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Abstract

In this paper we consider the workload of a storage system with the unconventional
feature that the arrival times, rather than the interarrival times, are independent and iden-
tically distributed samples from a given distribution. We start by analyzing the ‘base
model’ in which the arrival times are exponentially distributed, leading to a closed-form
characterization of the queue’s workload at a given moment in time (i.e. in terms of
Laplace–Stieltjes transforms), assuming the initial workload was 0. Then we consider
four more general models, each of them having a specific additional feature: (a) the ini-
tial workload being allowed to have any arbitrary non-negative value, (b) an additional
stream of Poisson arrivals, (c) phase-type arrival times, (d) balking customers. For all
four variants the transform of the transient workload is identified in closed form.
Keywords: Queueing; service systems; independent arrivals; workload; Laplace trans-
forms
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1. Introduction

The model that we analyze in this paper is described as follows. We consider a queue in
which there are m ∈N arrivals, corresponding to independent and identically distributed (i.i.d.)
arrival times that are sampled from a given distribution on the positive half-line; henceforth
we let A denote a non-negative random variable distributed as a generic arrival time. The
customers’ service times are i.i.d. as well (and in addition independent of the arrival times),
distributed as the non-negative random variable B. With the queue starting empty at time 0, our
main objective is to evaluate the resulting queue’s workload distribution, at any given point in
time.

Note that when considering this model, we depart from the classical queueing paradigm in
which the interarrival times are assumed to be i.i.d., rather than the arrival times. This model
with i.i.d. interarrival times (or, equivalently, with renewal arrivals) is the intensively studied
GI/G/1 queue. There are various compelling reasons to consider our model with i.i.d. arrival
times. In the first place, it is observed that renewal arrivals are conceptually problematic, as
they require any newly arriving customer to have knowledge of the arrival epoch of the previous
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2 M. MANDJES AND D. T. RUTGERS

customer (except in the case of Poisson arrivals, due to the memoryless property). In the second
place, our model could be used to study the situation in which customers decide independently
of each other when they want to use a given service. An example could relate to a scenario in
which clients choose independently of each other when to visit a shop; the distribution of the
arrival time A could reflect the day profile.

We proceed by providing a brief account of the existing literature. Despite the fact that the
above model provides a highly natural description of a broad range of service systems, it is
considerably less well understood than the more conventional class of queues with renewal-
type arrivals. As the ith interarrival time is A(i) − A(i−1) =: �(i), with A(i) denoting the ith-order
statistic of the m arrival times, Honnappa et al., in their influential paper [11], call the system
an �(i)/G/1 queue. Other names have been used as well: in the terminology of the seminal
paper by Glazer and Hassin [7] one would call the system a ?/G/1 queue, while Honnappa [10]
later used RS/G/1 (RS standing for ‘randomly scattered’).

We do not provide an exhaustive overview of the results available, but restrict ourselves to
a few recent key references; a more detailed overview can be found in [9, Section 2.1]. So
far, hardly any explicit results are available for the transient queue length (i.e. the number of
customers present at a given time t). Under an appropriately chosen scaling of the service-time
distribution, [11] succeeds in developing fluid and diffusion approximations for the limiting
regime as m → ∞. In [3, 4], it is shown that the queueing process converges in a specific
heavy-traffic regime to a reflected Brownian motion with non-linear drift. Sample-path large-
deviation results have been established in [10]. Under the assumption that the service times
are exponentially distributed, a system of Kolmogorov backward equations can be set up, so
as to describe the transient queue-length distribution; this method is due to [7] and was further
generalized in [14]. As described in great detail in [9], there is a strong relation to the strategic
queueing game in which each customer has to decide when to arrive, without any coordination
with the other customers.

We conclude this introduction by detailing this paper’s contributions and organization. As
stated in [11], ‘exact analysis of this model is impossible for general service processes’. While
this remains true, to date, for the transient queue-length distribution, the results of this paper
show that one can provide a full analysis of the transient workload distribution, albeit in terms
of transforms. Specifically, for the case of exponentially distributed arrival times, in Section
2 we develop a technique that provides the Laplace–Stieltjes transform of the workload at an
exponentially distributed point in time. As we demonstrate, relying on the powerful compu-
tational techniques of [1] and [12], this enables us to numerically evaluate various relevant
workload-related performance metrics.

The second contribution concerns various extensions of this ‘base model’. (a) In the first
place we consider in Section 3 the model in which the workload is not necessarily starting
empty at time 0. The analysis relies on relations between the workload process and the associ-
ated non-reflected process and on a description of the corresponding first-passage time process
as a Markov additive process [5]. (b) Second, in Section 4 we allow an additional Poisson
arrival stream, with i.i.d. service times (not necessarily distributed as the service time B of the
finite pool of m customers). The analysis reduces to solving a recursion involving m unknown
constants that can be identified using a result from [13]. (c) Then, in Section 5, we allow the
arrival times to be of phase type; this class of distributions is particularly relevant as any ran-
dom variable on the positive half-line can be approximated arbitrarily closely by a phase-type
random variable [2, Section III.4]. Also, in the analysis of this case with phase-type arrivals,
unknown constants appear, which can again be determined relying on [13]. (d) The last variant
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we consider, in Section 6, is the one where, based on the workload they face when arriving, cus-
tomers decide whether or not to enter the system. This concept is often referred to as balking,
and has been studied in various settings; see e.g. the seminal work [8].

2. Exponentially distributed arrival times

This section focuses on the ‘base model’, in which the generic arrival time A has an expo-
nential distribution with parameter λ > 0. Our objective is to uniquely characterize the queue’s
transient workload. We do so by identifying a closed-form expression for the Laplace–Stieltjes
transform of the queue’s workload after an exponentially distributed time interval. Throughout,
it is assumed that the system starts empty at time 0.

Let the cumulative distribution function of the service times be B(·). Our focus lies on find-
ing a probabilistic characterization of the workload process (W(t))t≥0. With N(t) ∈ {0, . . . , m}
denoting the number of clients that have not arrived by time t ≥ 0, the key object of study is
the cumulative distribution function

Ft(x, n) := P(W(t) ≤ x, N(t) = n).

It is noted that W(t) has an atom in 0, in that P(W(t) = 0) > 0 for all t > 0. For x > 0, t > 0, and
n ∈ {0, . . . , m}, we introduce the corresponding density

ft(x, n) := ∂

∂x
P(W(t) ≤ x, N(t) = n) = ∂

∂x
Ft(x, n),

and for t > 0 and n ∈ {0, . . . , m} the zero-workload probabilities

Pt(n) := P(W(t) = 0, N(t) = n).

Remark 2.1. When considering exponentially distributed arrival times, the overall arrival pro-
cess considered in our model is equivalent to a non-homogeneous Poisson arrival process,
conditioned on m arrivals in total, with arrival rate function λ(t) = Ce−λt (where the constant
C > 0 is arbitrary). This observation was made before in [17].

2.1. Setting up the differential equation

The distribution function Ft(x, n) can be analyzed by a classical approach in which its value
at time t + �t is related to its counterpart at time t. Indeed, observe that, as �t ↓ 0, for any
x > 0, t > 0, and n ∈ {0, . . . , m − 1},

Ft+�t(x, n) = (1 − λn �t) · Ft(x + �t, n) + λ(n + 1) �t
∫

(0,x]
ft(y, n + 1) B(x − y) dy

+ λ(n + 1) �t Pt(n + 1) B(x) + o(�t). (2.1)

Equation (2.1) has the following straightforward interpretation: the first term on the right-hand
side represents the scenario of no arrival between t and t + �t, the second term the scenario
with one arrival in combination with the workload prior to the arrival being positive, and the
third term the scenario with one arrival in combination with the workload prior to the arrival
being zero; we remark that scenarios with more than one arrival are absorbed in the o(�t) term.

After subtracting Ft(x, n) from both sides of (2.1), dividing the full equation by �t, and
sending �t to 0, we obtain the following partial differential equation: for any x > 0, t > 0, and
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4 M. MANDJES AND D. T. RUTGERS

n ∈ {0, . . . , m − 1},
∂

∂t
Ft(x, n) − ft(x, n) = − λn Ft(x, n) + λ(n + 1)

∫
(0,x]

ft(y, n + 1) B(x − y) dy

+ λ(n + 1) Pt(n + 1) B(x). (2.2)

2.2. Double transform

In order to uniquely characterize the solution of this partial differential equation, we work
with a double transform. To this end, we first multiply the full equation (2.2) by e−αx, for
α ≥ 0, and integrate over x ∈ (0, ∞), so as to convert the partial differential equation into an
ordinary differential equation. In this analysis, we intensively work with the object

Ft(α, n) :=
∫

(0,∞)
e−αx ft(x, n) dx.

By applying integration by parts, it is readily verified that, for any n ∈ {0, . . . , m − 1},∫
(0,∞)

e−αx Ft(x, n) dx = Pt(n) + Ft(α, n)

α
.

By applying Fubini, and denoting B(α) := E e−αB, again for any n ∈ {0, . . . , m − 1},∫
(0,∞)

e−αx
∫

(0,x]
ft(y, n) B(x − y) dy dx = Ft(α, n) B(α)

α
.

Upon combining the above identities, we readily arrive at the following (ordinary) differential
equation:

∂

∂t

Pt(n) + Ft(α, n)

α
− Ft(α, n) = −λn

Pt(n) + Ft(α, n)

α

+ λ(n + 1)
(Pt(n + 1) + Ft(α, n + 1)) B(α)

α
,

which, with F̄t(α, n) := Pt(n) + Ft(α, n), simplifies to

∂

∂t

F̄t(α, n)

α
− F̄t(α, n) + Pt(n) = −λn

F̄t(α, n)

α
+ λ(n + 1)

F̄t(α, n + 1) B(α)

α
,

The next step is to transform once more: we multiply the full equation in the previous display
by e−βt, for β > 0, and integrate over t ∈ (0, ∞), with the objective of turning the ordinary
differential equation of the previous display into an algebraic equation. We use the notation

Pn(β) :=
∫

(0,∞)
e−βt Pt(n) dt,

Gn(α, β) ≡ Gn(α, β | m) :=
∫

(0,∞)
e−βt F̄t(α, n) dt.

Using the same techniques as above, for n ∈ {0, . . . , m − 1},
(β − α)Gn(α, β) + α Pn(β) = − λn Gn(α, β) + λ(n + 1) Gn+1(α, β) B(α), (2.3)
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so that we arrive at the recursion

Gn(α, β) = λ(n + 1) Gn+1(α, β) B(α) − α Pn(β)

β − α + λn
. (2.4)

The case n = m can be dealt with explicitly. Indeed, observing that if N(t) = m no arrival can
have occurred before time t, we find

Gm(α, β) = Pm(β) = 1

β + λm
.

Remark 2.2. Note that the object β Gn(α, β | m) has an appealing interpretation:

β Gn(α, β | m) =
∫

(0,∞)
βe−βt F̄t(α, n) dt =E

(
e−αW(Tβ ) 1{N(Tβ )=n}

)
,

with Tβ an exponentially distributed random variable with mean β−1, independent of anything
else. This observation will be intensively relied upon in Section 3.

2.3. Explicit solution

The recursion (2.4) can be readily solved, by repeated insertion. The eventual result is
given in Theorem 2.1, but we first sketch the underlying approach, to explicitly identify all
expressions involved.

Denoting the coefficients in the recursion by

γn ≡ γn(α, β) := λ(n + 1) B(α)

β − α + λn
, δn ≡ δn(α, β) := − α Pn(β)

β − α + λn
,

we obtain the standard solution

Gn(α, β) = Gm(α, β)
m−1∏
i=n

γi +
m−1∑
j=n

δj

j−1∏
i=n

γi, (2.5)

following the convention that the empty product is defined as one. At this point, it is left to
determine the unknown functions Pn(β), for n = 0, . . . , m − 1. That can be done by noting
that any root of the denominator should be a root of the numerator too. To this end, observe
that we can rewrite the expression for G0(α, β) in the form

G0(α, β) = Hm(α, β) +∑m−1
n=0 Hn(α, β) Pn(β)∏m−1

n=0 (β − α + λn)
, (2.6)

for appropriately chosen functions Hn(α, β), with n = 0, 1, . . . , m. Note that the (distinct)
roots of the denominator are αj := β + λj > 0, with j = 0, . . . , m − 1. This means that the
unknown functions Pn(β) can be found by solving the following linear equations: for
j = 0, . . . , m − 1,

−Hm(αj, β) =
m−1∑
n=0

Hn(αj, β) Pn(β). (2.7)

Hence we can find the m unknowns from these m equations.
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6 M. MANDJES AND D. T. RUTGERS

We proceed by explicitly identifying the above objects. In these derivations, we intensively
use the compact notations

ξn ≡ ξn(α, β) :=
n∏

i=0

(β − α + λi), ηn ≡ ηn(α, β) :=
n∏

i=0

(λ(i + 1)B(α)),

with empty products being defined as 1. We can rewrite (2.5) in the form of (2.6), as follows:

G0(α, β) = Gm(α, β)

∏m−1
n=0 λ(n + 1)B(α)∏m−1
n=0 (β − α + λn)

+
m−1∑
j=0

δj

∏j−1
n=0 λ(n + 1)B(α)∏j−1
n=0 (β − α + λn)

= Hm(α, β) +∑m−1
j=0 δj(ξm−1/ξj−1)ηj−1

ξm−1

= Hm(α, β) −∑m−1
j=0 α(ξm−1/ξj)ηj−1 Pj(β)

ξm−1

= Hm(α, β) +∑m−1
n=0 Hn(α, β)Pn(β)

ξm−1
,

where
Hm(α, β) := Gm(α, β) ηm−1 = Gm(α, β)(λB(α))mm!

and, for n ∈ {0, . . . , m − 1},

Hn(α, β) := −α

(
m−1∏

i=n+1

(β − α + λi)

)(
n−1∏
i=0

(λ(i + 1)B(α))

)
= −α(λB(α))nn! ξm−1

ξn
.

Given these expressions for Hn(α, β), we can now identify expressions for Pn(β) as well. To
this end, note that Hn(αj, β) = 0 for j ∈ {n + 1, . . . , m − 1}, because αj can be a root of the
first product in the definition of Hn(αj, β).

We first determine Pm−1(β). Substituting αm−1 into (2.7) gives

−Hm(αm−1, β) =
m−1∑
n=0

Hn(αm−1, β) Pn(β) = Hm−1(αm−1, β) Pm−1(β),

so that

Pm−1(β) = − Hm(αm−1, β)

Hm−1(αm−1, β)
.

For n ∈ {0, . . . , m − 1} we then have

Pn(β) = −Hm(αn, β) +∑m−1
i=n+1 Hi(αn, β)Pi(β)

Hn(αn, β)
. (2.8)

This means that the linear system (2.7) can be solved recursively: when plugging n = m − 2
into equation (2.8), we obtain Pm−2(β) in terms of Pm−1(β), after which Pm−3(β) can be
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expressed in terms of Pm−2(β) and Pm−1(β), and so on. The next theorem summarizes our
findings thus far.

Theorem 2.1. (Base model.) For any α ≥ 0 and β > 0, and n ∈ {0, . . . , m − 1}, the transform
Gn(α, β | m) is given by (2.5), where the transforms P0(β), . . . , Pm−1(β) follow from the
recursion (2.8), and Gm(α, β | m) = Pm(β) = (β + λm)−1.

Remark 2.3. There is a related way to derive, for n ∈ {0, . . . , m − 1}, expressions for the trans-
forms Pn(β). To this end, note that for the root of the denominator in (2.4), i.e. αn = β + λn,
the numerator must also equal zero. This leads to the relation

λ(n + 1) Gn+1(αn, β)B(αn) − αnPn(β) = 0,

which rewritten gives

Pn(β) = λ(n + 1)
Gn+1(αn, β)B(αn)

αn
. (2.9)

Together with equation (2.4) and Gm(α, β) = Pm(β) = (β + λm)−1, (2.9) can be solved recur-
sively as well. Specifically, equations (2.4) and (2.9) are to be applied alternately: from the
known expression for Gm(α, β) we find Pm−1(β) by (2.9), then Gm−1(α, β) (for any α ≥ 0)
follows from (2.4), then Pm−2(β) again by (2.9), and so on.

2.4. Alternative approach

We now detail an alternative procedure by which the transforms P0(β), . . . , Pm−1(β) can
be determined. The main reason why we include it here is that in Section 4 we will intensively
rely on the underlying argumentation; the account below serves to introduce the concepts in an
elementary setting.

Denote V(α, β) = (V0(α, β), . . . , Vm−1(α, β))
, where the ith component is given by

Vi(α, β) = αPi(β) − λm

β + λm
B(α)1{i=m−1}.

In addition, G(α, β) = (G0(α, β), . . . , Gm−1(α, β))
. Then it is easily checked that the system
of equations (2.3) can be rewritten in matrix–vector notation as

M(α, β) G(α, β) = V(α, β).

Here the (i, i + 1)th entry (for i ∈ {0, . . . , m − 2}) of the m × m matrix

M(α, β) = (Mij(α, β))m−1
i,j=0

is given by λ(i + 1) B(α), and the (i, i)th entry (for i ∈ {0, . . . , m − 1}) by α − β − λi.
The next observation is that the transpose of M(α, β) is the so-called matrix exponent of a

Markov additive process (MAP) [2, Section XI.2]. This can be seen as follows.

• A MAP is defined by a dimension d ∈N, a possibly defective d × d transition rate matrix
Q governing a background process, jump sizes Jij corresponding to transitions by the
background process from state i to state j (with i, j ∈ {1, . . . , d} with i �= j), and Lévy
processes Yi(t) with Laplace exponents ϕi(·) that are active when the background process
is in state i (with i ∈ {1, . . . , d}). When the jumps are non-negative and the Lévy pro-
cesses spectrally positive, and when imposing killing at rate β > 0, the matrix exponent
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8 M. MANDJES AND D. T. RUTGERS

of this MAP, for α ≥ 0, is given by

diag{ϕ1(α) − β, . . . , ϕd(α) − β} + Q ◦ J(α), (2.10)

with ◦ denoting the Hadamard product, and the (i, j)th entry of J(α) defined by E e−αJij .

• Then one can directly verify that the transpose of our matrix M(α, β) is of the form
(2.10); recall that α is the Laplace exponent of a deterministic drift of rate 1.

We proceed by studying the roots of det M(α, β) (for any given β > 0), which evidently
coincide with the roots of det M(α, β)
. Applying the machinery developed in [13] and [15]
for matrix exponents of Markov additive processes, we conclude that it has m roots in the
right-half of the complex α-plane, say α0, . . . , αm−1. Technically, our instance fits into the
framework of [15, Proposition 2], in that the underlying background process is not irreducible
(with state 0 being an absorbing state).

The next step is to observe that, by Cramer’s rule, for n ∈ {0, . . . , m − 1},

Gn(α, β) = det Mn(α, β)

det M(α, β)
,

where Mn(α, β) is defined as M(α, β), with the nth column replaced by V(α, β). This means
that, for j ∈ {0, . . . , m − 1}, det Mn(αj, β) = 0 for n ∈ {0, . . . , m − 1}. This seemingly leads to
m2 (linear) equations in the m unknowns P0(β), . . . , Pm−1(β), but it turns out that all equa-
tions corresponding to the same αj effectively contain the same information: if det M(α, β) =
det Mn(α, β) = 0, then also det Mn′ (α, β) = 0 for n′ �= n; to see this, exactly the same reasoning
as in [15, Section 3.3.1] can be followed.

In our specific case the roots αj = β + λj, for j ∈ {0, . . . , m − 1}, are distinct. We thus end
up with m linear equations in equally many unknowns. We conclude this section by applying
the above method, so as to recover our previous result (2.8).

Lemma 2.1. The determinant of the matrix Mn(α, β) defined above is given by, for n ∈
{0, . . . , m − 1},

det Mn(α, β) = Cn(α, β)
m−1∏

i=0, i �=n

(α − β − λi),

with

Cn(α, β) := α

(
Pn(β) + Hm(α, β) +∑m−1

i=n+1 Hi(α, β)Pi(β)

Hn(α, β)

)
.

Proof. See Appendix A. �

According to the above recipe, for all j ∈ {0, . . . , m − 1} we necessarily have
det Mn(αj, β) = 0. From Lemma 2.1 we find that this is indeed the case for all αj = β + λj with
j �= n, as they are the roots of the product term appearing in det Mn(α, β). Inserting j = n into
det Mn(αj, β) = 0, we conclude that Cn(αn, β) = 0, from which it follows that (2.8) applies.

In Figure 1 we plot, for different values of the number of customers m, the mean workload
E W(t), its variance Var W(t), and the probability of an empty buffer P(W(t) = 0), as functions
of time. These are numerically obtained by converting, in the obvious manner, the recursion
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(a)

(b)

(c)

FIGURE 1. Mean workload (a), variance of the workload (b), and empty-buffer probability (c) in the base
model, as functions of time, for different values of m.

for the double transform into recursions involving∫ ∞

0
e−βt

E
(
W(t) 1{N(t)=n}

)
dt,

∫ ∞

0
e−βt

E
(
W(t)2 1{N(t)=n}

)
dt

and
∫ ∞

0
e−βt

P(W(t) = 0, N(t) = n) dt,
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10 M. MANDJES AND D. T. RUTGERS

and then perform numerical Laplace inversion [1] with respect to β. The service times are
exponentially distributed, and we have used λ = μ = 1.

3. Starting at arbitrary initial workload

So far we have assumed that at time zero the workload level equals zero. In this section
we generalize this to cover the case in which we start at any initial workload level x ≥ 0. The
object of our interest is

Ḡn(α, β | x, m) := E
(
e−αW(Tβ )1{N(Tβ )=n} | W(0) = x, N(0) = m

)
; (3.1)

here Tβ again denotes an exponentially distributed random variable with mean β−1, inde-
pendent of anything else. Henceforth we alternatively denote the right-hand side of (3.1) by

Ex,m
(
e−αW(Tβ )1{N(Tβ )=n}

)
,

that is, we systematically use subscripts to indicate the initial conditions.

3.1. Derivation of the transform

The workload process W(t) is often referred to as the reflected process. The process cannot
drop below zero; when there is no work in the system and there is service capacity available,
the workload level remains 0. In the present section, we intensively work with the process Y(·),
to be interpreted as the position of the associated free process (or non-reflected process). In
particular, this means that, for any given t ≥ 0, Y(t) represents the the amount of work that has
arrived in (0,t] minus what could potentially have been served (i.e. t).

We further define the stopping time σ (x) := inf{t : Y(t) < −x}, which is the first time that
the buffer is empty given that the initial workload is x. Observe that Y(σ (x)) = −x almost
surely, as the process Y(t) has no negative jumps.

We also work with the counterpart of (3.1) for the free process:

Ǧn(α, β | m) := E
(
e−αY(Tβ )1{N(Tβ )=n} | N(0) = m

)
.

So as to analyze the quantity under study, we distinguish between two disjoint scenarios: the
scenario in which the workload has idled before Tβ and its complement. This means that we

split Ḡn(α, β | x, m) = Ḡ
−
n (α, β | x, m) + Ḡ

+
n (α, β | x, m), with, in self-evident notation,

Ḡ
−
n (α, β | x, m) := Ex,m

(
e−αW(Tβ )1{N(Tβ )=n,σ (x)≤Tβ }

)
,

Ḡ
+
n (α, β | x, m) := Ex,m

(
e−αW(Tβ )1{N(Tβ )=n,σ (x)>Tβ }

)
.

We evaluate the objects Ḡ
−
n (α, β | x, m) and Ḡ

+
n (α, β | x, m) separately.

Observe that, by the strong Markov property in combination with the memoryless property
of Tβ and the arrival times,

Ḡ
−
n (α, β | x, m) =

m∑
k=n

Pm(N(σ (x)) = k, σ (x) ≤ Tβ ) Ḡn(α, β | 0, k), (3.2)

where we already know from Theorem 2.1 how we can evaluate Ḡn(α, β | 0, k) =
β Gn(α, β | k); see Remark 2.2. The interpretation underlying the decomposition on the
right-hand side of (3.2) is that the queue starts empty at time σ (x).
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We proceed by analyzing the remaining quantity, Ḡ
+
n (α, β | x, m). To this end, we first

observe that Ǧn(α, β | m) = Ǧ
−
n (α, β | x, m) + Ǧ

+
n (α, β | x, m), where, in self-evident notation,

Ǧ
−
n (α, β | x, m) := Em

(
e−αY(Tβ )1{N(Tβ )=n,σ (x)≤Tβ }

)
,

Ǧ
+
n (α, β | x, m) := Em

(
e−αY(Tβ )1{N(Tβ )=n,σ (x)>Tβ }

)
.

The crucial step is that on the event {σ (x) > Tβ} it holds that W(Tβ ) = x + Y(Tβ ). As a
consequence,

Ḡ
+
n (α, β | x, m) = e−αx Ǧ

+
n (α, β | x, m) = e−αx Ǧn(α, β | m) − e−αx Ǧ

−
n (α, β | x, m).

The second term on the right-hand side of the previous display can be further evaluated, using
Y(σ (x)) = −x in combination with the memoryless property. Using the same reasoning as
before, we thus find

Ǧ
−
n (α, β | x, m) = eαx

m∑
k=n

Pm(N(σ (x)) = k, σ (x) ≤ Tβ ) Ǧn(α, β | k).

From the above, we conclude that it suffices to be able to evaluate the object, for k ∈
{0, . . . , m} and n ∈ {0, . . . , k},

pm,k(x, β) := Pm(N(σ (x)) = k, σ (x) ≤ Tβ ) and Ǧn(α, β | k).

The latter quantity can be evaluated by solving a system of linear equations, while the former
is slightly harder to analyze.

• It is readily verified that, for n ∈ {0, . . . , k},

Ǧn(α, β | k) = λk

λk + β − α
B(α) Ǧn(α, β | k − 1) 1{k>n} + β

λk + β − α
1{k=n}. (3.3)

Writing this system in the usual matrix–vector form, it is readily seen that it is diagonally
dominant, ensuring the system has a unique solution. Alternatively, one can solve the
system recursively (starting at k = n).

• We apply results from [5] to identify the probabilities pm,k(x, β) for k ∈ {0, . . . , m}. We
first observe that (σ (x), N(σ (x))) is a MAP in x ≥ 0 [5, Section 1.2]; note that this MAP
does not have any non-decreasing subordinator states.
To identify its characteristics, we first define the MAP corresponding to the free pro-
cess Y(t). To this end, we introduce a matrix K(α, β) with the (i, i)th entry given
by α − λi − β (for i ∈ {0, . . . , m}), and the (i, i − 1)th entry given by λi B(α) (for
i ∈ {1, . . . , m}), and all other entries equal to 0. The roots, for a given value of β > 0, of
det K(α, β) = 0 are d(β) := (β, λ + β, . . . , λm + β)
. The corresponding eigenvectors,
solving K(α) v = 0, can be evaluated recursively; calling these v0, . . . , vm, we let V be
a matrix of which the columns are these vectors. Then, by [5, equation (2)], in com-
bination with [5, Theorem 1] and the fact that Y(t) does not have any non-decreasing
subordinator states, we obtain

pm,k(x, β) = (
exp(− VD(β) V−1 x)

)
m,k = (

V exp(− D(β) x)V−1)
m,k, (3.4)

with D(β) := diag{d(β)}.
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12 M. MANDJES AND D. T. RUTGERS

(a)

(b)

FIGURE 2. Mean workload (a) and empty-buffer probability (b) in the model with initial workload x, as
functions of time, for different values of m and for x = 1. The lines in light gray denote the base model,

in which case x = 0.

Combining the above findings, we have established the following result, which is numeri-
cally illustrated in Figure 2 (where the same instance is considered as in Figure 1).

Theorem 3.1. (Model with arbitrary initial workload.) For any α ≥ 0 and β > 0, and n ∈
{0, . . . , m}, the transform Ḡn(α, β | x, m) is given by

Ḡn(α, β | x, m) =
m∑

k=n

pm,k(x, β) Ḡn(α, β | 0, k)

+ e−αx Ǧn(α, β | m) −
m∑

k=n

pm,k(x, β) Ǧn(α, β | k),

where (i) Ḡn(α, β | 0, k) = β Gn(α, β | k) follows from Theorem 2.1, (ii) Ǧn(α, β | k) can be
found recursively from the equations (3.3), and (iii) pm,k(x, β) is given by (3.4).

In the remainder of this section we present two immediate consequences of Theorem 3.1,
both pertaining to the system starting empty at time 0: the first one describes the distribution
of the first busy period, and the second the workload at an Erlang-distributed time epoch.
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3.2. Busy period

In this subsection, we analyze the workload process’s first busy period σ , which is
distributed as σ (B), with m − 1 clients still to arrive from that point on.

The results of the previous subsection entail that

Eme−βσ (x) = Pm(σ (x) ≤ Tβ )

=
m∑

k=0

Pm(N(σ (x)) = k, σ (x) ≤ Tβ )

=
m∑

k=0

(
exp(− VD(β) V−1 x)

)
m,k

=
m∑

k=0

(V exp(− D(β) x)V−1)m,k

=
m∑

k=0

γk,me−dk(β) x,

for suitably chosen coefficients γk,m, with k ∈ {0, . . . , m}. As a consequence, recognizing the
Laplace–Stieltjes transform of B, we find that

Eme−βσ =
∫ ∞

0

m−1∑
k=0

γk,m−1e−dk(β) x
P(B ∈ dx) =

m−1∑
k=0

γk,m−1B(dk(β)).

3.3. Erlang horizon

In this subsection we point out how to compute the transform of W(Eβ (2)) conditional on
W(0) = 0, where Eβ (2) is an Erlang random variable with two phases and scale parameter β

(or, put differently, Eβ (2) is distributed as the sum of two independent exponentially distributed
random variables with mean β−1).

Note that the quantity of our interest can be rewritten as

E0,m
(
e−αW(Eβ (2))1{N(Eβ (2))=n}

)=
∫ ∞

0

m∑
k=n

P0,m(W(Tβ ) ∈ dx, N(Tβ ) = k) Gn(α, β | x, k),

for n ∈ {0, . . . , m}. For suitably chosen coefficients γ̄,k,n (with k ∈ {n, . . . , m} and  ∈
{n, . . . , k}) and γ̌n,k (with k ∈ {n, . . . , m}), by virtue of Theorem 3.1,

Gn(α, β | x, k) =
k∑

=n

γ̄,k,n e−d(β) x + γ̌n,k e−αx.

Upon combining the above observations,

E0,m
(
e−αW(Eβ (2))1{N(Eβ (2))=n}

)

=
m∑

k=n

k∑
=n

γ̄,k,n Ḡk(d(β), β | 0, m) +
m∑

k=n

γ̌n,k Ḡk(α, β | 0, m).

https://doi.org/10.1017/jpr.2024.77 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.77


14 M. MANDJES AND D. T. RUTGERS

This procedure extends in the obvious way to an Erlang horizon with more than two phases.
Along the same lines, the joint distribution at time Tβ1 and Tβ1 + Tβ2 , with Tβ1 and Tβ2 inde-
pendent exponentially distributed random variables with means β−1

1 and β−1
2 , respectively, can

be established.

4. External Poisson arrival stream

In this section we consider the case of an external Poisson stream of customers with i.i.d.
service times. As before, our objective is to characterize the distribution of the transient
workload in terms of Laplace–Stieltjes transforms.

The arrival rate of these external arrivals is λ̄ ≥ 0, and the i.i.d. service times are distributed
as the generic non-negative random variable B̄ with cumulative distribution function B̄(·) and
Laplace–Stieltjes transform B̄(α) := E e−αB̄. Picking λ = 0 or m = 0, we have a conventional
M/G/1 queue, whereas for λ̄ = 0 we recover the model of Section 2.

4.1. Recursion for the double transform

The counterpart of the partial differential equation (2.2) for this model with external Poisson
arrivals is, for x > 0, t > 0 and n ∈ {0, . . . , m − 1},

∂

∂t
Ft(x, n) − ft(x, n) = − (λn + λ̄) Ft(x, n) + λ(n + 1)

∫
(0,x]

ft(y, n + 1) B(x − y) dy

+ λ(n + 1) Pt(n + 1) B(x)

+ λ̄

∫
(0,x]

ft(y, n) B̄(x − y) dy + λ̄ Pt(n) B̄(x), (4.1)

while for n = m we have

∂

∂t
Ft(x, m) − ft(x, m) = − (λm + λ̄) Ft(x, m) + λ̄

∫
(0,x]

ft(y, m) B̄(x − y) dy + λ̄ Pt(m) B̄(x).

Multiplying (4.1) by e−αxe−βt and integrating over positive x and t, we obtain the algebraic
equation

(β − α)Gn(α, β) + α Pn(β) = −(λn + λ̄) Gn(α, β) + λ(n + 1) Gn+1(α, β) B(α)

+ λ̄ Gn(α, β) B̄(α). (4.2)

Along the same lines,

(β − α)Gm(α, β) + α Pm(β) − 1 = − (λm + λ̄) Gm(α, β) + λ̄ Gm(α, β) B̄(α). (4.3)

4.2. Solving the double transform

As in Section 2, we start by finding an expression for Gm(α, β). To this end, we isolate
Gm(α, β) in (4.3), so as to obtain

Gm(α, β) = αPm(β) − 1

α − β − λm − λ̄(1 − B̄(α))
. (4.4)

The next step is to identify the unknown Pm(β). Define �(α) := α − λ̄(1 − B̄(α)), in which
we recognize the Laplace exponent of a compound Poisson process with drift, and �(·) its
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right-inverse. Observing that the denominator of (4.4) vanishes when inserting α = �(β +
λm), we conclude that Pm(β) = 1/�(β + λm). This means that we have identified Gm(α, β)
as well:

Gm(α, β) = �(β + λm) − α

β + λm − �(α)

1

�(β + λm)
. (4.5)

This is a familiar expression (see e.g. [6, Theorem 4.1]); compare the transform of the workload
in an M/G/1 queue with arrival rate λ̄ and service times distributed as B̄, at an exponentially
distributed time with mean (β + λm)−1.

We proceed by pointing out how G0(α, β), . . . , Gm−1(α, β) can be found. We adopt the
approach presented in Remark 2.3. For n ∈ {0, . . . , m − 1}, equation (4.2) leads to

Gn(α, β) = αPn(β) − λ(n + 1) Gn+1(α, β) B(α)

�(α) − β − λn
. (4.6)

Observe that αn := �(β + λn) is a root of the denominator, and hence a root of the numerator
as well, leading to the equation

Pn(β) = λ(n + 1) Gn+1(�(β + λn), β) B(�(β + λn))

�(β + λn)
; (4.7)

cf. equation (2.9). Now the key idea, as in Remark 2.3, is to apply equations (4.7) and (4.6)
alternately: inserting n = m − 1 in (4.7) yields Pm−1(β), then inserting n = m − 1 in (4.6)
yields Gm−1(α, β), and so on. We have established the following result.

Theorem 4.1. (Model with external Poisson arrival stream.) For any α ≥ 0 and β > 0,
and n ∈ {0, . . . , m − 1}, the transform Gn(α, β | m) is given by (4.6), where the trans-
forms P0(β), . . . , Pm−1(β) follow from recursion (4.7), with Pm(β) = 1/�(β + λm), and
Gm(α, β | m) is given by (4.5).

This result is numerically illustrated in Figure 3. As in the previous numerical experiments,
we worked with exponentially distributed service times and λ = μ = 1. The service times of
the external Poisson stream are exponentially distributed as well, with parameter μ̄ = 5.

5. Phase-type distributed arrival times

In Section 2 we saw that for exponentially distributed arrivals our model provides a closed-
form solution, so it is a natural question whether the approach can be generalized to a more
general class of arrival-time distributions. This class of distributions is particularly relevant,
as any non-negative random variable can be approximated arbitrarily closely by a phase-type
random variable [2, Section III.4]; the ‘denseness’ proof of [2, Theorem III.4.2] actually reveals
that we can even restrict ourselves to a subclass of the phase-type distributions, namely the
class of mixtures of Erlang distributions with different shape parameters but the same scale
parameter. The proof of [2, Theorem III.4.2] also shows an intrinsic drawback of working with
this specific class of phase-type distributions: one may need distributions of large dimension to
get an accurate fit. This has motivated working with a low-dimensional two-moment fit, such
as the one presented in [18]. In this fit, for distributions with a coefficient of variation less than
1, a mixture of two Erlang random variables (with the same scale parameter) is used, and for
distributions with a coefficient of variation larger than 1, a hyperexponential random variable;
for details see e.g. [16, Section 3.1].
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(a)

(b)

FIGURE 3. Mean workload (a) and empty-buffer probability (b), in the model with an external Poisson
arrival stream, as functions of time, for different values of m. Here, the external Poisson arrival stream
has rate parameter λ̄ = 1 and the service times of the customers are exponentially distributed with rate

μ̄ = 5. The lines in light gray denote the base model, in which case λ̄ = 0.

This section discusses the distribution of the transient workload in the case when the arrival
times A are of phase type. An explicit expression in terms of transforms is still possible, albeit
at the price of working with a large state space.

5.1. Set-up

We define the phase-type distribution of the generic arrival time A via the initial prob-
ability distribution γ ∈R

d+1 (with γi ≥ 0 for all phases i and γ 
1 = 1) and the transition
matrix Q = (qij)

d+1
i,j (with non-negative off-diagonal elements and Q1 = 0); define qi := −qii

and q̄i := qi,d+1. The states 1 up to d + 1 are commonly referred to as the phases underlying
the phase-type distribution. We assume that phase d + 1 is absorbing; from phase i ∈ {1, . . . , d}
the process jumps to this phase with rate q̄i, after which the arrival takes place. As before, the
m arrivals are independent of each other (and of the service times).

Let N(t) denote the state at time t ≥ 0, in the sense that the ith component of N(t) denotes
the number of the m clients that are in phase i at time t. It is clear that N0 has a multinomial
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distribution with parameters m and γ1, . . . , γd+1, i.e. for any vector n0 ∈N
d+1
0 such that

n

0 1 = m,

P(N0 = n0) =
(

m

n0,1, . . . , n0,d+1

) d+1∏
i=1

γ
n0,i
i .

Henceforth we therefore condition, without loss of generality, on the event {N0 = n0}; the
transform of interest can be evaluated by deconditioning.

The key object of interest is the cumulative distribution function

Ft(x, n) := P(W(t) ≤ x, N(t) = n),

with n = (n1, . . . , nd+1) ∈N
d+1
0 such that n
1 = m. In this section we work with the usual

notation: the corresponding density is denoted by ft(x, n) for x > 0, while Pt(n) is used to
denote P(W(t) = 0, N(t) = n). Mimicking the steps followed in Section 2, for any x > 0, up to
o(�t) terms,

Ft+�t(x, n) =
(

1 −
d∑

i=1

ni qi�t

)
Ft(x, n)

+
d∑

i=1

d∑
j �=i

(ni + 1)qij�t 1{nj>0} Ft(x, n + ei − ej)

+
d∑

i=1

(ni + 1)q̄i�t 1{nd+1>0}
(

Pt(n + ei − ed+1)B(x)

+
∫

(0,x]
ft(y, n + ei − ed+1)B(x − y) dy

)
. (5.1)

This equation can be understood as follows. As in the exponential case dealt with in Section 2,
the first term on the right-hand side corresponds to the scenario that no transitions between
phases take place between t and t + �t. The second term represents the transitions between
two phases but not to the final phase. Finally, the third term covers a transition from one phase
to the final phase, in which case the customer has arrived.

The next step is to convert equation (5.1) into a differential equation. After subtracting
Ft(x, n) from both sides of (5.1), dividing the full resulting equation by �t, and letting �t ↓ 0,
we arrive at the following partial differential equation:

∂

∂t
Ft(x, n) = ft(x, n) −

d∑
i=1

niqiFt(x, n) +
d∑

i=1

d∑
j �=i

(ni + 1)qij 1{nj>0} Ft(x, n + ei − ej)

+
d∑

i=1

(ni + 1)q̄i 1{nd+1>0}
(

Pt(n + ei − ed+1)B(x)

+
∫

(0,x]
ft(y, n + ei − ed+1)B(x − y) dy

)
. (5.2)
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The partial differential equation (5.2) can be analyzed by transforming it twice, i.e. with respect
to x and t: we first multiply (5.2) by e−αx and integrate x over (0, ∞), and then we multiply
the resulting equation by e−βt and integrate t over (0, ∞), where α and β are non-negative real
numbers. To keep the resulting expressions as compact as possible, we will extensively work
with the following objects:

Ft(α, n) :=
∫

(0,∞)
e−αx ft(x, n) dx, Pn(β) :=

∫
(0,∞)

e−βt Pt(n) dt,

and

F̄t(α, n) := Pt(n) + Ft(α, n), Gn(α, β) :=
∫

(0,∞)
e−βt F̄t(α, n) dt,

for α ≥ 0, β > 0, and, as before, B(a) =E e−αB. After some tedious but elementary calcula-
tions we find that taking the double transform of (5.2) leads to the following result.

Lemma 5.1. For any α ≥ 0 and β > 0, and n ∈N
d+1 such that n
1 = m,(

β − α +
d∑

i=1

niqi

)
Gn(α, β)

=
d∑

i=1

d∑
j �=i

(ni + 1)qij1{nj>0}Gn+ei−ej(α, β)

+
d∑

i=1

(ni + 1)q̄i 1{nd+1>0}B(α) Gn+ei−ed+1 (α, β) − αPn(β) + 1{n=n0}. (5.3)

Proof. See Appendix B. �

We want to solve Gn(α, β) and Pn(β) in (5.3) for all n ∈N
d+1
0 such that n
1 = m. Observe

that for given Pn(β), the functions Gn(α, β) follow by solving a system of linear equations.

5.2. Solution to the system of equations

Our next objective is to point out how the unknown functions Pn(β) can be identified. To
this end, first observe that we can determine Gn0 (α, β) analytically. We can also identify Pn(β)
for all n with nd+1 = 0, as Gn(α, β) = Pn(β) for these states, by solving the simplified system
of equations in (5.3).

To find the remaining Gn(α, β) and Pn(β) we will use an approach similar to that in
Section 2.4. The state space of N(t) is the set of all configurations of m clients over d + 1
phases, so in total there are m̄ := (m + d)!/(m! d!) states. Let Q(Ph) be the transition rate matrix
of a continuous-time Markov process with rates

q(Ph)

n,n′ =
⎧⎨
⎩

niqij if n′ = n − ei + ej,

0 else.

In addition, define the matrix B(Ph)(α) by(
B(Ph)(α)

)
n,n′ = 1 + (B(α) − 1) 1{n′=n−ei+ed+1}.
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It takes some bookkeeping to verify that, for an appropriately chosen m̄-dimensional vector
V(α, β) and m̄ × m̄ matrix M(α, β), the system of Lemma 5.1 can be rewritten in the form
M(α, β) G(α, β) = V(α, β). Here Vn(α, β), i.e. the nth entry of V(α, β), is given by αPn(β) −
1{n=n0}, while M(α, β) denotes the transpose of the matrix exponent of a MAP, namely

(α − β)Im̄ + Q(Ph) ◦ B(Ph)(α),

with Im̄ denoting an identity matrix of dimension m̄, and A ◦ B denoting the Hadamard prod-
uct of the matrices A and B. From this point on, the reasoning of Section 2.4 applies, with
det M(α, β) having m̄ roots in the right-half of the complex α-plane (for any given β > 0), again
by using [13] and [15]. This allows us to determine the unknown functions Pn(β) by solving a
system of linear equations; to see that these equations are linear, realize that det Mn(α, β), to be
evaluated when applying Cramer’s rule, depends linearly on the functions Pn(β) (as appear-
ing in the vector V(α, β)). As discussed in Section 2.4, if det M(α, β) = det Mn(α, β) = 0, then
also det Mn′ (α, β) = 0 for n′ �= n. Combining the above elements, we have found the following
result.

Theorem 5.1. (Model with phase-type arrival times.) For any α ≥ 0 and β > 0, and n ∈
N

d+1 such that n
1 = m, the m̄ transforms Gn(α, β) follow from the m̄ linear equations
(5.3). With α1, . . . , αm̄ the m̄ solutions of det M(α, β) = 0 in the right-half of the complex
α-plane, assumed to be distinct, the transforms Pn(β) follow from the m̄ linear equations
det Mn(αi, β) = 0, with i ∈ {1, . . . , m̄}.

5.3. A class with a straightforward solution

Above we pointed out how, in principle, the objects Gn(α, β) and Pn(β), as appearing
the system (5.3), can be found. However, it requires evaluation of determinants of large square
matrices (of dimension m̄ = (m + d)!/(m! d!)). Fortunately, for important classes of phase-type
distributions, we do not need to derive such determinants directly; instead, the system can
be solved recursively. If the transition rate matrix underlying the phase-type distribution has no
communicating states, then the phases can be rearranged such that Q(Ph) becomes upper trian-
gular, and hence the corresponding M(α, β) as well. It means that the eigenvalues of M(α, β)
are on its diagonal, and their roots are therefore of the form αn := β + q
n. Following the
same procedure as in Remark 2.3, we can alternately compute subsequent Gn(α, β) and Pn(β).
More concretely, first observe that

Gn0 (α, β) = Pn0 (β) = 1

αn0

= 1

β + q
n0
.

Then we can find an order of the states so that each Gn(α, β) can be evaluated based on its
previously computed counterparts by applying (5.3), and

Pn(β) = 1

αn

(
d∑

i=1

d∑
j �=i

(ni + 1)qij1{nj>0}Gn+ei−ej(αn, β)

+
d∑

i=1

(ni + 1)q̄i 1{nd+1>0}B(αn) Gn+ei−ed+1 (αn, β) + 1{n=n0}

)
.

In the remainder of this subsection we detail this procedure for two frequently used phase-type
distributions.
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5.3.1. Erlang-distributed arrival times. In this section we consider the case when A has an
Erlang distribution, characterized by the shape parameter k ∈N and the scale parameter λ > 0.
An attractive feature of the Erlang random variable is that it is equivalent to the sum of k
independent exponential variables with parameter λ, which allows us to implement it as a
phase-type distribution. We can represent each arrival as consisting of k exponentially dis-
tributed phases. Note that N(t) ∈N

k+1
0 , with N(t)
1 = m. All customers start in the first phase,

i.e. N0 = n0 = (m, 0, . . . , 0). A transition from the first to the second entry of N(t) (i.e. first
entry going down by one, second going up by one) represents the first exponential random
variable in the Erlang distribution, a transition from the second to the third entry represents
the second exponential random variable, and so on. As transitions can only happen to the next
phase, there is no communication between phases. When the final transition happens, i.e. from
the kth entry of N(t) to the (k + 1)th, the arrival of the customer into the system has taken place,
and the workload increases.

By applying (5.3), we are to solve the system of equations given by

Gn(α, β) = 1

β − α + λ
∑k

i=1 ni

(
k−1∑
i=1

(ni + 1)λ 1{ni+1>0}Gn+ei−ei+1 (α, β)

+ (nk + 1)λ 1{nk+1>0}B(α)Gn+ek−ek+1 (α, β) − αPn(β) + 1{n=n0}

)
. (5.4)

Since Gn(α, β) = Pn(β) for all n such that nk+1 = 0, states in which no arrivals have taken
place yet, all Gn(α, β) can be determined from the system in (5.4) for these n. Considering the
initialization of the recursion, i.e. n = n0, we have

Pn0 (β) = Gn0 (α, β) =
∫ ∞

0
e−βtPt(n0) dt =

∫ ∞

0
e−βte−λmt dt = 1

β + λm
.

To demonstrate the procedure, we proceed by determining the first few Gn(α, β) with nk+1 = 0.
With n(1) := (m − 1, 1, 0, . . . , 0), equation (5.4) gives

Gn(1) (α, β) = mλGn0 (α, β) − αGn(1) (α, β)

β − α + λm
,

so that

Gn(1) (α, β) = λm

β + λm
Gn0 (α, β) = λm

(β + λm)2
.

Similarly, for n(2) := (m − 1, 0, 1, 0, . . . , 0) and n(3) := (m − 2, 2, 0, . . . , 0) we find, respec-
tively,

Gn(2) (α, β) = λ

β + λm
Gn(1) (α, β) = λ2m

(β + λm)3

and

Gn(3) (α, β) = λ(m − 1)

β + λm
Gn(1) (α, β) = λ2m(m − 1)

(β + λm)3
.
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5.3.2. Hyperexponentially distributed arrival times. We conclude this section by discussing
the case when A is hyperexponentially distributed. We assume that A is defined via k ∈N

exponentially distributed random variables; the ith, with its own parameter λi > 0, is picked
with probability pi (where p
1 = 1), for i ∈ {1, . . . , k}. To represent this as a phase-type dis-
tributed arrival, we set the dimension of N(t) equal to k + 1 (i.e. one phase for each type of
exponentially distributed random variables, plus the absorbing state). We generate a starting
state n0 according to a multinomial distribution with parameters m and pi (clearly pk+1 = 0).
Throughout the following analysis we condition on the event {N0 = n0}, entailing that we draw
the type of each of the customers beforehand. Note that all customers make a transition from
their current phase directly to phase k + 1, after which an arrival takes place.

By applying (5.3), we obtain the following system of equations:

Gn(α, β) =
∑k

i=1 (ni + 1)1{ni<n0,i}λiB(α)Gn+ei−ek+1 (α, β) − αPn(β) + 1{n=n0}
β − α + λ
n

.

Again, we initialize for Gn0 (α, β) by a direct computation:

Pn0 (β) = Gn0 (α, β) =
∫ ∞

0
e−βtPt(n0) dt =

∫ ∞

0
e−βte−λ
n0 t dt = 1

β + λ
n0
.

6. Balking customers

In this section, each arriving customer decides, based on the workload seen upon arrival,
whether or not they join the queue. In queueing theory, this mechanism is often referred to
as balking: the higher the workload, the less the customer is inclined to join. In the model
considered we work with an exponential balking distribution: if the current workload is smaller
than an exponentially random variable with mean θ−1, the customer enters the system.

We start by setting up the counterpart of the partial differential equation (2.1), relying on
the methodology that we have been using before. First observe that, as �t ↓ 0, for any x > 0,
t > 0, and n ∈ {0, . . . , m − 1},

Ft+�t(x, n)

= (1 − λn �t) · Ft(x + �t, n) + λ(n + 1) �t
∫

(0,x]
ft(y, n + 1) e−θy B(x − y) dy

+ λ(n + 1) �t Pt(n + 1) B(x) + λ(n + 1) �t
∫

(0,x]
ft(y, n + 1) (1 − e−θy) dy + o(�t).

In the second term on the right-hand side, the factor e−θy represents the probability that the
customer joins if they are facing a workload y, and in the fourth term the factor 1 − e−θy

represents the probability that the customer does not join if they are facing a workload y. In the
usual manner, this leads to the partial differential equation

∂

∂t
Ft(x, n) − ft(x, n) = − λn Ft(x, n) + λ(n + 1)

∫
(0,x]

ft(y, n + 1) e−θy B(x − y) dy

+ λ(n + 1) Pt(n + 1) B(x) + λ(n + 1)
∫

(0,x]
ft(y, n + 1) (1 − e−θy) dy.

We follow the same procedure as before: we transform subsequently to x and t. This means that
we first multiply the previous display by e−αx and integrate over positive x. Using calculations
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similar to those used in Section 2, and splitting e−αx = e−αye−α(x−y), we obtain the following
ordinary differential equation:

∂

∂t

Pt(n) + Ft(α, n)

α
− Ft(α, n) = −λn

Pt(n) + Ft(α, n)

α

+ λ(n + 1)
(Pt(n + 1) + Ft(α + θ, n + 1)) B(α)

α

+ λ(n + 1)
Ft(α, n + 1) − Ft(α + θ, n + 1)

α
.

Then we transform with respect to time: we multiply by e−βt and integrate over positive t. We
thus find, for n ∈ {0, . . . , m − 1},

(β − α)Gn(α, β) + α Pn(β) = −λn Gn(α, β) + λ(n + 1) Gn+1(α + θ, β) B(α)

+ λ(n + 1) (Gn+1(α, β) − Gn+1(α + θ, β)). (6.1)

It directly follows from equation (6.1) that

Gn(α, β) = λ(n + 1) (Gn+1(α, β) − (1 − B(α))Gn+1(α + θ, β)) − α Pn(β)

β − α + λn
. (6.2)

With αn := β + λn as before, the usual argumentation yields that

Pn(β) = λ(n + 1)
Gn+1(αn, β) − (1 − B(αn))Gn+1(αn + θ, β)

αn
. (6.3)

Because we know that

Pm(β) = Gm(α, β) = 1

β + λm
, (6.4)

all transforms involved can be recursively identified following the recipe discussed in
Remark 2.3, i.e. by applying equations (6.2) and (6.3) alternately. We have thus found the fol-
lowing result, numerically illustrated in Figure 4 (again with exponentially distributed service
times, and λ = μ = 1).

Theorem 6.1. (Model with balking customers.) For any α ≥ 0 and β > 0, and n ∈ {0, . . . , m −
1}, the transform Gn(α, β | m) is given by (6.2), where the transforms P0(β), . . . , Pm−1(β)
follow from (6.3), and Pm(β) and Gm(α, β | m) are given by (6.4).

Remark 6.1. Above we assumed an exponential balking distribution, but the procedure natu-
rally extends to more general distributions. Hyperexponential balking is straightforward to deal
with, whereas for Erlang balking the procedure is slightly more delicate. For instance, for an
Erlang distribution with shape parameter 2 and scale parameter θ , recalling that (1 + θy)e−θy is
the probability that this random variable is larger than y, one has, where we locally abbreviate
f (x) ≡ ft(x, n + 1) and F(α) ≡ ∫

(0,∞) e−αx f (x) dx,∫ ∞

0
e−αx

∫
(0,x]

f (y) (1 + θy) e−θy B(x − y) dy dx = (F(α + θ ) − θ F′(α + θ ))
B(α)

α
,

which can then be transformed with respect to t in the usual manner. In general, if the scale
parameter of the Erlang balking is k ∈N, kth-order derivatives of F will appear. Observe that
the proposed recursive procedure can still be performed.
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(a)

(b)

FIGURE 4. Mean workload (a) and empty-buffer probability (b), as functions of time in the model with
balking customers, for different values of m and for θ = 11/10. The lines in light gray denote the base

model, in which case θ = 0.

Remark 6.2. This section has considered a model with a finite pool of potentially joining
customers (as was the case in the other sections of this paper). Interestingly, mimicking the
analysis of the present section reveals that the corresponding model with an infinite pool (i.e.
the model in which customers arrive according to a Poisson process) does not lead to a clean
solution, the reason being that we arrive at an equation in which both a transform evaluated in
α and the same transform evaluated in α + θ appear. This indicates that this is an example of
a model in which the finite-population version is easier to handle than its infinite-population
counterpart (in which the relevant transformed could be recursively solved; see Theorem 6.1).

A similar phenomenon happens in the model with a finite customer population, balking, and
retrial: each customer who has decided not to join then retries after an exponentially distributed
time with parameter λ. Equation (6.1) thus becomes

(β − α)Gn(α, β) + α Pn(β) = −λn Gn(α, β) + λ(n + 1) Gn+1(α + θ, β) B(α)

+ λn (Gn(α, β) − Gn(α + θ, β)),

with the same intrinsic difficulty.
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7. Discussion and concluding remarks

This paper has considered the workload in a queue with a finite number of independently
arriving customers. We thus deviate from the conventional queueing paradigm in which there
is an infinite pool of customers, who request service with independent interarrival times. We
subsequently consider a base model in which the arrival times are exponentially distributed,
and various extensions. These extensions cover the settings (a) in which the initial workload
level has an arbitrary non-negative value, (b) with an additional external Poisson arrival stream,
(c) with phase-type arrival times, and (d) with balking customers.

In existing work, various asymptotic regimes have been considered; see e.g. the diffusion
scaling of [4] and the large deviations of [10]. They give rise to two particularly interesting
research questions.

• Can we identify the tail asymptotics of the transient workload W(t), or the workload
faced by the nth customer? Importantly, techniques that have been used for the case of
independent interarrival times, in the context of GI/G/1 queues, cannot be applied here.
Most notably, while one could in principle convert the tail probabilities into those of an
associated random walk, this random walk has no i.i.d. ladder heights. If the target is to
identify logarithmic asymptotics in the regime when the service times B are light-tailed,
the results of [10] can potentially be applied.

• In our framework the server’s processing speed is constant over time (i.e. equal to one).
One could try to extend the analysis to a time-dependent service speed c(t), so as to
model the service system’s staffing profile. A relevant question is as follows: Can we
develop ways to determine a staffing profile such that, uniformly in time, a certain mini-
mum performance criterion is maintained? While it seems highly challenging to perform
an exact analysis, there could be openings in asymptotic regimes.

Appendix A. Proof of Lemma 2.1

In this section we show how we derived the determinant of the matrix Mn. By construction,
we know that Mn is of the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 b0 0 0 c0 0 0 0 0

0 a1 b1 . . . 0 c1 0 . . . 0 0 0

0 0 a2 0 c2 0 0 0 0

...
. . .

...

0 0 0 an−1 cn−1 0 0 0 0

0 0 0 0 cn bn 0 0 0

0 0 0 0 cn+1 an+1 0 0 0

...
. . .

...

0 0 0 0 cm−3 0 am−3 bm−3 0

0 0 0 . . . 0 cm−2 0 . . . 0 am−2 bm−2

0 0 0 0 cm−1 0 0 0 am−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.1)
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This matrix is very close to being an upper triangular matrix, for which the determinant is
simply the product of the entries on the diagonal. We can transform (A.1) to an upper triangular
matrix by elementary column operations, under which the determinant does not change. We
achieve this by applying the following algorithm.

(1) From column n subtract cm−1/am−1 times column m − 1. This results in the last entry
of column n becoming 0, while the (m − 2)th entry becomes

c�
m−2 = cm−2 − cm−1

am−1
bm−2.

(2) For i = m − 2, . . . , n + 1, from column n subtract c�
i /ai times column i. The ith entry of

column n becomes 0, while the (i − 1)th entry becomes

c�
i−1 = ci−1 − c�

i

ai
bi−1.

This algorithm results in an upper triangular matrix with the (n, n)th entry being c�
n, which is

given by the recursion

c�
n = cn − bn

an+1
c�

n+1, c�
m−1 = cm−1,

which is solved by

c�
n = cm−1

m−2∏
i=n

(
− bi

ai+1

)
+

m−2∑
j=n

cj

j−1∏
i=n

(
− bi

ai+1

)
.

The entries of the matrix Mn are given by ai = −(β − α + λi), bi = λ(i + 1)B(α), cm−1 =
αPm−1(β) − λm B(α)Pm(β), and ci = αPi(β) for i �= m − 1. Substituting these yields

c�
n = (αPm−1(β) − λmB(α)Pm(β))

m−2∏
i=n

λ(i + 1)B(α)

β − α + λ(i + 1)
+

m−2∑
j=n

αPj(β)
j−1∏
i=n

λ(i + 1)B(α)

β − α + λ(i + 1)

= αPn(β) − λmB(α)Pm(β)
(λB(α))m−(n+1)(m − 1)!/n!

ξm−1/ξn

+
m−1∑

j=n+1

αPj(β)
(λB(α))j−nj!/n!

ξj/ξn

= αPn(β) − (λB(α))m−nm! ξn

n! ξm−1
Pm(β) + (λB(α))−nξn

n! ξm−1

m−1∑
j=n+1

αPj(β)
(λB(α))jj! ξm−1

ξj

= αPn(β) − 1

(λB(α))nn! (ξm−1/ξn)

(
(λB(α))mm! Pm(β) −

m−1∑
j=n+1

( − Hj(α, β))Pj(β)

)
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= αPn(β) + α

Hn(α, β)

(
Hm(α, β) +

m−1∑
j=n+1

Hj(α, β)Pj(β)

)

= α

(
Pn(β) + Hm(α, β) +∑m−1

j=n+1 Hj(α, β)Pj(β)

Hn(α, β)

)
,

as desired. �

Appendix B. Proof of Lemma 5.1

We transform (5.2) by multiplying it by e−αx and integrating x over (0, ∞), for α ≥ 0.
Applying integration of parts,∫

(0,∞)
e−αxFt(x, n) dx =

[
−e−αx

α
Ft(x, n)

]∞

0
+ 1

α

∫
(0,∞)

e−αxft(x, n) dx

= Pt(n) + Ft(α, n)

α

= F̄t(α, n)

α
,

which also gives, as a consequence of Leibniz’s integral rule,∫
(0,∞)

e−αx ∂

∂t
Ft(x, n) dx = ∂

∂t

∫
(0,∞)

e−αxFt(x, n) dx = ∂

∂t

F̄t(α, n)

α
.

Furthermore, by Fubini’s theorem,∫
(0,∞)

e−αx
∫

(0,x]
ft(y, n + ei − ej) dy dx =

∫
(0,∞)

∫
(y,∞)

e−αxft(y, n + ei − ej) dx dy

= −
∫

(0,∞)

e−αy

α
ft(y, n + ei − ej) dy

= −Ft(α, n + ei − ej)

α
,

and, again by Fubini and integration by parts,∫
(0,∞)

e−αx
∫

(0,x]
ft(y, n + ei − ed+1)B(x − y) dy dx

=
∫

(0,∞)
ft(y, n + ei − ed+1)

∫
(y,∞)

e−αxB(x − y) dx dy

=
∫

(0,∞)
ft(y, n + ei − ed+1)

([
−e−αx

α
B(x − y)

]∞

y
+
∫

(y,∞)

e−αx

α

∂

∂x
B(x − y) dx

)
dy

= 1

α

∫
(0,∞)

ft(y, n + ei − ed+1)
∫

(0,∞)
e−αue−αy ∂

∂u
B(u) du dy
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= B(α)

α

∫
(0,∞)

e−αyft(y, n + ei − ed+1) dy

= B(α) Ft(α, n + ei − ed+1)

α
;

here we have used B(0) = 0, a simple substitution u = x − y, and the notation B(α) =E e−αB.
For the final two terms, we obtain∫

(0,∞)
e−αxPt(n + ei − ej) dx = Pt(n + ei − ej)

α
,

and ∫
(0,∞)

e−αxPt(n + ei − ed+1)B(x) dx

= Pt(n + ei − ed+1)

([
−e−αx

α
B(x)

]∞

0
+
∫

(0,∞)

e−αx

α

∂

∂x
B(x) dx

)

= B(α)Pt(n + ei − ed+1)

α
.

Putting everything together and multiplying by α gives

∂

∂t
F̄t(α, n) − α(F̄t(α, n) − Pt(n))

= −
d∑

i=1

niqiF̄t(α, n) +
d∑

i=1

∑
j �=i,d+1

(ni + 1)qij1{nj>0}F̄t(α, n + ei − ej)

+
d∑

i=1

(ni + 1)q̄i 1{nd+1>0}B(a)F̄t(α, n + ei − ed+1). (B.1)

So as to perform the second transform, we multiply (B.1) by e−βt, for β > 0, and integrate t
over (0, ∞). All terms are straightforward, except for the first term, for which again we need
to use integration by parts. We obtain∫

(0,∞)
e−βt ∂

∂t
F̄t(α, n) dt = [e−βtF̄t(α, n)]∞0 + β

∫
(0,∞)

e−βtF̄t(α, n) dt

= −1{n=n0} + β Gn(α, β),

where we used limt↓0 F̄t(α, n) = 0 for all n �= n0 and limt↓0 F̄t(α, n0) = P0(n0) = 1. Upon
combining the above, we arrive at the desired result. �
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