E2. 

Here and in what follows, "o .n ." abbreviates the word "or thonormal" . 
A considerably more difficult result, due primarily to A. Horn [3], provides 

a characterization of main diagonals of hermitian matrices with prescribed 
eigenvalues (see also M. Marcus, B. N. Moyls, and R. Westwick [5]): 

LEMMA 2. Let C G Mn(C) be a hermitian matrix with eigenvalues c\, . . . , cn, 
and set c = (ci, . . . , cn) G Rw. Let 

Ei = {M = ((Cxi, xi), . . . , (Cxn, xn)) G Rn\xi, . . . , xn o.n.} 
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and 

E 2 = u = Se e Rn\s e «„}. 
Then E\ = £2. 

We will have occasion to use the well-known Elliptical Range Theorem [7]. 
This states that if 

A = [ a c 
0 b. 

is a 2-square upper triangular complex matrix, then the numerical range W(A) 
is the region bounded by an ellipse with foci at a and b, minor axis of length |c|, 
and major axis of length y/\a — b\2 + \c\2. 

Finally, we remark that if A (E Mn(C) and m £ {1, . . . , w}, then 

Wn-m(A) = tr(A) - Wm(A) 
and 

Pn-m{A) = tv(A) -Pm{A), 

so that A is (n — m)-convex if and only if A is w-convex. 

4. Proofs. 

Proof of Theorem 1. Denote the eigenvalues of A by Xi, . . . , X„ and set 

x = (\x,..., xj ç c\ 
Let {xi, . . . , xn\ be any o.n. basis of Cn, and set 

M = ((Axi, xi), . . . , (Axn, xn)) G Cn. 

By Lemma 1, there exists an ^-square doubly stochastic matrix 5 such that 
H = S\. By Birkhoff's Theorem, S is a convex combination of the ^-square 
permutation matrices; say 

where aa ^ 0 for all a £ Sn, X^€Sna, = 1, and Pa = [<5M?)], a £ Sn. Then 
letting c = (ci, . . . , cn), we have 

n 

X) ^(^tffc,**) = (/Z, C) 

= (SX,c) 

= I X) «crPaX, C) 

= X) a<r(P<r^,c) 
<r£Sn 

= X ) a<r\ X ) X*-1 (*)£*; J 
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We conclude that WC(A) C PC(A). 
Now assume that c = (ci, . . . , cn) £ Rn. Since A G ^ n ( C ) is a normal 

matrix, there exists an o.n. basis {ui, . . . , wj of Cn such that 

4%. = \kuk, k = 1, . . . , n. 

Let C Ç M"n(C) be a hermitian matrix with eigenvalues Ci, . . . , cn; there 
exists an o.n. basis {yi, . . . , yn} of Cw such that 

Cy* = W*, & = 1, . . . , n. 

Denote by Un(C) the group of w-square unitary matrices. We compute that 

WC(A) = j J2 ck(Axk,xk)\xh . . . , x^o.n.j 

= { g ck(AUyk,Uyk)\Ue Z7„(C)} 

= j g UUCyk, Uyk)\Ue Un(G)j 

= \ Z (U*AUCyk,yk)\Ue Un(C)\ 

= {tr (U*AUC)\Ue Un(C)} 

= {tr (C/CZ7*-4)|Z7G C7n(C)} 

= J g (c7Cc/M^,^) |c7G £/n(C)| 

= l Z A*(^Cc/*^,^)| /7G C/n(C)( 

= I X) ^k{Cxk, xk)\xi, . . . , x»o.n.j 

= {(X, Sc)\S e S2„} (by Lemma 2) 

= 1 ( A> X <**iV ) \a<r = 0 for all a £ Sn, ^ aa = 1( 

(by Birkhoff's Theorem) 

= ^ ( { g C**'W\*£ S«\) 

= PC(A). 

This completes the proof. 

Proof of Theorem 2. We begin by making some general observations. If 
6 Ç [0, 2w) and z £ PFw(^4e), say s = XX=i (^ ex̂ -, xk ) where 
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o.n. vectors in Cn, then 
m 

Rez = Re ^ (Aexk,xk) 
k=i 

(8) « W„(±^) . 

Since (^0 + Ae*)/2 is a hermitian matrix, 

(9) Wm(^Al) = Pm{AL±Al) 

is a closed real interval with right endpoint XX=i ^k((Ae + Ae*)/2). We 
conclude from (8) and (9) that for all z £ Wm(Ao), 

(10) » . . S Ê » , ( ^ ) . 

In particular, by choosing o.n. vectors Xi, . . . , xm £ Cn such that 

rfc(i4e) = Re (Aexk, xk), k = 1, . . . , w, 

we obtain 

m m m / A 4- A *\ 

(11) £ rk(Ae) = Re E U ^ . x , ) g D X J - H ^ M . 
Now assume that 4̂ is ra-convex, i.e., that Wm(A) = Pm(^4). Fix 0 G [0, 2ir) 

and note that 

Wm(Ae) = Wn(e
i9A) 

= ei9Wm(A) 

= P r o(e'M) - Pm(,4,). 

The vertices of the convex polygon Pm(Ae) are sums of m eigenvalues of Ae, 
and if z £ Pm(Ae) then Re 2 is at most the largest real part of these vertices. 
Hence z (E Wm(Ae) = Pm(Ae) implies 

m 

(12) Res g E rfc(4,). 
A - = l 

If #i, . . . , xm are any m o.n. vectors in Cw, it follows from (7) and (12) that 

m / A 4- A * \ m w 

(13) £ ~ - ^ - — * * , * * = Re £ U,x , ,x , ) g £ r«G4,). 

In view of (11), the equality (6) is obtained from (13) by choosing an o.n. 
basis of eigenvectors of the hermitian matrix (Ae + Ae*)/2. 
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T o prove sufficiency, assume the equali ty (6) holds for all 6 £ [0, 2ir). Let / 
denote a fixed side of the convex polygon Pm(A). I t is easy to see t ha t 6 may be 
chosen so tha t (i) the side eiel = le of ei9Pm(A) = Pm(Ae) is oriented vertically 
in the complex plane, and (ii) Pm(Ae) is contained in the closed left half-plane 
determined by U. Notice t ha t the real par t of a point on U is precisely 
Y!k=i rk(Ae). Then for any z £ Wm(Ae), we have 

R e ^ g X*(-M^) (by (10)) 
m 

= E rk(Ae) (by (6)). 
k=l 

T h u s Wm(Ae) = eieWm(A) is contained in the closed left half-plane determined 
by le = eidl, so tha t Wm(A) is contained in the closed left half-plane deter­
mined by /. Since / was a fixed but otherwise unspecified side of Pm(A), it 
follows t ha t Wm(A) is contained in the intersection of the closed left half-planes 
determined by the sides of Pm(A). Of course, this intersection is simply Pm(A). 
T h u s 

Wm(A) CPm{A). 

By (5) we have 

Wm(A) DPm(A), 

and the proof is complete. 

Proof of Theorem 3. As has already been observed, the necessity of the con­
ditions is an immediate consequence of Theorem 1. 

Assume tha t A is m-convex for 1 ^ m ^ [n/2]. I t follows from a remark in 
Section 1 tha t A is m-convex for 1 ^ m S n. Note tha t the m-th numerical 
range, the w-th eigenpolygon, and the s ta tus of normali ty of a complex matr ix 
are invariant under transformation of the matrix by a uni ta ry similarity. We 
may therefore assume (by the Schur triangularization theorem) tha t the given 
matr ix A is upper triangular, with eigenvalues Xi, . . . , \n arranged down the 
main diagonal to satisfy Re X* ^ Re X; for 1 ^ i ^ j ^ n. T h e proof will be 
completed by showing tha t A is in fact diagonal. 

Suppose A has a nonzero off-diagonal element e = A a (i < j). Set 

B = A - \jl e Mn(C) 

(I is the ^-square identi ty matr ix) . I t is clear tha t 
(i) B has eigenvalues 

MA: = X* — Xj, k = 1, . . . , n 

with 

Re /Xi ^ 0 and fij = 0; 

(ii) B is upper tr iangular with Btj = e 9^ 0; and 
(iii) B is m-convex for 1 ^ m S n. 
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Now let m0 be the number of eigenvalues of B having positive real part: 
obviously 0 ^ m0 ^ n — 2. Choose œ Ç Qmo,n so that M«U), • • • > M«(w0)

 a r e 

these eigenvalues (if ra0 = 0, then co is the ' 'empty sequence" which assumes 
no values). Set 

Xk = eu{k), k = 1 , . . . , Wo 

where et denotes the /-th standard basis vector in Cn (1 in position /, 0's 
elsewhere). We have 

(14) (Bxk, xk) = Mcou), k = 1, . . . , m0. 

By the Elliptical Range Theorem, 

4o' ;J) 

for 

Mi c 

is the region bounded by an ellipse with foci at nt and Hj = 0 whose minor axis 

which Re z > 0. Hence there exists a unit vector xmo+i £ Cn, having nonzero 
components only in positions i and j , such that 

(15) Re (Bxmo+i, xmo+i) < 0. 

Observe that since w(k) ?* i, j for k = 1, . . . , m0, the vectors #i, . . . , xmo, 
xwo+i in Cn are o.n. 

By virtue of the fact that B has precisely m0 eigenvalues with positive real 
part (/iw(i), • • • , Mw(mo)) a n d at least one eigenvalue with zero real part (JJLJ = 0), 
in the notation of Theorem 2 we compute 

mo+l mo 

£ rt(B) = E Rep-(« 
fc=l A ; = l 

m o 

= X Re (£**,**) (by (14)) 

mn+1 

< £ Re (ite*,**) (by (15)) 

(16) 

_ T i 1 (B+B* \ 

(B + B*\ 
G W, 

Since {B + B*)/2 is a hermitian matrix, 

f̂  + B*\ T, /J5 + £* 
(17) W | l l o + 1 | — ^ — j = P m o + i v 2 

is a closed real interval with right endpoint J^ l i " 1 \k((B + i?*)/2). Hence 
from (16) and (17), 

wo+l mo+1 / jy _i_ 7?* 

*=l k=l \ * .*)s§\(^) 
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In view of (iii) above, this contradicts Theorem 2. We conclude tha t the upper 
tr iangular matr ix A can have no nonzero off-diagonal element e, complet ing 
the proof. 

Proof of Theorem 4. For a given 6 Ç [0, 2TT) we have 

Ae = eieA = diag (eie+ka)i: k = 0, . . . , 2m) + 
0 e e 
0 0 . 

and 

1 = diag (cos (0 + koi) : k = 0, . . . , 2m) + ô 
0 *] 

Let Ĵ ffl denote the set of eigenvalues of (Ae + Ae*)/2, and let 
set of real par ts of the eigenvalues of Ae. Then 

idenote the 

and 

&9 = {cos (d + k<a)\k = 0, . . . , 2m} U 

?* = {cos (6 + kœ)\k = 0, . . . , 2m} U {0, 0}. 

Mi 
2 / 

Now assume tha t vl is m-convex. If m is even, set 0 = 0, while if m is odd, 
set 6 = ir. In either si tuation the regular odd-order convex polygon Pi(Ae) 
has precisely m + 1 vertices with positive real par t , and these are symmetr i ­
cally positioned with respect to the real axis. When m is even, a minimal 
positive real par t occurs for k = m/2 and has the value 

cos(9 + M = c o s l°+2"2^"+"l7 

= COS ( mw \ 
2m - F Ï / * 

When m is odd, a minimal positive real par t occurs for k = (m + l ) / 2 and 
again has the value 

//, i 7 \ / , m + 1 27T \ 
cos (0 + M = cos ^ + — — 2 ^ T + 1 j 

= COS 

COS 

= COS 

= COS 

(2m + 1)TT + (m + 1)TT 

2m + 1 

(3m + 2)TT\ 

2m + 1 / 

(2« - 2^TT7 

( m 7 r \ 

" 2m~+~ï) 

(__m_7r__\ 

2m + 1/ 
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Let &o, • . . , k2m be a permutation of the integers 0, ... ,2m such that 

cos (6 + koœ) ^ . . . ^ cos (6 + km-iw) 

= cos (6 + kmœ) 

=cos \^r+i) • 
If |e| > 2 cos (mir/(2m + 1)) , then the largest sum of m elements of ^e is 

m— 2 I I 

£ cos (0 + * f c o ) + ^ i , 

while the largest sum of m elements of S% e is only 
ra-2 

2 c o s (0 + ^i^) + cos 
7 = 0 

In view of Theorem 2, this contradicts our assumption tha t A is m-convex and 
establishes the "necessi ty" portion of (i). 

Next , assume tha t |e| ^ 2 cos (m-w/ (2m + 1)) . I t is not hard to observe t ha t 
for any 6 Ç [0, 2w), P\(Ae) has either m or m + 1 vertices with real pa r t a t 
least cos (mw/(2m + 1)) . (Rotat ion through successive angles 6 of P\(A) for 
m = 2 may prove illuminating.) 

e2iri/ii 

Pi(A),rn = 2 

/ mw \ 2?r 

l^r+T/ = cos~ 

Upon inspection of the sets^fe and 3%\ subject to the indicated bound on |e|, 
we conclude tha t for any integer j £ {1, . . . , m}, the largest sum of j elements 
of ^£e equals the largest sum of j e lements of 3?e- I t follows from Theorem 2 
t ha t A is j -convex for j = 1, . . . , m. This proves the ' 'sufficiency" portion of 
(i) and, combined with the "necessi ty" port ion of (i), establishes (ii). 

mir 
2mT-Vl 
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T o prove (iii), we first remark trivially tha t if A is normal, then A 
is (m + 1)-convex by Theorem 3. Conversely, assume tha t A is (m + 1)-
convex. If m is even, set d = w, while if m is odd, set 6 = 0. In either si tuation 
the regular odd-order convex polygon Pi(Ae) has precisely m vertices with 
positive real par t : let 0 ^ k\ < . . . < km ^ 2m be the integers k for which 
cos (6 + kœ) > 0. Then the largest sum of m + 1 elements of S£& is 

(18) E cos(0 + £,co) + ^ f 

while the largest sum of m + 1 elements oî â?e is 

(19) £ cos (0 + &,co) ( + 0 ) . 

By Theorem 2, the sum (18) must not exceed the sum (19). Hence e = 0 and 
A is normal. 

5. E x a m p l e s . Our first example indicates t ha t for a normal matr ix A G Mn(C) 
and a nonreal n-tuple c = (ci, . . . , cn) G Cn, the proper inclusion 

W c M ) ÇPc(A) 

may obtain (see Theorem 1). 

I. Let 

A = diag (i, 1,0) e Mz(C) 

and 

c = ( l , i , 0 ) G C3 . 

Then 

P c ( 4 ) = J ^ ( 2 i , - 1 , 1,0, i), 

and Lemma 1 may be used to compute tha t no point on the line segment joining 
2i and —1 (other than the two endpoints) belongs to WC(A). 

We conclude with two concrete illustrations of the content of Theorem 4. 

I I . Let m = 1, so tha t 2m + 1 = 3 and 2m + 3 = 5. Then œ = 2TT/3 and 

A J * / 1 27TÏ/3 47TZ73\ T 

yl = diag ( l , e , e ) + 

From Theorem 4 we see tha t A is convex if and only if |e| ^ 2 cos 7r/3 = 1, 
and A is 2-convex if and only if A is normal (e = 0) . 

I I I . Let m = 2, so t ha t 2m + 1 = 5 and 2m + 3 = 7. Then œ = 2TT/5 and 

A i • / - i 2-Ki/b 47T i / o 6 7 r i / 5 8 7 r i 7 5 \ T 

^ = diag (1, e , e ,e ,e ' ) + 

0 6 

Lo oJ ' 
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From Theorem 4 we see that A is 2-convex if and only if |e| ^ 2 cos 2TT/O = 
.618; if A is 2-convex then it is convex; and A is 3-convex if and only if A is 
normal (e = 0). This particular example was the point of departure for our 
investigation. 

REFERENCES 

1. P. A. Fillmore and J. P. Williams, Some convexity theorems for matrices, Glasgow Math. J. 
12 (1971), 110-117. 

2. P. R. Halmos, A Hilbert space problem book (Van Nostrand Co., Inc., 1967). 
3. A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 

(1954), 620-630. 
4. M. Marcus and H. Mine, A survey of matrix theory and matrix inequalities (Prindle, Weber 

and Schmidt, Inc., Boston, 1964). 
5. M. Marcus, B .N . Moyls, and R. Westwick, Some extreme value results for indefinite hermitian 

matrices, II, Illinois J. Math. 2 (1958), 408-414. 
6. B. N. Moyls and M. Marcus, Field convexity of a square matrix, Proc. Amer. Math. Soc. G 

(1955), 981-983. 
7. F . D. Murnaghan, On the field of values of a square matrix, Proc. Nat. Acad. Sci. 18 (1932), 

246-248. 

University of California, 
Santa Barbara, California 

https://doi.org/10.4153/CJM-1978-036-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-036-6

