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A COMPLETELY GENERAL RABINOWI1SCH 
CRITERION FOR COMPLEX QUADRATIC FIELDS 

R. A. MOLLIN 

ABSTRACT. We provide a criterion for the class group of a complex quadratic field 
to have exponent at most 2. This is given in terms of the factorization of a generalized 
Euler-Rabinowitsch polynomial and has consequences for consecutive distinct initial 
prime-producing quadratic polynomials which we cite as applications. 

1. Introduction. In [4], we gave necessary and sufficient conditions for the class 
group CA to have exponent eA < 2 when À < 0 is a discriminant. The criterion was 
given in terms of the Euler-Rabinowitsch polynomial 

FA(x) = x2 + (a - \)x + (a - 1 - A)/4 

where o — 2 if À = 1 (mod 4) and a = 1 otherwise. This is, in fact, a generalization of 
the well-known Rabinowitsch class number one criterion for complex quadratic fields. 
What we provide herein, is an even more general and very useful criterion based upon a 
generalization of the Euler-Rabinowitsch polynomial as follows. 

DEFINITION 1.1. Let q be a positive squarefree divisor of A. Put 

FA,q(x) = qx2 + (a-l)qx + ((a - \)q2 - A)/(4q) 

where a = 1 if 4q divides A and a — 2 otherwise. We call FAq(x) the qth-Euler-
Rabinowitsch polynomial. (Thus, q = 1 yields the aforementioned Euler-Rabinowitsch 
polynomial). 

We need therefore, a more general setting than that in [4], so we provide: 

DEFINITION 1.2. Let A < 0 be a discriminant and let q > 1 be a squarefree divisor of 
A. Let F(A, q) denote the maximum number of (not necessarily distinct) primes dividing 
FXq(x) for any integer x G S(q) = {0, 1, 2 , . . . , jjA|/(4fl) - l j } . (Thus, F(A, 1) is the 
F(A) of [3, Definition l ,p. 178] and5(1) = / o f [3, Lemma3, p. 178].) 

In the next section, we will need some ideal theoretic notation. Let [7, (3] denote the 
Z-module {lx + (3y : x, y G Z} and let D be a negative squarefree integer called the 
radicand of the complex quadratic field Q(VD) = K. Let u = (a — 1 + \fÛ)jo called 
the principal surd, then the discriminant mentioned above is A = (a; — a/)2 — 4D/02 
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where J is the algebraic conjugate of a;. Thus, 0A = [1, a;] is the maximal order (or 
ring of integers of K). It is well-known that / is an ideal of 0A if and only if / = [a, 
b + cuJ] where a,b,ceZ with c\ a9c\ b and ac \ N(b + CUJ) where N is the norm from 
Kto Q {i.e., N(a) = ao/ for a £ K). If a > 0 and c = 1 then we say that / is primitive. 

We have provided the essentials for what is needed in the next section. The reader is 
referred to [3}-[4] for further background and data. 

2. Exponent two and Rabinowitsch. First we standardize a hypothesis which we 
will use repeatedly. 

HYPOTHESIS 2.1. Let A = Ao < 0 (A ^ - 3 , - 4 ) be a discriminant divisible by 
exactly N+1(N>0) distinct primes qt{\ <i<N+\) with q^+1 being the largest, and 
let q > 1 be a squarefree divisor of A, divisible by exactly M > 0 of the primes qt for 
/ = l , 2 , . . . , t f . 

Now we prove a technical result which is of interest in its own right. 

LEMMA 2.1. Let A and q satisfy Hypothesis 2.1. Then 

F(A,q)>N+l-M. 

PROOF. If M = 0, then this is just [4, Corollary 3, p. 180]. We now assume that 
M > 1. If Q, = n ^ j Qi is the product of the unique 0A-ideals above the primes qt for 
1 < i < N, then we may always find a representative of the ideal as Q, = [Q, b + LJA] 
where 0 < b < Q = H^qt < |A|/4 and Q divides N(b + u;A). Moreover, Q, cannot be 
principal since it is the product of the generators of the elementary abelian 2-subgroup 
of CA. Therefore, N(b + UJA) is divisible by at least N + 1 primes. 

CLAIM. 2b + a — 1 = <7(2*o + a — 1) for some non-negative integer xo < 
(1*1/(4?)-1). 

If a = a, then # is forced to divide 2fc+a— l,so2è+a— 1 = q(2xo+a— 1). If a ^ a, 
then we must have a = 2, a = 1, and g even. Therefore, # divides 26 = 26+cr— 1 where 
Msodd,/.e.,2&+<r-l = 4(2x 0 +a-l ) . SinceO <b< |A|/4,thenO < JCO < | A | / 4 ^ - l . 

By the Claim, N(b + uj^/q = (q2(2xo + a — l)2 — A)/4q = F^q(xo) is divisible by 
at least N+\ —M primes. 

THEOREM 2.1. Let A and q satisfy Hypothesis 2. L The following are equivalent: 

(1) eA < 2 
(2) F(A, q) = N+\- MandhA = 2F^>+M~1. 

PROOF. If (2) holds, then hA = 2N, so (1) holds by Gauss. If (1) holds, then by 
Lemma 2.1, F(A, q) + M — 1 > N. It remains to show that there is no integer x, with 
0 < x < |A|/(4<7) — 1, such that FAq(x) is divisible by more than N+ 1 — Mprimes. 
Suppose, to the contrary, that such a value does exist. Let 

I qx if a = 1, 

qx + (q — l ) /2 if a = 2 and q is odd, 
qx + q/2 if a = 2 and # is even, 
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then qF&,q(x) = FA(y\ with 0<>>< |A | /4— 1, is divisible by more than N + 1 primes 
contradicting [4, Theorem 1, p. 179]. 

The following tables are presented as applications of Theorem 2.1 and are discussed 
at the end of the paper. 

\D\ 
5 

13 
21 
33 
37 
57 
85 
93 

105 
133 
165 
177 
253 
273 
345 
357 
385 

1365 

<7w+i 
5 

13 
7 

11 
37 
19 
17 
31 

7 
19 
11 
59 
23 
13 
23 
17 
11 
13 

F&.q(x) 
2x2 + 2* + 3 
2x2+2x + 7 
6.x2+ 6* + 5 
6*2 + 6* + 7 

2x2 + 2x+19 
6*2 + 6*+11 

lO^ + lOx+ll 
6x2 + 6x+17 

30*2 + 30*+11 
14*2 +14*+13 
30;c2+ 30*+13 

6.x2+ 6* +31 
22x2 + 22*+17 
42*2 + 42*+17 
30*2+ 30*+19 
42*2 + 42*+19 
70*2+ 70*+ 23 

210*2+ 210*+ 59 

B 
2 
6 
3 
6 

18 
9 
8 

15 
3 
9 
5 

29 
11 
6 

11 
8 
5 
6 

TABLE 2.1: D = 3 (mod 4) 

P\ 
6 

10 
22 
30 
42 
58 
70 
78 

102 
130 
190 
210 
330 

1 462 

qN+\ = B 
3 
5 

11 
5 
7 

29 
7 

13 
17 
13 
19 
7 

11 
11 

FA.q(x) 
2JC2 + 3 

2JC2 + 5 

2x2 + l l 
6x2 + 5 
6x^ + 7 

2x2 + 29 
10x2 + 7 
6JC2 + 1 3 

6x2 + 17 
10x2 + 13 
10x2 + 19 
3 0 ^ + 7 

3 0 ^ + 11 
42x2 + l l 

TABLE 2.2. D = 2 (mod 4) 
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1 \D\ 
15 
35 
51 

! 91 
115 
123 
187 
195 
235 
267 
403 
427 
435 
483 
555 
595 
627 
715 
795 

1155 
1435 
1995 
3003 
3315 

ÇN+\ 
5 
7 

17 
13 
23 
41 
17 
13 
47 
89 
31 
61 
29 
23 
37 
17 
19 
13 
53 
11 
41 
19 
13 
17 

F&4&) 
3x2 + 3x + 2 
5 ^ + 5x + 3 
3x2 + 3x + 5 
7x2 + 7x + 5 
5X2 + 5* + 7 

3r2 + 3 x + l l 
11** +11* +7 
15r2 + 15x + 7 
5 ^ + 5*+13 
3*2 + 3x + 23 

13^+13*+11 
7x2 + 7x+17 

15^ + 15^+11 
21x2 + 21x+l l 
IS^+Hx+U 
35x^ + 35^+13 
3 3 ^ + 33^+13 
55x^ + 55^+17 

îs^ + isx+n 
105x2 + 105x+29 

35x2 + 35x+19 
105x2 + 105x + 31 
231x2 + 231x + 61 
195.x2+ 195* +53 

B 
1 
2 
4 
3 
5 

10 
4 
3 

12 
22 
7 

16 
7 
5 
9 
4 
4 
3 

13 
2 

10 
4 
3 
4 | 

TABLE 2.3. D = 1 (mod 4) 

An easy application of Theorem 2.1 to prime-producing quadratic polynomials is 

COROLLARY 2.1. If Hypothesis 2.1 is satisfied, eA < 2, and M = N, then FA,q(x) is 
prime for all non-negative integers x < [qN+i/i^a) — l j . 

Since it is well known that if A < 0 and eA < 2 with A = 1 (mod 8), then A = —7 
or —15, we may assume A ^ 1 (mod 8). We note that, by results of Weinberger [7] 
(see also Louboutin [2]), under the assumption of the generalized Riemann hypothesis 
(GRH), all A < 0 with eA = 2 are known and these are exactly the values in Tables 2 .1 -
2.3. Therefore, under the assumption of the GRH and the hypotheses of Corollary 2.1 
we have: 

• If A = 4 (mod 8), then the largest string of primes occurs for FAtq(x) = 6x*+6x+?> 1, 
which is prime for* = 0, 1,...,28, whereD = —111 andq = 6 (seeTable 2.1). This 
example was first noted by C. Coxe (see [6]). 

• If A = 0 (mod 8), then the largest string of primes occurs for FAjq(x) = 2 ^ + 29, 
which is prime for 0 < JC < 28, where D = — 58 and q = 2 (see Table 2.2). This example 
was cited by Sierpinski in [5], but probably known to Euler. 
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• If A = 1 (mod 4), then the largest string of primes occurs for FA^(x) = 3x2+3x+23, 
which is prime for 0 < x < 21, where D = —267 and q = 3 (see Table 2.3). This 
example was noticed in 1922 by Levy [1]. 

The three tables appearing above give all D < 0, by congruence modulo 4, together 
with their non-monic, consecutive, prime-producing quadratics for an initial string of 
values of x. Furthermore, we list the largest prime q^+i and the number of initial, consec­
utive, distinct prime values (the column labelled B) generated by the associated quadratic 
as given by Corollary 2.1. 
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