GROUPS WITH THE SAME CHARACTER DEGREES AS SPORADIC ALMOST SIMPLE GROUPS

SEYED HASSAN ALAVI, ASHRAF DANESHKHAH ${ }^{\boxtimes}$ and ALI JAFARI

(Received 22 February 2016; accepted 12 March 2016; first published online 23 May 2016)

Abstract

Let G be a finite group and $\operatorname{cd}(G)$ denote the set of complex irreducible character degrees of G. We prove that if G is a finite group and H is an almost simple group whose socle is a sporadic simple group H_{0} and such that $\operatorname{cd}(G)=\operatorname{cd}(H)$, then $G^{\prime} \cong H_{0}$ and there exists an abelian subgroup A of G such that G / A is isomorphic to H. In view of Huppert's conjecture, we also provide some examples to show that G is not necessarily a direct product of A and H, so that we cannot extend the conjecture to almost simple groups.

2010 Mathematics subject classification: primary 20C15; secondary 20D05.
Keywords and phrases: character degrees, almost simple groups, sporadic simple groups, Huppert's conjecture.

1. Introduction

Let G be a finite group, and let $\operatorname{lrr}(G)$ be the set of complex irreducible characters of G. Denote the set of these character degrees of G by $\operatorname{cd}(G)=\{\chi(1) \mid \chi \in \operatorname{Irr}(G)\}$. When the context allows, the set of irreducible character degrees will be referred to simply as the set of character degrees. There is growing interest in the structural information which can be determined from the character degree set of G, although it is well known that the character degree set of G cannot completely determine the structure of G. For example, the nonisomorphic groups D_{8} and Q_{8} not only have the same set of character degrees, but also share the same character table. The character degree set cannot be used to distinguish between solvable and nilpotent groups. For example, if G is either Q_{8} or S_{3}, then $\operatorname{cd}(G)=\{1,2\}$.

In the late 1990s, Huppert [8] posed a conjecture which, if true, would sharpen the connection between the character degree set of a nonabelian simple group and the structure of the group.

Conjecture 1.1 (Huppert). Let G be a finite group, and let H be a finite nonabelian simple group such that the sets of character degrees of G and H are the same. Then $G \cong H \times A$, where A is an abelian group.

[^0]The conjecture asserts that the nonabelian simple groups are essentially characterised by their character degree set. In addition to verifying this conjecture for many of the simple groups of Lie type, it is also verified for all sporadic simple groups [1, 3, 12]. Note that this conjecture does not extend to solvable groups (for example, Q_{8} and D_{8}), nor to almost simple groups. In fact, there are four groups G of order 240 whose character degrees are the same as $\operatorname{Aut}\left(A_{5}\right)=S_{5}$. These groups are $S L_{2}(5) \cdot \mathbb{Z}_{2}$ (nonsplit), $S L_{2}(5): \mathbb{Z}_{2}$ (split), $A_{5}: \mathbb{Z}_{4}$ (split) and $S_{5} \times \mathbb{Z}_{2}$. If we further assume that $G^{\prime}=A_{5}$, we still have two possibilities for G, namely, $A_{5}: \mathbb{Z}_{4}$ and $S_{5} \times \mathbb{Z}_{2}$. Indeed, the groups $A_{5}: \mathbb{Z}_{2^{n}}$, for $n \geq 1$, have the same character degree set as S_{5}. Although we cannot establish Huppert's conjecture for almost simple groups, we can prove the following result for finite groups whose character degrees are the same as those of almost simple groups with socle a sporadic simple group.

Theorem 1.2. Let G be a finite group and let H be an almost simple group whose socle H_{0} is one of the sporadic simple groups. If $\operatorname{cd}(G)=\operatorname{cd}(H)$, then $G^{\prime} \cong H_{0}$ and $G / Z(G)$ is isomorphic to H.

In order to prove Theorem 1.2, we follow the steps introduced in [8]. In the notation of the theorem, we show that
(1) if G^{\prime} / M is a chief factor of G, then G^{\prime} / M is isomorphic to H_{0};
(2) if $\theta \in \operatorname{Irr}(M)$ with $\theta(1)=1$, then $I_{G^{\prime}}(\theta)=G^{\prime}$ and so $M=M^{\prime}$;
(3) $\quad M=1$ and $G^{\prime} \cong H_{0}$; and
(4) $G / Z(G)$ is isomorphic to H.

In Propositions 3.3-3.6, we will verify steps (1)-(4) and the proof of Theorem 1.2 follows immediately from these statements.

Remark 1.3. Recall that Theorem 1.2, for the case where $H=H_{0}$ is a sporadic simple group, has already been settled (see [1, 3, 9, 12]). Moreover, if H is the automorphism group of one of the Mathieu groups, then Theorem 1.2 is also proved by the authors [2]. Therefore, we only need to consider the remaining cases where $H=\operatorname{Aut}\left(H_{0}\right)$ with H_{0} one of $J_{2}, H S, J_{3}, M c L, H e, S u z, O^{\prime} N, F i_{22}, H N$ and $F i_{24}^{\prime}$.

2. Preliminaries

Throughout this paper, all groups are finite. A group H is said to be an almost simple group with socle H_{0} if $H_{0} \leqslant H \leqslant \operatorname{Aut}\left(H_{0}\right)$, where H_{0} is a nonabelian simple group. If $N \unlhd G$ and $\theta \in \operatorname{Irr}(N)$, then the inertia group $I_{G}(\theta)$ of θ in G is defined by $I_{G}(\theta)=\left\{g \in G \mid \theta^{g}=\theta\right\}$. If the character $\chi=\sum_{i=1}^{k} e_{i} \chi_{i}$, where each χ_{i} is an irreducible character of G and e_{i} is a nonnegative integer, then those χ_{i} with $e_{i}>0$ are called the irreducible constituents of χ. The set of all irreducible constituents of θ^{G} is denoted by $\operatorname{lrr}(G \mid \theta)$. All further notation and definitions are standard as in [7, 10]. For computation, we use GAP [6].

Lemma 2.1 [7, Theorems 19.5 and 21.3]. Suppose that $N \unlhd G$ and $\chi \in \operatorname{Irr}(G)$.
(a) If $\chi_{N}=\theta_{1}+\theta_{2}+\cdots+\theta_{k}$ with $\theta_{i} \in \operatorname{Irr}(N)$, then k divides $|G / N|$. In particular, if $\chi(1)$ is prime to $|G / N|$, then $\chi_{N} \in \operatorname{Irr}(N)$.
(b) (Gallagher's Theorem) If $\chi_{N} \in \operatorname{Irr}(N)$, then $\chi \psi \in \operatorname{Irr}(G)$ for all $\psi \in \operatorname{Irr}(G / N)$.

Lemma 2.2 [7, Theorems 19.6 and 21.2]. Suppose that $N \unlhd G$ and $\theta \in \operatorname{Irr}(N)$. Let $I=I_{G}(\theta)$.
(a) If $\theta^{I}=\sum_{i=1}^{k} \phi_{i}$ with $\phi_{i} \in \operatorname{Irr}(I)$, then $\phi_{i}^{G} \in \operatorname{Irr}(G)$ and $\phi_{i}(1)|G: I| \in \operatorname{cd}(G)$.
(b) If θ extends to $\psi \in \operatorname{Irr}(I)$, then $(\psi \tau)^{G} \in \operatorname{lrr}(G)$ for all $\tau \in \operatorname{lrr}(I / N)$. In particular, $\theta(1) \tau(1)|G: I| \in \operatorname{cd}(G)$.
(c) If $\rho \in \operatorname{Irr}(I)$ such that $\rho_{N}=e \theta$, then $\rho=\theta_{0} \tau_{0}$, where θ_{0} is a character of an irreducible projective representation of I of degree $\theta(1)$ and τ_{0} is a character of an irreducible projective representation of I / N of degree e.
A character $\chi \in \operatorname{Irr}(G)$ is said to be isolated in G if $\chi(1)$ is divisible by no proper nontrivial character degree of G and if no proper multiple of $\chi(1)$ is a character degree of G. In this situation, we also say that $\chi(1)$ is an isolated degree of G. We define a proper power degree of G to be a character degree of G of the form f^{a} for integers f and a, with $a>1$.
Lemma 2.3 [12, Lemma 3]. Let G / N be a solvable factor group of G minimal with respect to being nonabelian. Then two cases can occur.
(a) G / N is an r-group for some prime r. In this case, G has a proper prime power degree.
(b) G / N is a Frobenius group with an elementary abelian Frobenius kernel F / N. Then $f:=|G: F| \in \operatorname{cd}(G)$ and $|F / N|=r^{a}$ for some prime r, and a is the smallest integer such that $r^{a} \equiv 1 \bmod f$.
(1) If $\chi \in \operatorname{lrr}(G)$ such that no proper multiple of $\chi(1)$ is in $\operatorname{cd}(G)$, then either f divides $\chi(1)$, or r^{a} divides $\chi(1)^{2}$.
(2) If $\chi \in \operatorname{Irr}(G)$ is isolated, then $f=\chi(1)$ or r^{a} divides $\chi(1)^{2}$.

Lemma 2.4 [4, Theorems 2-4]. If S is a nonabelian simple group, then there exists a nontrivial irreducible character θ of S that extends to $\operatorname{Aut}(S)$. Moreover:
(a) if S is an alternating group of degree at least seven, then S has two characters of consecutive degrees $n(n-3) / 2$ and $(n-1)(n-2) / 2$ that both extend to $\operatorname{Aut}(S)$;
(b) if S is a simple group of Lie type, then the Steinberg character of S of degree $|S|_{p}$ extends to $\operatorname{Aut}(S)$; and
(c) if S is a sporadic simple group or the Tits group, then S has two nontrivial irreducible characters of coprime degrees which both extend to $\operatorname{Aut}(S)$.
Lemma 2.5 [4, Lemma 5]. Let N be a minimal normal subgroup of G so that $N \cong S^{k}$, where S is a nonabelian simple group. If $\theta \in \operatorname{Irr}(S)$ extends to $\operatorname{Aut}(S)$, then $\theta^{k} \in \operatorname{Irr}(N)$ extends to G.

Lemma 2.6 [8, Lemma 6]. Suppose that $M \unlhd G^{\prime}=G^{\prime \prime}$ and, for every $\lambda \in \operatorname{Irr}(M)$ with $\lambda(1)=1, \lambda^{g}=\lambda$ for all $g \in G^{\prime}$. Then $M^{\prime}=\left[M, G^{\prime}\right]$ and $\left|M / M^{\prime}\right|$ divides the order of the Schur multiplier of G^{\prime} / M.

Lemma 2.7 [11, Theorem D]. Let N be a normal subgroup of a finite group G and let $\varphi \in \operatorname{Irr}(N)$ be G-invariant. Assume that $\chi(1) / \varphi(1)$ is odd, for all $\chi(1) \in \operatorname{Irr}(G \mid \varphi)$. Then G / N is solvable.

3. Proof of the main result

In this section, we prove Theorem 1.2 for an almost simple group H whose socle is one of the sporadic simple groups H_{0} listed in Remark 1.3. For convenience, we first mention some properties of H and H_{0} which can be drawn from ATLAS [5].

Lemma 3.1. Suppose that H_{0} is one of the sporadic simple groups shown in the first column of Table 1 and $H=\operatorname{Aut}\left(H_{0}\right)$. Then:
(a) the outer automorphism group $\operatorname{Out}\left(H_{0}\right)$ of H_{0} is isomorphic to \mathbb{Z}_{2}, and the Schur multiplier $M\left(H_{0}\right)$ of H_{0} is as shown in Table 1;
(b) H has neither consecutive, nor proper power degrees; and
(c) if K is a maximal subgroup of H_{0} whose index in H_{0} divides some degrees $\chi(1)$ of H, then K is given in Table 1 and, for each $K, \chi(1) /\left|H_{0}: K\right|$ divides $t(K)$, where $t(K)$ is as in Table 1.

Proof. Parts (a) and (b) follow from ATLAS [5], and (c) is a simple calculation.
Proposition 3.2. Let S be a sporadic simple group or the Tits group ${ }^{2} F_{4}(2)^{\prime}$ whose character degrees divide some degrees of an almost simple group H with socle a sporadic simple group H_{0}. Then either S is isomorphic to H_{0} or (H, S) is as in Table 2.

Proof. The proof follows from ATLAS [5].
Proposition 3.3. Let G be a finite group and let H be an almost simple group whose socle is a sporadic simple group H_{0}. If $\mathrm{cd}(G)=\operatorname{cd}(H)$, then the chief factor G^{\prime} / M of G is isomorphic to H_{0}.

Proof. We first apply Remark 1.3, so that we may assume that $H=\operatorname{Aut}\left(H_{0}\right)$, where H_{0} is one of the sporadic groups $J_{2}, J_{3}, M c L, H S, H e, H N, F i_{22}, F i_{24}^{\prime}, O^{\prime} N$ and $S u z$.

We now prove that $G^{\prime}=G^{\prime \prime}$. Assume the contrary. Then there is a normal subgroup N of G, where N is a maximal such that G / N is a nonabelian solvable group. Since G has no prime power degree, by Lemma 2.3, G / N is a Frobenius group with kernel F / N of order r^{a}. In this case, $1<f=|G: F| \in \operatorname{cd}(G)$.

Suppose that H_{0} is not J_{2} and Suz. Then G has three isolated coprime degrees, as in Table 3. But Lemma 2.3(b)(2) implies that f must be equal to these degrees, which is impossible.

Suppose $H_{0}=$ Suz. Let $r=2$. For $1 \leqslant a \leqslant 4, r^{a}-1=2^{a}-1$ is less than the smallest nontrivial degree, 143, of G. By Lemma 2.3(b)(2), f must divide both degrees

Table 1. Properties of some sporadic simple groups H_{0} and their automorphism groups.

| H_{0} | $\operatorname{Aut}\left(H_{0}\right)$ | $M\left(H_{0}\right)$ | K | $t(K)$ |
| :--- | :--- | :---: | :--- | :--- | :--- |
| J_{2} | $J_{2}: 2$ | \mathbb{Z}_{2} | $U_{3}(3)$ | 3 |
| $H S$ | $H S: 2$ | \mathbb{Z}_{2} | M_{22} | 2^{5} |
| | | | $U_{3}(5): 2$ | 6 or 8 |
| J_{3} | $J_{3}: 2$ | \mathbb{Z}_{3} | - | - |
| $M c L$ | $M c L: 2$ | \mathbb{Z}_{3} | $U_{4}(3)$ | $5 \cdot 7$ or $2^{2} \cdot 3 \cdot 5$ |
| $H e$ | $H e: 2$ | 1 | $S_{4}(4): 2$ | 1 |
| $S u z$ | $S u z: 2$ | \mathbb{Z}_{6} | $G_{2}(4)$ | $3^{2} \cdot 13$ or $3 \cdot 5 \cdot 7$ |
| | | | $U_{5}(2)$ | 5 |
| $O^{\prime} N$ | $O^{\prime} N: 2$ | \mathbb{Z}_{3} | - | - |
| $F i_{22}$ | $F i_{22}: 2$ | \mathbb{Z}_{6} | $2 \cdot U_{6}(2)$ | $2^{2} \cdot 3 \cdot 5 \cdot 11,2^{4} \cdot 5 \cdot 7,3 \cdot 5 \cdot 11$ or 3^{5} |
| | | | $O_{8}^{+}(2): S_{3}$ | 6 |
| $H N$ | $H N: 2$ | 1 | $2^{10}: M_{22}$ | 6 |
| $F i_{24}^{\prime}$ | $F i_{24}^{\prime}: 2$ | \mathbb{Z}_{3} | $2 \cdot F i_{23}$ | - |
| | | | | $2^{4} \cdot 5^{2} \cdot 7 \cdot 17 \cdot 23,2 \cdot 3^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 17$, |
| | | | | $2^{2} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \cdot 23,2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \cdot 23$, |
| | | | | $11 \cdot 13 \cdot 17 \cdot 23$ |

The symbol '-' means that there is no subgroup K satisfying these conditions in Lemma 3.1(c).
$75075=3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$ and $5940=2^{2} \cdot 3^{3} \cdot 5 \cdot 11$, and so f divides $3 \cdot 5 \cdot 11$. But no divisor of $3 \cdot 5 \cdot 11$ is a degree of G. Therefore $r \neq 2$. Now we apply Lemma 2.3(b)(2) to the isolated degrees $66560=2^{10} \cdot 5 \cdot 13$ and $133056=2^{6} \cdot 3^{3} \cdot 7 \cdot 11$. Since $r \neq 2$, it follows that f must be equal to both of these degrees, which is impossible.

Suppose, finally, that $H_{0}=J_{2}$. We make the same argument as in the case of Suz. If $r=5$, then, by Lemma 2.3(b)(2), f must divide both $2^{5} \cdot 3^{2}$ and $2 \cdot 3^{3} \cdot 7$, and so f divides $2 \cdot 3^{2}$, but G has no degree which divides $2 \cdot 3^{2}$. Thus $r \neq 5$. Now we apply Lemma 2.3(b)(2) to the isolated degrees $2^{5} \cdot 5$ and $5^{2} \cdot 7$. Again, f must be equal to both of these degrees, which is impossible.

We conclude that $G^{\prime}=G^{\prime \prime}$. Let G^{\prime} / M be a chief factor of G. As G^{\prime} is perfect, G^{\prime} / M is nonabelian and so G^{\prime} / M is isomorphic to S^{k} for some nonabelian simple group S and some integer $k \geq 1$.

We first show that $k=1$. Assume the contrary. Then, by Lemma 2.4, S possesses a nontrivial irreducible character θ extendible to $\operatorname{Aut}(S)$, and so Lemma 2.5 implies that $\theta^{k} \in \operatorname{Irr}\left(G^{\prime} / M\right)$ extends to G / M, that is, G has a proper power degree contradicting Lemma 3.1(b). Therefore $k=1$ and $G^{\prime} / M \cong S$.

Suppose S is an alternating group of degree $n \geq 7$. By Lemma 2.4(a), S has nontrivial irreducible characters θ_{1} and θ_{2} with $\theta_{1}(1)=n(n-3) / 2$ and $\theta_{2}(1)=\theta_{1}(1)+$ $1=(n-1)(n-2) / 2$ and both θ_{1} and θ_{2} extend to $\operatorname{Aut}(S)$. Thus G possesses two consecutive nontrivial character degrees, which contradicts Lemma 3.1(b).

Table 2. Sporadic simple groups S (and the Tits group) and almost simple groups H for Proposition 3.2.

H	S
$M_{12}, M_{12}: 2$	M_{11}, M_{12}
M_{23}	M_{11}, M_{23}
M_{24}	M_{11}, M_{24}
J_{4}	$M_{11}, M_{12}, M_{22}, J_{4}$
$H S, H S: 2$	$M_{11}, M_{22}, H S$
$M c L, M c L: 2$	$M_{11}, M c L$
$S u z, S u z: 2$	$M_{11}, M_{12}, M_{22}, J_{2}, S u z,{ }^{2} F_{4}(2)^{\prime}$
$C o_{3}$	$M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, C o_{3}$
$C o_{2}$	$M_{11}, M_{12}, M_{22}, M_{23}, M_{24} J_{2}, C o_{2}$
$C o_{1}$	$M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, M c L, J_{2}, H S, C o_{1}, C o_{3},{ }^{2} F_{4}(2)^{\prime}$
$F i_{22}, F i_{22}: 2$	$M_{11}, M_{12}, M_{22}, J_{2}, F i_{22}$
$F i_{23}$	$M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, H S, J_{2}, F i_{23},{ }^{2} F_{4}(2)^{\prime}$
$F i_{24}^{\prime}, F i_{24}^{\prime}: 2$	$M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, H e, J_{2}, F i_{24}^{\prime},{ }^{2} F_{4}(2)^{\prime}$
$T h$	$J_{2}, T h,{ }^{2} F_{4}(2)^{\prime}$
$R u$	$J_{2}, R u,{ }^{2} F_{4}(2)^{\prime}$
$L y$	$M_{11}, M_{12}, J_{2}, L y$
$H N, H N: 2$	$M_{11}, M_{12}, M_{22}, J_{1}, J_{2}, H S, H N$
$O^{\prime} N, O^{\prime} N: 2$	$M_{11}, M_{12}, M_{22}, O^{\prime} N$
B	$M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, J_{1}, J_{2}, J_{3}, H S, M c L, S u z, F i_{22}, C o_{3}$,
	$C o_{2}, T h, B,{ }^{2} F_{4}(2)^{\prime}$
M	$M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, J_{1}, J_{2}, J_{3}, H S, M c L, S u z, F i_{22}, C o_{3}$,
	$C o_{2}, H e, O^{\prime} N, R u, M,{ }^{2} F_{4}(2)^{\prime}$

Table 3. Some isolated degrees of automorphism groups of sporadic simple groups.

H	$\chi_{1}(1)$	$\chi_{2}(1)$	$\chi_{3}(1)$
$H S: 2$	$825=3 \cdot 5^{2} \cdot 11$	$1792=2^{8} \cdot 7$	$2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$
$J_{3}: 2$	$170=2 \cdot 5 \cdot 17$	$324=2^{2} \cdot 3^{4}$	$1215=3^{5} \cdot 5$
$M c L: 2$	$1750=2 \cdot 5^{3} \cdot 7$	$4500=2^{2} \cdot 3^{2} \cdot 5^{3}$	$5103=3^{6} \cdot 7$
$H e: 2$	$1920=2^{7} \cdot 3 \cdot 5$	$2058=2 \cdot 3 \cdot 7^{3}$	$20825=5^{2} \cdot 7^{2} \cdot 17$
$O^{\prime} N: 2$	$10944=2^{6} \cdot 3^{2} \cdot 19$	$26752=2^{7} \cdot 11 \cdot 19$	$116963=7^{3} \cdot 11 \cdot 31$
$F i_{22}: 2$	$360855=3^{8} \cdot 5 \cdot 11$	$577368=2^{3} \cdot 3^{8} \cdot 11$	$1164800=2^{9} \cdot 5^{2} \cdot 7 \cdot 13$
$H N: 2$	$1575936=2^{10} \cdot 3^{4} \cdot 19$	$2784375=3^{4} \cdot 5^{5} \cdot 11$	$3200000=2^{10} \cdot 5^{5}$
$F i_{24}^{\prime}: 2$	$159402880=2^{7} \cdot 5$	$5775278080=2^{14} \cdot 5$	$156321775827=3^{14} \cdot 7^{2}$
	$\cdot 7^{2} \cdot 13 \cdot 17 \cdot 23$	$\cdot 11 \cdot 13 \cdot 17 \cdot 29$	$\cdot 23 \cdot 29$

If $S \neq{ }^{2} F_{4}(2)^{\prime}$ is a simple group of Lie type in characteristic p, then the Steinberg character of S of degree $|S|_{p}$ extends to $\operatorname{Aut}(S)$ so that G possesses a nontrivial prime power degree, which contradicts Lemma 3.1(b).

Table 4. Particular degrees of some sporadic simple groups S and the Tits group.

S	M_{11}	M_{12}	M_{22}	M_{23}	M_{24}	J_{1}	J_{2}	$H S$	$H e$	${ }^{2} F_{4}(2)^{\prime}$
Degree	10	54	21	22	23	76	36	22	1275	27

Finally, if S is a sporadic simple group or the Tits group ${ }^{2} F_{4}(2)^{\prime}$, then the irreducible character degrees of S divide some degrees of H, and so, by Proposition 3.2, $S \cong H_{0}$ or (H, S) is as in Table 2. In the later case, for a given H as in the first row of Table 2, assume that S is not isomorphic to H_{0}. Then we apply Lemma 2.4(c). For each possible S, as shown in the first row of Table $4, G$ possesses an irreducible character of the degree shown in the second row of Table 4. This leads us to a contradiction. Therefore $S \cong H_{0}$, and hence G^{\prime} / M is isomorphic to H_{0}.

Proposition 3.4. Let G be a finite group with $\operatorname{cd}(G)=\operatorname{cd}(H)$, where H is an almost simple group whose socle is a sporadic simple group H_{0}. Suppose that the chieffactor G^{\prime} / M is isomorphic to H_{0}. If $\theta \in \operatorname{Irr}(M)$ with $\theta(1)=1$, then $I_{G^{\prime}}(\theta)=G^{\prime}$.
Proof. By Remark 1.3, we may assume that $H=\operatorname{Aut}\left(H_{0}\right)$, where H_{0} is one of the sporadic groups $J_{2}, J_{3}, M c L, H S, H e, H N, F i_{22}, F i_{24}^{\prime}, O^{\prime} N$ and $S u z$.

Suppose that $I=I_{G^{\prime}}(\theta)<G^{\prime}$. Let $\theta^{I}=\sum_{i=1}^{k} \phi_{i}$, where $\phi_{i} \in \operatorname{Irr}(I)$ for $i=1,2, \ldots, k$. Assume that U / M is a maximal subgroup of $G^{\prime} / M \cong H_{0}$ containing I / M and set $t:=$ $|U: I|$. It follows, from Lemma 2.2(a), that $\phi_{i}(1)\left|G^{\prime}: I\right| \in \operatorname{cd}\left(G^{\prime}\right)$, and so $t \phi_{i}(1)\left|G^{\prime}: U\right|$ divides some degrees of G. Then $\left|G^{\prime}: U\right|$ must divide some character degrees of G. By Lemma 3.1(c), for each H_{0} in the first column of Table $1, U / M$ must be one of the subgroups K listed in the fifth column of Table 1 and $t \phi_{i}(1)\left|G^{\prime}: U\right|$ must divide the positive integers $t(K)$ in the sixth column of Table 1.

If H_{0} is $J_{3}, O^{\prime} N$ or $H N$, then, by Lemma 3.1(b), there is no such subgroup U / M, and so $I_{G^{\prime}}(\theta)=G^{\prime}$ in these cases. We now discuss each remaining case separately.

Case 1. $H_{0}=J_{2}$. By Lemma 3.1(b), $U / M \cong U_{3}(3)$ and $t \phi_{i}(1)$ divides three, for all i. Since $U_{3}(3)$ has no subgroup of index three [5, page 14], it follows that $t=1$, that is, $I / M=U / M \cong U_{3}(3)$. Since $U_{3}(3)$ has trivial Schur multiplier, it follows, from [10, Theorem 11.7], that θ extends to $\theta_{0} \in \operatorname{Irr}(I)$ and so, by Lemma 2.2(b), $\left(\theta_{0} \tau\right)^{G^{\prime}} \in \operatorname{Irr}\left(G^{\prime}\right)$, for all $\tau \in \operatorname{lrr}(I / M)$. For $\tau(1)=27 \in \operatorname{cd}\left(U_{3}(3)\right)$, we find that $3 \cdot 27 \cdot \theta_{0}(1)$ divides some degrees of G, which is a contradiction. Therefore θ is G^{\prime}-invariant.
Case 2. $H_{0}=H S$. By Lemma 3.1(b), one of the following holds.
(i) $\quad U / M \cong M_{22}$ and $t \phi_{i}(1)$ divides 2^{5}, for all i.

As $U / M \cong M_{22}$ does not have any subgroup of index 2^{m} for $m=1, \ldots, 5$, by [5, pages $80-81], t=1$ and $I / M=U / M \cong M_{22}$ and $\phi_{i}(1)$ divides 2^{5}. Assume, first, that $e_{j}=1$ for some j. Then θ extends to $\varphi_{j} \in \operatorname{Irr}(I)$. By Lemma 2.1(b), $\tau \varphi_{j}$ is an irreducible constituent of θ^{I} for every $\tau \in \operatorname{lrr}(I / M)$, so $\tau(1) \varphi_{j}(1)=\tau(1)$ divides 2^{5}. Now we choose $\tau \in \operatorname{Irr}(I / M)=\operatorname{Irr}\left(M_{22}\right)$ with $\tau(1)=21$ and find that this degree does not divide 2^{5}, which is a contradiction. Therefore each $e_{i}>1$ and each e_{i} is the degree of
a nontrivial proper irreducible projective representation of M_{22}. As $\phi_{i}(1)=e_{i} \theta(1)=e_{i}$, each e_{i} divides 2^{5}. But, according to [5, pages 39-41], there is no such projective degree.
(ii) $\quad U / M \cong U_{3}(5): 2$ and $t \phi_{i}(1)$ divides six or eight, for all i.

Let $M \leqslant W \leqslant U$ such that $W / M \cong U_{3}(5)$. Then $W \unlhd U$. Assume that $W \not \approx I$. Since $t=$ $|U: I|=|U: W I| \cdot|W I: I|$ and $|W I: I|=|W: W I|$, the index of some maximal subgroup of $W / M \cong U_{3}(5)$ divides t and so divides six or eight, which is a contradiction, by [5, pages $34-35$]. Thus $W \leqslant I \leqslant U$. Let $M \leqslant V \leqslant W$ such that $V / M \cong M_{10}$. Since θ is V-invariant and the Schur multiplier of V / M is trivial, θ extends to $\theta_{0} \in \operatorname{Irr}(V)$. By Lemma 2.1(b), $\tau \theta_{0}$ is an irreducible constituent of θ^{V} for every $\tau \in \operatorname{lrr}(V / M)$. Choose $\tau \in \operatorname{Irr}(V / M)$ with $\tau(1)=16$ and let $\gamma=\tau \theta_{0} \in \operatorname{Irr}(V \mid \theta)$. If $\chi \in \operatorname{Irr}(I)$ is an irreducible constituent of γ^{I}, then $\chi(1) \geqslant \gamma(1)$, by Frobenius reciprocity [10, Lemma 5.2], and also $\chi(1)$ divides six or eight, which implies that $16=\gamma(1) \leqslant \chi(1) \leqslant 8$, which is contradiction.

Case 3. $H_{0}=M c L$. By Lemma 3.1(b), $U / M \cong U_{4}(3)$ and $t \phi_{i}(1)$ divides 35 or 60 , for all i. By inspecting the list of maximal subgroups of $U / M \cong U_{4}(3)$ in [5, pages 5259], no index of a maximal subgroup of $U_{4}(3)$ divides 35 or 60 , and so $t=1$. Thus $I / M=U / M \cong U_{4}(3)$ and $\phi_{i}(1)$ divides 35 or 60 , for all i. First, assume that $e_{j}=1$, for some j. Then θ extends to $\varphi_{j} \in \operatorname{lrr}(I)$. It follows, from Lemma 2.1(b), that $\tau \varphi_{j}$ is an irreducible constituent of θ^{I} for every $\tau \in \operatorname{lrr}(I / M)$, so $\tau(1) \varphi_{j}(1)=\tau(1)$ divides 35 or 60 . Now let $\tau \in \operatorname{lrr}(I / M)=\operatorname{Irr}\left(U_{4}(3)\right)$ with $\tau(1)=21$. This degree does not divide 35 or 60 , which is a contradiction. Therefore, for each $i, e_{i}>1$ and e_{i} is the degree of a nontrivial proper irreducible projective representation of $U_{4}(3)$. As $\phi_{i}(1)=e_{i} \theta(1)=e_{i}$, each e_{i} divides 35 or 60, and it follows, from [5, pages 53-59], that $e_{i} \in\{6,15,20,35\}$. Let $M \leqslant V \leqslant U$ such that $V / M \cong U_{3}(3)$. Since θ is V-invariant and the Schur multiplier of V / M is trivial, θ extends to $\theta_{0} \in \operatorname{Irr}(V)$. It follows, from Lemma 2.1(b), that $\tau \theta_{0}$ is an irreducible constituent of θ^{V} for every $\tau \in \operatorname{lrr}(V / M)$. Take $\tau \in \operatorname{Irr}(V / M)$ with $\tau(1)=32$ and let $\gamma=\tau \theta_{0} \in \operatorname{Irr}(V \mid \theta)$. If $\chi \in \operatorname{Irr}(I)$ is an irreducible constituent of γ^{I}, then $\chi(1) \geq \gamma(1)=32$, by Frobenius reciprocity [10, Lemma 5.2]. This shows that $e_{i}=35$, for all i, that is, $\varphi_{i}(1) / \theta(1)$ divides 35 , and so Lemma 2.7 implies that $I / M \cong U_{4}(3)$ is solvable, which is a contradiction.
Case 4. $H_{0}=H e$. By Lemma 3.1(b), $U / M \cong S_{4}(4): 2$ and $t=1$ or, equivalently, $I / M=U / M \cong S_{4}(4): 2$. Moreover, $\phi_{i}(1)=1$, for all i. Then θ extends to $\phi_{i} \in \operatorname{Irr}(I)$, and so, by Lemma 2.2(b), $2058 \tau(1)$ divides some degrees of G. For $\tau(1)=510$, this gives a contradiction. Therefore $I_{G^{\prime}}(\theta)=G^{\prime}$.

Case 5. $H_{0}=$ Suz. By Lemma 3.1(b), one of the following holds.
(i) $\quad U / M \cong G_{2}(4)$ and $t \phi_{i}(1)$ divides $3^{2} \cdot 13$ or $3 \cdot 5 \cdot 7$, for all i.

By inspecting the list of maximal subgroups of $G_{2}(4)$ in [5, pages $97-99$], no index of a maximal subgroup of $G_{2}(4)$ divides $3^{2} \cdot 13$ or $3 \cdot 5 \cdot 7$, so $t=1$ and $I / M=U / M \cong$ $G_{2}(4)$. Note that $\phi_{i}(1) / \theta(1)$ divides $3^{2} \cdot 13$ or $3 \cdot 5 \cdot 7$, for all i. If $\phi_{i}(1) / \theta(1)>1$,
for all i, then we apply Lemma 2.7 to conclude that I / M is solvable, which is a contradiction. Therefore, $\varphi_{i}(1)=\theta(1)=1$, in which case, θ extends to φ_{i}, for some i. It follows, from Lemma 2.1(b), that $\tau \varphi_{i}$ is an irreducible constituent of θ^{I} for every $\tau \in \operatorname{Irr}(I / M)$, so $\tau(1) \varphi_{i}(1)=\tau(1)$ divides $3^{2} \cdot 13$ or $3 \cdot 5 \cdot 7$. We can choose $\tau \in \operatorname{Irr}(I / M)=\operatorname{Irr}\left(G_{2}(4)\right)$ with $\tau(1)=65$, and this degree does not divide $3^{2} \cdot 13$ or $3 \cdot 5 \cdot 7$, which is a contradiction.
(ii) $\quad U / M \cong U_{5}(2)$ and $t \phi_{i}(1)$ divides 5 , for all i.

As $U / M \cong U_{5}(2)$ does not have any subgroup of index five, by [5, pages 72-73], $t=1$ and $I / M=U / M \cong U_{5}(2)$. Thus $\phi_{i}(1) / \theta(1)$ divides five, for all i. Since $U_{5}(2)$ has trivial Schur multiplier, it follows that θ extends to $\theta_{0} \in \operatorname{Irr}(I)$ and, by Lemma 2.2(b), $\left(\theta_{0} \tau\right)^{G^{\prime}} \in \operatorname{Irr}\left(G^{\prime}\right)$, for all $\tau \in \operatorname{Irr}(I / M)$. For $\tau(1)=300 \in \operatorname{cd}\left(U_{5}(2)\right)$, we find that $5 \cdot 300$. $\theta_{0}(1)=2^{2} \cdot 3 \cdot 5^{3}$ divides some degrees of G, which is a contradiction.
Case 6. $H_{0}=F i_{22}$. By Lemma 3.1(b), one of the following holds.
(i) $\quad U / M \cong 2 \cdot U_{6}(2)$ and $t \varphi_{i}(1)$ divides one of $3 \cdot 5 \cdot 11,2^{2} \cdot 3 \cdot 5 \cdot 11,2^{4} \cdot 5 \cdot 7$ or 3^{5}, for all i.
As U / M is perfect, the centre of U / M lies in every maximal subgroup of U / M and so the indices of maximal subgroups of U / M and those of $U_{6}(2)$ are the same. By inspecting the list of maximal subgroups of $U_{6}(2)$ in [5, pages 115-121], the index of a maximal subgroup of $U_{6}(2)$ does not divide $3 \cdot 5 \cdot 11,2^{2} \cdot 3 \cdot 5 \cdot 11,2^{4} \cdot 5 \cdot 7$ or 3^{5}. Thus $t=1$ and hence $I=U$. Let $M \leqslant L \leqslant I$ such that L / M is isomorphic to the centre of I / M and let $\lambda \in \operatorname{lrr}(L \mid \theta)$. As $L \unlhd I$, for any $\varphi \in \operatorname{lrr}(I \mid \lambda), \varphi(1)$ divides $3 \cdot 5 \cdot 11$, $2^{2} \cdot 3 \cdot 5 \cdot 11,2^{4} \cdot 5 \cdot 7$ or 3^{5}. As above, we deduce that λ is I-invariant. Let $L \leqslant T \leqslant I$ such that $T / L \cong U_{5}(2)$. It follows that λ is T-invariant and, since the Schur multiplier of $T / L \cong U_{5}(2)$ is trivial, λ extends to $\lambda_{0} \in \operatorname{lrr}(T)$. By Lemma 2.1(b), $\tau \lambda_{0}$ is an irreducible constituent of λ^{T} for every $\tau \in \operatorname{Irr}(T / L)$. Choose $\tau \in \operatorname{Irr}(T / L)$ with $\tau(1)=2^{10}$ and let $\gamma=\tau \lambda_{0} \in \operatorname{Irr}(T \mid \lambda)$. If $\chi \in \operatorname{Irr}(I)$ is any irreducible constituent of γ^{I}, then $\chi(1) \geq \gamma(1)$, by Frobenius reciprocity [10, Lemma 5.2], and $\chi(1)$ divides $3 \cdot 5 \cdot 11,2^{2} \cdot 3 \cdot 5 \cdot 11$, $2^{4} \cdot 5 \cdot 7$ or 3^{5}, which implies that $\gamma(1) 2^{10} \lambda(1) \leqslant \chi(1) \leqslant 660$, which is impossible.
(ii) $U / M \cong O_{8}^{+}(2): S_{3}$ and $t \varphi_{i}(1)$ divides six, for all i.

Let $M \unlhd W \unlhd U$ such that $W / M \cong O_{8}^{+}(2)$. Then $M \unlhd I W \unlhd I$ and $M \unlhd I W \leqslant W$. Assume that $W \nless I$. Then $I \leq W I \leqslant U$ and $t=|U: I|=|U: W I| \cdot|W I: I|$. Now $|W I: I|=\mid W:$ $W I \mid>1$ and t is divisible by $|W: W \cap I|$. As $W / M \cong O_{8}^{+}(2), t$ is divisible by the index of some maximal subgroup of $O_{8}^{+}(2)$. Thus some index of a maximal subgroup of $O_{8}^{+}(2)$ divides six, which is impossible, by [5, pages $\left.85-88\right]$. Thus $W \leqslant I \leqslant U$. Write $\theta^{W}=\sum_{i=1}^{l} f_{i} \mu_{i}$, where $\mu_{i} \in \operatorname{lrr}(W \mid \theta)$ for $i=1,2, \ldots, l$. As $W \unlhd I, \mu_{i}(1)$ divides six for every i. If $f_{j}=1$ for some j, then θ extends to $\theta_{0} \in \operatorname{Irr}(W)$. By Lemma 2.1(b), $\tau \theta_{0}$ is an irreducible constituent of θ^{W} for every $\tau \in \operatorname{Irr}(W / M)$, and so $\tau(1) \theta_{0}(1)=\tau(1)$ divides six. However we can choose $\tau \in \operatorname{Irr}(W / M)$ with $\tau(1)=28$ and this degree does not divide six. Therefore $f_{i}>1$, for all i. We deduce that, for each i, f_{i} is the degree of a nontrivial proper irreducible projective representation of $O_{8}^{+}(2)$. As $\mu_{i}(1)=f_{i} \theta(1)=f_{i}$,
each f_{i} divides six. This is impossible as the smallest nontrivial proper projective degree of $O_{8}^{+}(2)$ is eight.
(iii) $U / M \cong 2^{10}: M_{22}$ and $t \varphi_{i}(1)$ divides six, for all i.

Let $M \unlhd L \unlhd U$ such that $L / M \cong 2^{10}$. We have that $L \unlhd U$ and $U / L \cong M_{22}$. The same argument as in part (ii) shows that $U=I L$ since the minimal index of a maximal subgroup of M_{22} is 22 , by [5, pages 39-41]. Hence $U / L \cong I / L_{1} \cong M_{22}$, where $L_{1}=L \cap I \unlhd I$. Let $\lambda \in \operatorname{Irr}\left(L_{1} \mid \theta\right)$. Then, for any $\varphi \in \operatorname{Irr}(I \mid \lambda), \varphi(1)$ divides six. We conclude that λ is I-invariant as the index of a maximal subgroup of $I / L_{1} \cong M_{22}$ is at least 22. Write $\lambda^{I}=\sum_{i=1}^{l} f_{i} \mu_{i}$, where $\mu_{i} \in \operatorname{lrr}(I \mid \lambda)$ for $i=1,2, \ldots, l$. Then $\mu_{i}(1)$ divides six, for each i. If $f_{j}=1$ for some j, then λ extends to $\lambda_{0} \in \operatorname{Irr}(I)$. By Lemma 2.1(b), $\tau \lambda_{0}$ is an irreducible constituent of λ^{I} for every $\tau \in \operatorname{lrr}\left(I / L_{1}\right)$, and so $\tau(1) \lambda_{0}(1)=\tau(1)$ divides six. However we can choose $\tau \in \operatorname{Irr}\left(I / L_{1}\right)$ with $\tau(1)=21$ and this degree does not divide 6 . Therefore $f_{i}>1$, for all i. We deduce that, for each i, f_{i} is the degree of a nontrivial proper irreducible projective representation of M_{22}. As $\mu_{i}(1)=f_{i} \lambda(1)=f_{i}$, each f_{i} divides 6. However this is impossible as the smallest nontrivial proper projective degree of M_{22} is ten.

Case 7. $H_{0}=F i_{24}^{\prime}$. By Lemma 3.1(b), $U / M \cong 2 . F i_{23}$ and, for each $i, t \varphi_{i}(1)$ divides one of the numbers in the set \mathcal{A}, defined as

$$
\begin{aligned}
\mathcal{A}:= & \left\{2^{4} \cdot 5^{2} \cdot 7 \cdot 17 \cdot 23,2 \cdot 3^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 17,2^{2} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \cdot 23,\right. \\
& \left.2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \cdot 23,2^{4} \cdot 3 \cdot 13 \cdot 17 \cdot 23,2^{2} \cdot 7 \cdot 11 \cdot 17 \cdot 23,11 \cdot 13 \cdot 17 \cdot 23\right\} .
\end{aligned}
$$

By inspecting the list of maximal subgroups of $F i_{23}$ in [5, pages 177-180], the index of a maximal subgroup of U / M divides no number in \mathcal{A}. Thus $t=1$ and $I=U$. As the Schur multiplier of $I / M \cong F i_{23}$ is trivial and θ is I-invariant, we deduce, from [10, Theorem 11.7], that θ extends to $\theta_{0} \in \operatorname{Irr}(I)$. By Lemma 2.1(b), $\tau \theta_{0}$ is an irreducible constituent of θ^{I} for every $\tau \in \operatorname{lrr}(I / M)$, and so $\tau(1) \theta_{0}(1)=\tau(1)$ divides one of the numbers in \mathcal{A}. Choose $\tau \in \operatorname{Irr}(I / M)=\operatorname{Irr}\left(F i_{23}\right)$ with $\tau(1)=559458$ 900. This degree divides none of the numbers in \mathcal{A}, which is a contradiction.

Proposition 3.5. Let G be a finite group with $\operatorname{cd}(G)=\operatorname{cd}(H)$, where H is an almost simple group whose socle is a sporadic simple group H_{0}. If G^{\prime} / M is the chief factor of G, then $M=1$, and hence $G^{\prime} \cong H_{0}$.

Proof. Here we deal with the groups mentioned in Remark 1.3, namely, $H=\operatorname{Aut}\left(H_{0}\right)$, where H_{0} is one of the sporadic groups $J_{2}, J_{3}, M c L, H S, H e, H N, F i_{22}, F i_{24}^{\prime}, O^{\prime} N$ and Suz. It follows, from Proposition 3.3, that G^{\prime} / M is isomorphic to H_{0} and, by Proposition 3.4, every linear character θ of M is G^{\prime}-invariant. By applying Lemma 2.6, $\left|M / M^{\prime}\right|$ divides the order of Schur Multiplier $\mathrm{M}\left(H_{0}\right)$ (see Table 1). Therefore, G^{\prime} / M^{\prime} is isomorphic to either H_{0} or one of the groups in the third column of Table 5. In the latter case, we observe, by ATLAS [5], that G^{\prime} / M^{\prime} has a degree shown in the fifth column of Table 5 which must divide some degrees of H_{0}, which is a contradiction. Therefore, $\left|M / M^{\prime}\right|=1$ or, equivalently, M is perfect.

Table 5. Degrees of some groups related to sporadic simple groups H_{0} in Proposition 3.5.

H_{0}	Aut $\left(H_{0}\right)$	G^{\prime} / M^{\prime}	Degree of $\operatorname{Aut}\left(H_{0}\right)$	Degree of G^{\prime} / M^{\prime}	Largest degree of H_{0}
J_{2}	$J_{2}: 2$	$2 \cdot J_{2}$	28	64	336
$H S$	$H S: 2$	$2 \cdot H S$	308	616	3200
J_{3}	$J_{3}: 2$	$3 \cdot J_{3}$	170	1530	3078
$M c L$	$M c L: 2$	$3 \cdot M c L$	1540	1980	10395
$H e$	$H e: 2$	-	102	-	23324
$S u z$	$S u z: 2$	$2 \cdot S u z$,	10010	60060	248832
		$3 \cdot S u z$,			
$O^{\prime} N$	$O^{\prime} N: 2$	$6 \cdot S u z$	$3 \cdot O^{\prime} N$	51832	63612

The symbol '-' means that there is only one possibility for G^{\prime} / M^{\prime}, which is H_{0}.

Suppose that M is nonabelian, and let $N \leqslant M$ be a normal subgroup of G^{\prime} such that M / N is a chief factor of G^{\prime}. Then $M / N \cong S^{k}$, for some nonabelian simple group S. It follows, from Lemma 2.4, that S possesses a nontrivial irreducible character φ such that $\varphi^{k} \in \operatorname{Irr}(M / N)$ extends to G^{\prime} / N. By Lemma 2.1(b), we must have $\varphi(1)^{k} \tau(1) \in \operatorname{cd}\left(G^{\prime} / N\right) \subseteq \operatorname{cd}\left(G^{\prime}\right)$, for all $\tau \in \operatorname{lrr}\left(G^{\prime} / M\right)$. Now we can choose $\tau \in G^{\prime} / M$ such that $\tau(1)$ is the largest degree of H_{0}, as in the last column of Table 5 and, since φ is nontrivial, $\varphi(1)^{k} \tau(1)$ divides no degrees of G, which is a contradiction. Therefore, M is abelian. Since $M=M^{\prime}$, we conclude that $M=1$ and G^{\prime} is isomorphic to H_{0}.

Proposition 3.6. Let G be a finite group with $\operatorname{cd}(G)=\operatorname{cd}(H)$, where H is an almost simple group whose socle is a sporadic simple group H_{0}. Then $G / Z(G) \cong H$.

Proof. By Remark 1.3, we only consider the case where $H=\operatorname{Aut}\left(H_{0}\right)$ with H_{0} one of the sporadic groups $J_{2}, J_{3}, M c L, H S, H e, H N, F i_{22}, F i_{24}^{\prime}, O^{\prime} N$ and $S u z$. According to Proposition 3.5, G^{\prime} is isomorphic to H_{0}. Let $A:=C_{G}\left(G^{\prime}\right)$. Since $G^{\prime} \cap A=1$ and $G^{\prime} A \cong G^{\prime} \times A$, it follows that $G^{\prime} \cong G^{\prime} A / A \unlhd G / A \leqq \operatorname{Aut}\left(G^{\prime}\right)$. Thus G / A is isomorphic to H_{0} or $\operatorname{Aut}\left(H_{0}\right)=H_{0}: 2$. In the case where G / A is isomorphic to H_{0}, we must have $G \cong A \times H_{0}$. This is impossible as G possesses a character with the degree shown in the fourth column of Table 5, but H_{0} has no such degree. Therefore, G / A is isomorphic to Aut $\left(H_{0}\right)$. Note, also, that $G^{\prime} \cap A=1$. Thus $[G, A]=1$ and $A=Z(G)$, as claimed.

Acknowledgements

The authors are grateful to the anonymous referees and the editor for careful reading of the manuscript and for corrections and suggestions.

References

[1] S. H. Alavi, A. Daneshkah, H. P. Tong-Viet and T. P. Wakefield, 'Huppert's conjecture for $F i_{23}$ ', Rend. Semin. Mat. Univ. Padova 126 (2011), 201-211.
[2] S. H. Alavi, A. Daneshkhah and A. Jafari, 'On groups with the same character degrees as almost simple groups with socle the Mathieu groups', preprint arXiv:1511.04129, November, 2015.
[3] S. H. Alavi, A. Daneshkhah, H. P. Tong-Viet and T. P. Wakefield, 'On Huppert's conjecture for the Conway and Fischer families of sporadic simple groups', J. Aust. Math. Soc. 94(3) (2013), 289-303.
[4] M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici, 'Character degree graphs that are complete graphs', Proc. Amer. Math. Soc. 135(3) (2007), 671-676; (electronic).
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson and (with computational assistance from J. G. Thackray), Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups (Oxford University Press, Eynsham, 1985).
[6] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8.2, (2016). http://www.gap-system.org/Releases/.
[7] B. Huppert, Character Theory of Finite Groups, de Gruyter Expositions in Mathematics, 25 (Walter de Gruyter \& Co., Berlin, 1998).
[8] B. Huppert, 'Some simple groups which are determined by the set of their character degrees. I', Illinois J. Math. 44(4) (2000), 828-842.
[9] B. Huppert, 'Some simple groups which are determined by the set of their character degrees III-VIII,' Technical Report, Institut für Experimentelle Mathematik, Universtät, Essen, 2000.
[10] I. M. Isaacs, Character Theory of Finite Groups (AMS Chelsea Publishing, Providence, RI, 2006).
[11] A. Moretó, 'An answer to a question of Isaacs on character degree graphs', Adv. Math. 201(1) (2006), 90-101.
[12] H. P. Tong-Viet and T. P. Wakefield, 'On Huppert's conjecture for the Monster and Baby Monster', Monatsh. Math. 167(3-4) (2012), 589-600.

SEYED HASSAN ALAVI, Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran e-mail: alavi.s.hassan@gmail.com

ASHRAF DANESHKHAH, Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran e-mail: daneshkhah.ashraf@gmail.com, adanesh@basu.ac.ir

ALI JAFARI, Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran e-mail: a.jaefary@gmail.com

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

