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Abstract

A Markov chain X with finite state space {0, . . . , N} and tridiagonal transition matrix is
considered, where transitions from i to i−1 occur with probability (i/N)(1−p(i/N)) and
transitions from i to i + 1 occur with probability (1 − i/N)p(i/N). Here p : [0, 1] →
[0, 1] is a given function. It is shown that if p is continuous with p(x) ≤ p(1) for
all x ∈ [0, 1] then, for each N , a dual process Y to X (with respect to a specific duality
function) exists if and only if 1−p is completely monotone with p(0) = 0. A probabilistic
interpretation of Y in terms of an ancestral process of a mixed multitype Moran model
with a random number of types is presented. It is shown that, under weak conditions on
p, the process Y , properly time and space scaled, converges to an Ornstein–Uhlenbeck
process as N tends to ∞. The asymptotics of the stationary distribution of Y is studied
as N tends to ∞. Examples are presented involving selection mechanisms.
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1. Introduction

Assume that X = (Xt )t∈T and Y = (Yt )t∈T are two time-homogeneous Markov processes
with state spaces (E1, F 1) and (E2, F2), respectively. Typical time sets are T = {0, . . . , n}
for some n ∈ N := {1, 2, . . .}, countable sets T = N0 := {0, 1, 2, . . .}, or continuous-time
sets such as the unit interval T = [0, 1] or T = [0, ∞). Let B(E1 × E2) denote the set of all
real-valued, bounded, measurable functions on E1 × E2. We recall the definition of duality of
Markov processes in the sense of Liggett [21].

Definition 1.1. The process X is said to be dual to Y with respect to H ∈ B(E1 × E2) if

Ex(H(Xt , y)) = Ey(H(x, Yt ))

for all x ∈ E1, y ∈ E2, and t ∈ T , where Ex denotes the expectation given that the process X

starts in X0 = x and Ey denotes the expectation given that the process Y starts in Y0 = y.

Dual processes occur in many applications, usually when considering some phenomena
forwards and backwards in time. For typical dual processes, we refer the reader to the
mathematics and physics literature on interacting particle systems; see [8], [17], [21], [22], [28],
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[29], and the references therein. Other important examples occur in the context of mathematical
population genetics [1], [2], [5], [6], [10]–[14], [18], [25], [26] and essentially go back to similar
duality results for stochastically monotone Markov processes [27].

Here we are interested in a particular class of Markov chains X of the following form. Let
p : [0, 1] → [0, 1] be some function. For fixed N ∈ N, consider a Markov chain X = (Xn)n∈N0

with state space {0, . . . , N} and tridiagonal transition matrix

� = (πij )i,j∈{0,...,N} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r0 p0 0 · · · 0

q1 r1 p1
. . .

...

0
. . .

. . .
. . . 0

...
. . . qN−1 rN−1 pN−1

0 · · · 0 qN rN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1.1)

where, for i ∈ {0, . . . , N},

pi :=
(

1 − i

N

)
p

(
i

N

)
, qi := i

N

(
1 − p

(
i

N

))
, (1.2)

and

ri := 1 − pi − qi =
(

1 − i

N

)(
1 − p

(
i

N

))
+ i

N
p

(
i

N

)
. (1.3)

For particular choices of the function p, the Markov chain X is well known from the literature
on mathematical population genetics. For p = Id (identity), the chain X counts the number
of descendants in the classical haploid Moran model [23] with population size N (see also
Equations (3.45)–(3.47) of [15, p. 105]). For p(x) = 1 − (1 − x)2, x ∈ [0, 1], the chain X is
the forward process of a two-sex model introduced in [19]. For closely related Moran models
in continuous time, we refer the reader to [7], [9], and [12]. Note that E(Xn+1 | Xn = i) =
i + p(i/N) − i/N for all i ∈ {0, . . . , N}. Thus, if p(x) ≤ x for all x ∈ [0, 1] then X is a
supermartingale. If p(x) ≥ x for all x ∈ [0, 1] then X is a submartingale.

The paper is organised as follows. In Section 2 we provide (for a suitable subclass of
functions p) a multitype (K-sex) population model such that X counts the number of ‘mating
units’ forwards in time in this model. We also introduce the ancestral chain Y which counts the
number of ‘mating units’backwards in time. In Section 3, the main duality result (Theorem 3.1)
and its proof are given. Section 4 deals with the convergence of Y , properly time and space
scaled, to an Ornstein–Uhlenbeck limiting process as N tends to ∞ (Theorem 4.1). In Section 5
we provide details of the extinction probabilities of the forward chain X and of the stationary
distribution of the ancestral chain Y . The asymptotics of the mean and the variance of the
stationary distribution of Y are given. We state a conjecture on the asymptotic normality
(Conjecture 5.1) of the stationary distribution. The paper concludes with a collection of typical
examples (Section 6) involving selection mechanisms.

Throughout the paper, we will use the notation (x)0 := 1 and (x)k := x(x−1) · · · (x−k+1),

x ∈ R, k ∈ N, for the descending factorials. Furthermore, S(i, j), i, j ∈ N0, denote the
Stirling numbers of the second kind.

2. A multitype Moran model

Before we introduce the multitype Moran model we briefly recall some basics about com-
pletely monotone functions. In the literature (see, for example, [4, Section 2]), complete
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monotonicity is mostly considered for functions q with domain (0, ∞) or [0, ∞). Here we are
interested in functions q with domain [0, 1], the unit interval.

Definition 2.1. A function q : [0, 1] → R is called completely monotone if it is C∞ on (0, 1)

with (−1)kq(k)(x) ≥ 0 for all k ∈ N0 and all x ∈ (0, 1).

The following lemma is essentially a version of the classical Bernstein theorem.

Lemma 2.1. A continuous function q : [0, 1] → R is completely monotone if and only if there
exists a finite measure µ on N0 with q(1 − x) = ∑∞

n=0 xnµ({n}) for all x ∈ [0, 1].
Proof. If there exists a finite measure µ on N0 with q(1 − x) = ∑∞

n=0 xnµ({n}) for all
x ∈ [0, 1], then (−1)kq(k)(x) = ∑∞

n=k n!/(n − k)! (1 − x)n−kµ({n}) ≥ 0 for all k ∈ N0 and
all x ∈ (0, 1), i.e. q is completely monotone. Conversely, if q is completely monotone then
the function u : [0, 1] → R, defined via u(x) := q(1 − x) for x ∈ [0, 1], satisfies u(n)(x) =
(−1)nq(n)(1−x) ≥ 0 for all n ∈ N0 and all x ∈ (0, 1). Bernstein’s theorem [16, Chapter VII.2,
Theorem 2] for bounded functions u ensures the existence of a measure µ on N0 such that u

has power series representation u(x) = ∑∞
n=0 xnµ({n}), x ∈ [0, 1]. The measure µ is finite as

µ(N0) = u(1) < ∞.

Remark. Suppose that q : [0, 1] → R is a continuous, completely monotone function. The
measure µ in Lemma 2.1 is a probability measure if and only if q(0) = 1. In this case,
there exists a random variable η with distribution P(η = n) = µ({n}), n ∈ N0, and u(x) :=
q(1 − x) = E(xη) for all x ∈ [0, 1], i.e. u is the probability generating function (PGF) of η.

We now turn to the definition of the multitype Moran model. Fix a constant K ∈ N, and
consider a population where each individual has one of K possible types. Each generation
consists of N ∈ N mating units, where a mating unit is (by definition) a set of K individuals
of different types. Hence, the total population size is KN . In each generation, K children are
born, one of each type, and each of these K children randomly chooses one of the ancestral
mating units as its parental unit. These K newly born individuals form a new mating unit of
the following generation. One of the N parental mating units is chosen at random and removed
from the population. For K = 1, this model coincides with the standard haploid Moran model
with population size N (see, for example, Equations (3.45)–(3.47) of [15, p. 105]). For K = 2,
we arrive at Kämmerle’s two-sex Moran model [19]. Some more details for this particular
model are given in Section 6 (Example 6.1). We may also think of this model as a K-sex model
by interpreting different types as different genders.

Fix i ∈ {1, . . . , N}. A descendant-unit of the mating units 1, . . . , i of generation 0 is any
mating unit of any generation which has at least one member descending from one of these
i mating units of generation 0. If Xn denotes the number of descendant-units in generation
n ∈ N0 then it is easily seen that X := (Xn)n∈N0 is a Markov chain with state space {0, . . . , N}
and transition matrix � of the form (1.1) with

p(x) := 1 − (1 − x)K, x ∈ [0, 1].

If we instead look back into the past and let Yn denote the number of ancestral mating units
n generations backwards in time, we obtain the so-called ancestral chain Y := (Yn)n∈N0 ,
sometimes also called the backward chain. The following lemma provides the transition
probabilities of the Markov chain Y .
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Lemma 2.2. The transition probabilities pij := P(Yn+1 = j | Yn = i), i, j ∈ {0, . . . , N}, of
the ancestral chain Y = (Yn)n∈N0 are

pi,i−1 = i

N

(
i − 1

N

)K

, i ∈ {1, . . . , N},
p00 = 1,

pii = N − i

N
+ i

N
(N − i + 1)

((
i

N

)K

−
(

i − 1

N

)K)
, i ∈ {1, . . . , N},

pij = i

N

(
N − i + 1

j − i + 1

) j−i+1∑
k=0

(−1)j−i+1−k

(
j − i + 1

k

)(
i − 1 + k

N

)K

for j ∈ {i + 1, . . . , i + K − 1}, and pij = 0 otherwise.

Proof. Assume that there are i ancestral mating units present in generation n. One generation
backwards in time there will be i − 1 ancestral mating units present if and only if one of the
i mating units is removed and all K newly born individuals choose their parental unit among
the i − 1 remaining ancestral units. One of the i mating units is removed with probability i/N

and each newly born individual chooses its parental unit among the i − 1 remaining units with
probability (i − 1)/N . Thus, the formula for pi,i−1 follows immediately.

One generation backwards in time there will be i ancestral mating units present if and only
if either one of the N − i nonancestral units is removed or if one of the i ancestral units is
removed and, for some l ∈ {1, . . . , K}, exactly K − l of the K newly born individuals choose
their ancestral unit among the remaining i − 1 ancestral units and the other l newly born
individuals all choose the same unit among the other N − (i − 1) mating units. Thus,

pii = N − i

N
+ i

N

K∑
l=1

(
K

l

)
N − (i − 1)

Nl

(
i − 1

N

)K−l

= N − i

N
+ i

N
(N − i + 1)

K∑
l=1

(
K

l

)(
1

N

)l(
i − 1

N

)K−l

= N − i

N
+ i

N
(N − i + 1)

((
i

N

)K

−
(

i − 1

N

)K)
.

Similarly, there will be j (> i) ancestral mating units present one generation backwards in
time if and only if one of the i ancestral mating units is removed and, for some l ∈ {0, . . . , K},
exactly K − l of the newly born individuals choose their ancestral unit among the remaining
i − 1 ancestral units and the other l newly born individuals altogether choose j − i + 1 among
the other N − (i − 1) mating units. Thus,

pij = i

N

K∑
l=0

(
K

l

)
(N − (i − 1))j−i+1S(l, j − i + 1)

Nl

(
i − 1

N

)K−l

.

Note that pij = 0 for j > i + K − 1. Substituting

S(l, j − i + 1) = 1

(j − i + 1)!
j−i+1∑
k=0

(−1)j−i+1−k

(
j − i + 1

k

)
kl,
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the explicit formula for the Stirling numbers of the second kind, into the above equation and
interchanging the sums yields

pij = i

N

(
N − i + 1

j − i + 1

) j−i+1∑
k=0

(−1)j−i+1−k

(
j − i + 1

k

) K∑
l=0

(
K

l

)(
k

N

)l(
i − 1

N

)K−l

= i

N

(
N − i + 1

j − i + 1

) j−i+1∑
k=0

(−1)j−i+1−k

(
j − i + 1

k

)(
i − 1 + k

N

)K

,

which completes the proof.

We can also include the case in which K = 0 (p(x) ≡ 0) in our model with the interpretation
of a population consisting of N individuals of the same type in each generation. In each
step (forwards in time), one randomly chosen individual is (by definition) replaced by a
nondescendant individual. In this case we have pi,i−1 = i/N and pii = 1− i/N , in agreement
with Lemma 2.2 for K = 0.

The model can be easily extended to a larger class of functions p as follows. Suppose that
p : [0, 1] → [0, 1] is any continuous function satisfying p(0) = 0 and that q := 1 − p is
completely monotone. Then (see the remark after Lemma 2.1) there exists a random variable
η taking values in N0 such that p(x) = 1 − E((1 − x)η) for all x ∈ [0, 1]. In this situation, the
Markov chains X and Y can be interpreted probabilistically in the following way. Consider a
population where each individual has one of max(η, 1) possible types. The population consists
in each generation of N mating units, where a mating unit is (by definition) a set of max(η, 1)

individuals of different types. Assume that, conditioned on η = K (K ∈ N0), the population
evolves according to the K-type Moran model introduced before. Then, X counts the number
of mating units forwards in time and Y counts the number of mating units backwards in time.
We therefore have found—for continuous functions p : [0, 1] → [0, 1] satisfying p(0) = 0 and
such that q := 1 − p is completely monotone—a meaningful probabilistic interpretation for
the chains X and Y . In particular, the random variable Yn can be interpreted as the number of
ancestral mating units n generations backwards in time under the multitype Moran model with
a random number, η, of types. The following corollary is a direct consequence of Lemma 2.2.

Corollary 2.1. For the mixed multitype Moran model with a random number, η, of types, the
transition probabilities pij := P(Yn+1 = j | Yn = i), i, j ∈ {0, . . . , N}, of the ancestral
chain Y = (Yn)n∈N0 are

pi,i−1 = i

N

(
1 − p

(
N − i + 1

N

))
, i ∈ {1, . . . , N},

p00 = 1,

pii = N − i

N
+ i

N
(N − i + 1)

(
p

(
N − i + 1

N

)
− p

(
N − i

N

))
, i ∈ {1, . . . , N},

pij = i

N

(
N − i + 1

j − i + 1

) j−i+1∑
k=0

(−1)j−i−k

(
j − i + 1

k

)
p

(
N − i + 1 − k

N

)

for j ∈ {i + 1, i + 2, . . . , N}, and pii = 0 otherwise.
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Proof. From Lemma 2.2 and the definition of the mixed multitype Moran model, it follows
that, for i ∈ {1, . . . , N},

pi,i−1 =
∞∑

K=0

i

N

(
i − 1

N

)K

P(η = K) = i

N
E

((
i − 1

N

)η)
= i

N

(
1 − p

(
N − i + 1

N

))
.

The other transition probabilities pij are obtained similarly.

Note that Y is skip-free to the left, i.e. pij = 0 for j < i − 1. In the following section the
main duality result (Theorem 3.1) is presented. An important consequence of this result is that,
for the mixed multitype Moran model with a random number, η, of types, X is dual to Y with
respect to a specific duality function H (see (3.1), below) which is universal in the sense that
it does not depend on the function p.

3. A duality result

If the state spaces E1 and E2 of the processes X and Y in Definition 1.1 are finite, then the
function H ∈ B(E1 ×E2) in Definition 1.1 can be considered as a matrix H = (hij )i∈E1, j∈E2 .
In the literature on duality for Markov chains with identical finite state spaces E1 = E2 =
{0, . . . , N}, the particular nonsingular, symmetric, left-upper matrix H = (hij )i,j∈{0,...,N} with
entries

hij :=
(

N − i

j

)/(
N

j

)
=

(
N − j

i

)/(
N

i

)
=

i−1∏
k=0

N − j − k

N − k
=

j−1∏
k=0

N − i − k

N − k
(3.1)

plays an important role. For example, this matrix turns out to be a suitable choice to obtain
duality results for a large class of exchangeable population models [25]. It was also used
(see also the remark at the end of this section) to derive duality results for a class of nonneutral
Wright–Fisher models [18]. The following theorem shows that this matrix is also an appropriate
choice for Moran models.

Theorem 3.1. Let p : [0, 1] → [0, 1] be some continuous function satisfying p(x) ≤ p(1) for
all x ∈ [0, 1]. Then, the following conditions are equivalent.

(i) There exists a random variable η taking values in N0 such that 1 − p(1 − x) = E(xη)

for all x ∈ [0, 1].
(ii) The function q := 1 − p is completely monotone and p satisfies p(0) = 0.

(iii) For each N ∈ N, there exists a Markov chain Y = (Yn)n∈N0 such that the Markov
chain X (as defined in Section 1) is dual to Y with respect to H = (hij )i,j∈{0,...,N} with
entries (3.1), i.e. �H = HP �, where P � denotes the transpose of the transition matrix
P = (pij )i,j∈{0,...,N} of Y .

Remark. It turns out (see (3.3), (3.4), (3.5), and (3.7), below) that the distribution of the chain
Y coincides with that of the ancestral chain of the mixed multitype Moran model introduced
at the end of Section 2 (see Corollary 2.1). However, note that we do not make use of the
multitype Moran model, neither in the presentation of Theorem 3.1 nor in the following proof.

Proof of Theorem 3.1. The equivalence of (i) and (ii) follows immediately from the remark
after Lemma 2.1.
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We now verify that condition (ii) implies condition (iii). For i, j ∈ {0, . . . , N},
(�H)ij = qihi−1,j + rihij + pihi+1,j

= qi

(
N − i + 1

j

)/(
N

j

)
+ ri

(
N − i

j

)/(
N

j

)
+ pi

(
N − i − 1

j

)/(
N

j

)
,

where pi , qi , and ri are as defined in (1.2) and (1.3). Define the matrix P := (pij )i,j∈{0,...,N}
recursively over its columns via

pi0 := (�H)Ni

hN0
=

⎧⎪⎪⎨
⎪⎪⎩

1 for i = 0,
1 − p(1)

N
for i = 1,

0 for i ∈ {2, . . . , N},
and

pij := (�H)N−j,i − ∑j−1
k=0 hN−j,kpik

hN−j,j

, i ∈ {0, . . . , N}, (3.2)

for j ∈ {1, . . . , N}. From this definition, it follows immediately that

(�H)N−j,i =
j∑

k=0

hN−j,kpik =
N∑

k=0

hN−j,kpik = (HP �)N−j,i

for all i, j ∈ {0, . . . , N}. Thus, the duality equation �H = HP � is satisfied. It remains to
verify that P is a stochastic matrix. Note that p00 = 1 and that pij = 0 for j < i − 1. Thus,
the matrix P has the form

P = (pij )i,j∈{0,...,N} =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
� � · · · � �

0 � · · · � �
...

. . .
. . .

...
...

0 · · · 0 � �

⎞
⎟⎟⎟⎟⎟⎠ , (3.3)

where the � entries are those which are now studied in more detail. From (3.2), it follows that,
for i ∈ {1, . . . , N},

pi,i−1 = (�H)N−i+1,i

hN−i+1,i−1

= qN−i+1hN−i,i

hN−i+1,i−1

= N − i + 1

N

(
1 − p

(
N − i + 1

N

))(
N

i

)−1(
N

i − 1

)

= i

N

(
1 − p

(
N − i + 1

N

))
. (3.4)

In particular, pi,i−1 ≥ 0. For the diagonal entries of P , we obtain from (3.2) that p00 = 1 and
that, for i ∈ {1, . . . , N},

pii = (�H)N−i,i − hN−i,i−1pi,i−1

hN−i,i

= qN−ihN−i−1,i + rN−ihN−i,i + pN−ihN−i+1,i − hN−i,i−1pi,i−1

hN−i,i
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= (i + 1)qN−i + rN−i − (N − i + 1)pi,i−1

= (i + 1)
N − i

N

(
1 − p

(
N − i

N

))
+ i

N
+ N − 2i

N
p

(
N − i

N

)

− (N − i + 1)
i

N

(
1 − p

(
N − i + 1

N

))

= N − i

N
+ i

N
(N − i + 1)

(
p

(
N − i + 1

N

)
− p

(
N − i

N

))
. (3.5)

In particular, pii ≥ 0 as the function p is increasing by condition (ii). Proceeding in the same
way we obtain

pi,i+1 = (�H)N−i−1,i − ∑i
k=i−1 hN−i−1,kpik

hN−i−1,i+1

= (�H)N−i−1,i − hN−i−1,i−1pi,i−1 − hN−i−1,ipii

hN−i−1,i+1

= (N − i)

(
i + 2

2
qN−i−1 + rN−i−1 + 1

i + 1
pN−i−1

)

−
(

N − i + 1

2

)
pi,i−1 −

(
N − i

1

)
pii .

Substituting the expressions for pN−i−1, qN−i−1, and rN−i−1 into this as well as (3.4) and
(3.5) for pi,i−1 and pii , and sorting afterwards with respect to the values p((N − i − 1)/N),
p((N − i)/N), and p((N − i + 1)/N), we obtain, after some straightforward manipulation,
for i ∈ {1, . . . , N − 1},

pi,i+1 = i

N

(
N − i + 1

2

)(
2p

(
N − i

N

)
− p

(
N − i − 1

N

)
− p

(
N − i + 1

N

))
. (3.6)

Since q is completely monotone, second-order differences of p are nonnegative from which it
follows that pi,i+1 ≥ 0. We now verify by induction on j ∈ {i + 1, i + 2, . . . , N} that

pij = i

N

(
N − i + 1

j − i + 1

) j−i+1∑
k=0

(
j − i + 1

k

)
(−1)j−i−kp

(
N − i + 1 − k

N

)
. (3.7)

For j = i + 1, (3.7) coincides with (3.6). Thus, (3.7) is already proven for j = i + 1. The
induction step from {1, . . . , j − 1} to j (> i) works as follows. For j > i, we have

pij = (�H)N−j,i − ∑j−1
k=i−1 hN−j,kpik

hN−j,j

= qN−j hN−j−1,i + rN−j hN−j,i + pN−j hN−j+1,i

hN−j,j

−
j−1∑

k=i−1

hN−j,k

hN−j,j

pik

=
(

N − i

N − j

)(
qN−j

j + 1

j − i + 1
+ rN−j + pN−j

j − i

j

)
−

j−1∑
k=i−1

(
N − k

j − k

)
pik.

As before, substituting the expressions for pN−j , qN−j , and rN−j into this as well as the (by
induction already known) formulae for pik , k ∈ {i − 1, i, . . . , j − 1}, we find—after some

https://doi.org/10.1239/jap/1253279856 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279856


874 T. HUILLET AND M. MÖHLE

tedious but straightforward manipulations—that the latter expression coincides with the right-
hand side of (3.7), which completes the induction.

Since q is completely monotone, the sum on the right-hand side of (3.7) is nonnegative,
which shows that pij is nonnegative for j > i. For i ∈ {1, . . . , N}, it follows furthermore from
(3.4), (3.5), and (3.7) that, for x ∈ [0, 1],

N∑
j=0

pij x
j = pi,i−1x

i−1 + piix
i +

N∑
j=i+1

pij x
j

= ixi−1

N

(
1 − p

(
N − i + 1

N

))

+ N − i

N
xi + ixi

N
(N − i + 1)

(
p

(
N − i + 1

N

)
− p

(
N − i

N

))

+
N∑

j=i+1

ixj

N

(
N − i + 1

j − i + 1

) j−i+1∑
k=0

(
j − i + 1

k

)
(−1)j−i−kp

(
N − i + 1 − k

N

)

= i

N
xi−1 + N − i

N
xi

+ i

N

N∑
j=i−1

xj

(
N − i + 1

j − i + 1

) j−i+1∑
k=0

(
j − i + 1

k

)
(−1)j−i−kp

(
N − i + 1 − k

N

)

= i

N
xi−1 + N − i

N
xi − i

N

N−i+1∑
k=0

(
N − i + 1

k

)
p

(
N − i + 1 − k

N

)
xi+k−1

×
N∑

j=k+i−1

(
N − i + 1 − k

j − i + 1 − k

)
(−x)j−i+1−k

= i

N
xi−1 + N − i

N
xi

− i

N

N−i+1∑
k=0

(
N − i + 1

k

)
p

(
N − i + 1 − k

N

)
xi+k−1(1 − x)N−i+1−k

= i

N
xi−1 + N − i

N
xi − i

N

N−i+1∑
l=0

(
N − i + 1

l

)
p

(
l

N

)
xN−l (1 − x)l

= N − i

N
xi + i

N

N−i+1∑
l=0

(
N − i + 1

l

)
q

(
l

N

)
xN−l (1 − x)l. (3.8)

For x = 1, only the summand for l = 0 differs from 0, and we obtain
∑N

j=0pij = (N − i)/N +
i/Nq(0) = 1 − i/Np(0) = 1, as p(0) = 0 by condition (ii). Thus, P is a stochastic matrix.

Conversely, let us now verify that condition (iii) implies condition (ii). If X is dual to Y with
respect to H then recursion (3.2) holds. As in the previous part of the proof, it follows that the
matrix P has the structure (3.3) with the � entries given by (3.4), (3.5), and (3.7). Consequently,
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(3.8) is valid, and we obtain, for x ∈ [0, 1],

E(xYn+1 | Yn = i) =
N∑

j=0

pij x
j

= N − i

N
xi + i

N
xi−1

N−i+1∑
l=0

(
N − i + 1

l

)
q

(
l

N

)
xN−i+1−l (1 − x)l

= N − i

N
xi + i

N
xi−1BN−i+1,q(1 − x),

where BN−i+1,q(1 − x) is the (N − i + 1)th Bernstein polynomial of the function q evaluated
at the point 1 − x. Now rewrite this equation for i = 1 as

BN,q(1 − x) = x + N(E(xYn+1 | Yn = 1) − x). (3.9)

As q is continuous, the left-hand side converges uniformly for x ∈ [0, 1] to q(1−x) as N → ∞.
Therefore, the right-hand side of (3.9) also converges uniformly for x ∈ [0, 1], and from the
structure of this right-hand side, it follows that

q(1 − x) =
∞∑

k=0

akx
k (3.10)

for some nonnegative real coefficients ak, k ∈ N0. Note that, in particular, the coefficient a1 is
nonnegative, as it is the limit as N → ∞ of

1 + N(p11 − 1) = 1 + N

(
N − 1

N
+ p(1) − p

(
N − 1

N

)
− 1

)
= N

(
p(1) − p

(
N − 1

N

))
,

which is nonnegative as p satisfies p(x) ≤ p(1) for all x ∈ [0, 1]. Thus, q is completely
monotone. Since P is a stochastic matrix we have

∑N
j=0 pij = 1 for all i ∈ {0, . . . , N}. On

the other hand, as in the previous part of the proof, it follows that
∑N

j=0pij = 1 − (i/N)p(0)

for all i ∈ {0, . . . , N}. Thus, the equality p(0) = 0 must hold, which completes the proof.

Remark. In Theorem 3.1 it is assumed that the function p : [0, 1] → [0, 1] satisfies

p(x) ≤ p(1) for all x ∈ [0, 1]. (3.11)

This condition is automatically satisfied if p(1) = 1. If (3.11) is not satisfied then the situation
becomes more subtle. Consider, for example, the function p(x) := x(1 − x), x ∈ [0, 1].
In this case, 0 is the only absorbing state of the chain X and all other states 1, . . . , N are
communicating. The matrix P in (3.3), with entries defined via (3.4), (3.5), and (3.7), is a
stochastic matrix. More precisely, P is tridiagonal with entries

pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i

N
− i(i − 1)(N − i + 1)

N3 for j = i − 1,

N − i

N
+ i(N − i + 1)(N − 2i + 1)

N3 for j = i,

i(N − i)(N − i + 1)

N3 for j = i + 1,

0 for |i − j | > 1,

i, j ∈ {0, . . . , N}.
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Therefore, if Y is a Markov chain having this transition matrix P then Y is dual to X with
respect to H . However, 1−p is not completely monotone (even not monotone). The stationary
distribution of Y is concentrated in 0.

In general, it can be deduced from (3.5) that certain negative values of the coefficient a1 in
(3.10) are allowed without destroying the property that P is a stochastic matrix. For simplicity,
in Theorem 3.1 we restrict our considerations to the situation when p satisfies (3.11).

Remark. In [18] a class of Markov chains X = (Xn)n∈N0 with state space {0, . . . , N} and
modified Wright–Fisher transition probabilities πij = (

N
j

)
(p(i/N))j (1 − p(i/N))N−j , i, j ∈

{1, . . . , N}, was studied. It was shown that, if p : [0, 1] → [0, 1] is continuous then, for each
N ∈ N, there exists a Markov chain Y = (Yn)n∈N0 such that X is dual to Y with respect to
H = (hij )i,j∈{0,...,N} with entries (3.1) if and only if the function q := 1 − p is completely
monotone and p satisfies p(0) = 0. This duality result essentially coincides with that of
Theorem 3.1 and was the starting point to study similar properties for other models, which
finally led us to Theorem 3.1. The transition matrix P = (pij )i,j∈{0,...,N} of the dual chain Y

in [18] has entries

pij =
(

N

j

) j∑
k=0

(−1)j−k

(
j

k

)
qi

(
1 − k

N

)
, i, j ∈ {0, . . . , N}, (3.12)

where qi denotes the ith power of q. There is the following alternative formula for these
transition probabilities. The remark after Lemma 2.1 ensures that there exists a random variable
η taking values in N0 such thatq(1−x) = E(xη) for allx ∈ [0, 1]. Letη1, η2, . . .be independent
copies of η. Then,

pij = (N)j E(N−Li S(Li, j)), i, j ∈ {0, . . . , N}, (3.13)

where L0 := 0 and Li := η1+· · ·+ηi for i ∈ N, using the notation for the descending factorials
and for the Stirling numbers of the second kind mentioned at the end of the introduction. Formula
(3.13) follows easily from (3.12) using the convolution property E(xLi ) = qi(1−x) (applied to
x := k/N ) and the explicit formula j ! S(i, j) = ∑j

k=0(−1)j−k
(
j
k

)
ki for the Stirling numbers

of the second kind. From (3.13), it is obvious that P is a stochastic matrix. In this sense the
Markov chain Y in [18] has a simpler structure than the chain Y in Theorem 3.1.

4. A weak convergence result for the ancestral process

In this section it is always assumed that the continuous function p : [0, 1] → [0, 1] satisfies
p(0) = 0 and that q := 1 − p is completely monotone such that the existence of the ancestral
process Y = (Yn)n∈N0 is guaranteed by Theorem 3.1. We are interested in the asymptotic
behaviour of Y as N tends to ∞. Before the main convergence result (Theorem 4.1) is presented,
the moments of Yn+1, conditioned on Yn = i, are studied in more detail.

Lemma 4.1. For all i ∈ {0, . . . , N},

E(Yn+1 − i | Yn = i) = i(N − i + 1)

N
p

(
1

N

)
− i

N
(4.1)
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and

E((Yn+1 − i)2 | Yn = i) = i

N
+ i(N − i + 1)(2N − 2i − 1)

N
p

(
1

N

)

− i(N − i + 1)(N − i)

N
p

(
2

N

)
. (4.2)

Proof. Taking the rth derivative (r ∈ N0) with respect to x in (3.8) yields (Leibniz’s rule)

(
∂

∂x

)r

E(xYn+1 | Yn = i)

= N − i

N
(i)rx

i−r + i

N

N−i+1∑
l=0

(
N − i + 1

l

)
q

(
l

N

)

×
r∑

k=0

(
r

k

)
(N − l)kx

N−l−k(l)r−k(1 − x)l−r+k(−1)r−k.

For x = 1, only the k = r − l index contributes to the last sum. Thus, Yn+1, conditioned on
Yn = i, has descending factorial moments

E((Yn+1)r | Yn = i) = N − i

N
(i)r + i

N

N−i+1∑
l=0

(
N − i + 1

l

)
q

(
l

N

)(
r

l

)
(N − l)r−l l! (−1)l .

For r = 1,

E(Yn+1 | Yn = i) = i(N − i)

N
+ i

N

(
Nq(0) − (N − i + 1)q

(
1

N

))

= i

N

(
N − 1 + (N − i + 1)p

(
1

N

))
,

as q(0) = 1, and (4.1) follows immediately. For r = 2,

E((Yn+1)2 | Yn = i)

= (N − i)(i)2

N

+ i

N

(
(N)2q(0) − 2(N − i + 1)(N − 1)q

(
1

N

)
+ (N − i + 1)2q

(
2

N

))

= i

N

(
(i − 1)(N − 2) + 2(N − i + 1)(N − 1)p

(
1

N

)
− (N − i + 1)2p

(
2

N

))
.

Therefore,

E((Yn+1 − i)2 | Yn = i)

= E(Y 2
n+1 | Yn = i) − 2i E(Yn+1 | Yn = i) + i2

= E((Yn+1)2 | Yn = i) + (1 − 2i) E(Yn+1 | Yn = i) + i2
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= i

N

(
(i − 1)(N − 2) + 2(N − i + 1)(N − 1)p

(
1

N

)
− (N − i + 1)2p

(
2

N

))

+ (1 − 2i)
i

N

(
N − 1 + (N − i + 1)p

(
1

N

))
+ i2

= i

N

(
1 + (N − i + 1)(2N − 2i − 1)p

(
1

N

)
− (N − i + 1)2p

(
2

N

))
,

which completes the proof of the lemma.

We are able to verify a weak convergence result for the ancestral process Y under the addi-
tional condition that the random variable η in Theorem 3.1 satisfies E(η) > 1 and E(η3) < ∞.
In terms of the function p, it is therefore assumed that p′(0+) > 1 and that p′′′(0+) < ∞.

For N ∈ N and n ∈ N0, define Ŷn := (Yn − αN)/
√

N , where α := 1 − 1/p′(0+) ∈ (0, 1).
Consider the space- and time-scaled process (V

(N)
t )t≥0, defined via

V
(N)
t := Ŷ�Nt� = Y�Nt� − αN√

N
, N ∈ N, t ≥ 0, (4.3)

where, for x ∈ R, �x� := max{z ∈ Z | z ≤ x} denotes the largest integer being less than or
equal to x.

Theorem 4.1. Suppose (see Theorem 3.1) that the continuous function p : [0, 1] → [0, 1]
satisfies p(0) = 0 and that q := 1 − p is completely monotone. Furthermore, suppose that
p′(0+) > 1 and that p′′′(0+) < ∞. If the sequence (V

(N)
0 )N∈N converges in distribution to

a random variable V0, then the time- and space-scaled backward process (V
(N)
t )t≥0, defined

via (4.3), converges weakly as N → ∞ to an Ornstein–Uhlenbeck process (Vt )t≥0 with drift
parameter µ(x) = −µx and diffusion parameter σ 2(x) = σ 2, where

µ := α

1 − α
= p′(0+) − 1 ∈ (0, ∞)

and

σ 2 := −α(1 − α)2p′′(0+) = (1 − p′(0+))p′′(0+)

(p′(0+))3 ∈ (0, ∞).

Remark. In terms of η the parameters α, µ, and σ 2 are given by

α = 1 − 1

E(η)
, µ = E(η) − 1, and σ 2 = (E(η) − 1) E(η(η − 1))

(E(η))3 .

Proof of Theorem 4.1. We essentially generalize Kämmerle’s proof on p. 883 of [19]. The
process (Ŷn)n∈N0 is a Markov chain with state space EN := {(i − αN)/

√
N | i ∈ {0, . . . , N}}.

For x ∈ EN , let i := αN + x
√

N ∈ {0, . . . , N} and note that

E(Ŷn+1 − x | Ŷn = x) = E

(
Yn+1 − αN − x

√
N√

N

∣∣∣∣ Yn − αN√
N

= x

)

= 1√
N

E(Yn+1 − i | Yn = i).
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From (4.1) and the expansion p(1/N) = p′(0+)/N + O(1/N2), it follows that

E(Yn+1 − i | Yn = i) = i(N − i + 1)

N
p

(
1

N

)
− i

N

= i

N

N − i + 1

N
p′(0+) − i

N
+ O

(
1

N

)

= i

N

N − i

N
p′(0+) − i

N
+ O

(
1

N

)

=
(

α + x√
N

)(
1 − α − x√

N

)
1

1 − α
−

(
α + x√

N

)
+ O

(
1

N

)

= − α

1 − α

x√
N

− x2

1 − α

1

N
+ O

(
1

N

)
,

where the O(1/N) term holds uniformly for all x ∈ EN . Now suppose, in addition, that x ∈ K

for some arbitrary but fixed compact set K ⊂ R. Then,

E(Yn+1 − i | Yn = i) = − α

1 − α

x√
N

+ O

(
1

N

)
= −µ

x√
N

+ O

(
1

N

)

uniformly for all x ∈ EN ∩ K . Thus, it is shown that

E(Ŷn+1 | Ŷn = x) = −µ
x

N
+ O

(
1

N3/2

)
(4.4)

uniformly for all x ∈ EN ∩ K . Analogously,

E((Ŷn+1 − x)2 | Ŷn = x) = E

((
Yn+1 − αN − x

√
N√

N

)2 ∣∣∣∣ Yn − αN√
N

= x

)

= 1

N
E((Yn+1 − i)2 | Yn = i).

From (4.2) and the expansions p(1/N) = p′(0+)/N + p′′(0+)/(2N2) + O(1/N3) and
p(2/N) = 2p′(0+)/N + 2p′′(0+)/N2 + O(1/N3), it follows that

E((Yn+1 − i)2 | Yn = i)

= i

N
+ i(N − i + 1)(2N − 2i − 1)

N
p

(
1

N

)
− i(N − i + 1)(N − i)

N
p

(
2

N

)

= i

N
+ i(N − i + 1)(2N − 2i − 1)

N

(
p′(0+)

N
+ p′′(0+)

2N2

)

− i(N − i + 1)(N − i)

N

(
2p′(0+)

N
+ 2p′′(0+)

N2

)
+ O

(
1

N

)

= i

N
− i(N − i + 1)

N2 p′(0+) − i(N − i + 1)(N − i + 1/2)

N3 p′′(0+) + O

(
1

N

)

= α − α(1 − α)p′(0+)︸ ︷︷ ︸
=0

−α(1 − α)2p′′(0+) + O

(
1√
N

)

= σ 2 + O

(
1√
N

)
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uniformly for all x ∈ EN ∩ K . Thus,

E((Ŷn+1 − i)2 | Ŷn = x) = σ 2

N
+ O

(
1

N3/2

)
(4.5)

uniformly for all x ∈ EN ∩ K for any arbitrary but fixed compact set K ⊂ R.
Let C∞

c (R) denote the set of all functions f ∈ C∞(R) with compact support. For x ∈ EN

and f ∈ C∞
c (R), let TNf (x) := E(f (Ŷn+1) | Ŷn = x). Taylor expansion yields

TNf (x) − f (x) = f ′(x) E(Ŷn+1 − x | Ŷn = x) + f ′′(x)

2
E((Ŷn+1 − x)2 | Ŷn = x) + RN(x)

with Lagrange remainder

RN(x) := f ′′′(ξ)

3! E((Ŷn+1 − x)3 | Ŷn = x),

where ξ is a (random) point between x and Ŷn+1. In the following it is verified that RN(x) =
O(N−3/2)uniformly for allx ∈ EN . Sincef ∈ C∞

c (R), there exists aC > 0 with |f ′′′(x)| ≤ C

for all x ∈ R. Thus,

|RN(x)| ≤ C

3! E(|Ŷn+1 − x|3 | Ŷn = x) = C

3!
1

N3/2 E(|Yn+1 − i|3 | Yn = i).

From the results of Section 2 (see Lemma 2.2 and the remarks thereafter), it follows that,
conditioned on Yn = i and η = K ∈ N, the random variable Yn+1 can only take values in
{i − 1, i, i + 1, . . . , i + K − 1} with positive probability. Conditioned on Yn = i and η = 0,
Yn+1 can only take the two values i − 1 and i with positive probability. Thus, conditioned on
Yn = i, we have |Yn+1 − i| ≤ max(η, 1) ≤ η + 1. Therefore,

|RN(x)| ≤ C

3!
1

N3/2 E((η + 1)3).

In particular, it is shown that RN(x) = O(N−3/2) uniformly for all x ∈ EN , since E(η3) < ∞
by assumption (p′′′(0+) < ∞).

The generator A of the Ornstein–Uhlenbeck process with drift parameter µ(x) = −µx and
diffusion parameter σ 2(x) = σ 2 satisfies Af (x) = 1

2σ 2f ′′(x) − µxf ′(x). Thus, for all N ∈ N

and x ∈ EN ,

|N(TNf (x) − f (x)) − Af (x)| ≤ |f ′(x)||N E(Ŷn+1 − x | Ŷn − x) + µx|
+ |f ′′(x)|

2
|N E((Ŷn+1 − x)2 | Ŷn = x) − σ 2|

+ N |RN(x)|.
Since f has compact support, say K , the derivatives f ′(x) and f ′′(x) are both equal to 0 for
x �∈ K , and these derivatives are both bounded for x ∈ EN ∩ K . Together with (4.4) and (4.5)
it follows that

lim
N→∞ sup

x∈EN

|N(TNf (x) − f (x)) − Af (x)| = 0 for all f ∈ C∞
c (R).

As C∞
c (R) is a core for A (see [14, p. 371, Theorem 2.1]), the statement follows from [14,

p. 31, Theorem 6.5] and [14, p. 233, Corollary 8.9].
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Remarks. 1. The stationary distribution of the limiting Ornstein–Uhlenbeck process (Vt )t≥0
in Theorem 4.1 is the normal distribution N(0, τ 2) with

τ 2 := σ 2

2µ
= −p′′(0+)

2(p′(0+))3 = E(η(η − 1))

2(E(η))3 . (4.6)

The constant τ 2 will appear again later (see Conjecture 5.1, below).

2. The presented proof of Theorem 4.1 uses the technical condition p′′′(0+) < ∞ in order to
control the rest term RN(x). We leave open the question of whether or not Theorem 4.1 remains
valid if this technical condition is replaced by the weaker condition p′′(0+) > −∞.

3. The condition p′(0+) > 1 in Theorem 4.1 excludes important models such as the standard
Moran model (p(x) = x). For models satisfying p′(0+) = 1, the limiting behaviour of the
chainY = (Yn)n∈N0 differs significantly from that in Theorem 4.1. For example, for the standard
Moran model, the transition matrix P = (pij )i,j∈{0,...,N} of Y has entries pi,i−1 = i(i−1)/N2,
pii = 1 − i(i − 1)/N2, and pij = 0 otherwise. Thus, for any function f : {0, . . . , N} → R

and any i ∈ {0, . . . , N},
TNf (i) := E(f (Yn+1) | Yn = i)

= f (i)pii + f (i − 1)pi,i−1

= f (i) + i(i − 1)

N2 (f (i − 1) − f (i)),

or, equivalently, (N2/2)(TNf (i) − f (i)) = (
i
2

)
(f (i − 1) − f (i)). It follows that if Y0 con-

verges in distribution to some random variable D0 as N → ∞ then the time-scaled ancestral
process (Y�N2t/2�)t≥0 weakly converges to a pure-death process D = (Dt )t≥0, jumping with
rate i(i − 1)/2 from state i to state i − 1. This convergence result is well known from the
literature. Note that D is the block counting process of the Kingman coalescent [20].

Example. For the K-type Moran model with parameter K ∈ {2, 3, . . .} introduced in Sec-
tion 2, p(x) = 1 − (1 − x)K . Thus, p′(0+) = K > 1, p′′(0+) = −K(K − 1), and
p′′′(0+) = K(K − 1)(K − 2) < ∞. If (V

(N)
0 )N∈N converges in distribution to some V0

then, by Theorem 4.1, the time- and space-scaled ancestral process (V
(N)
t )t≥0, defined via

V
(N)
t := (Y�Nt� − (1 − 1/K)N)/

√
N for N ∈ N and t ≥ 0, converges weakly to an Ornstein–

Uhlenbeck process (Vt )t≥0 with drift parameter µ(x) = −(K − 1)x and diffusion parameter
σ 2(x) = σ 2 = (1 − 1/K)2.

5. Extinction probability and stationary distribution

In the following it is assumed that p(0) = 0 or, equivalently (π00 = r0 = 1 − p(0)), that 0
is an absorbing state of the Markov chain X. For i ∈ {0, . . . , N}, let

βi := P(Xn = 0 eventually | X0 = i) = lim
n→∞ P(Xn = 0 | X0 = i)

denote the extinction probability given that the chain X starts in X0 = i. Note that β0 = 1.
It is straightforward to check that the column vector β := (β0, . . . , βN)� is a solution of the
fixed point equation �β = β, i.e. β is an eigenvector to the eigenvalue 1 of �. Since �
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is tridiagonal, β can be computed. For example, if the state N is also absorbing (which is
equivalent to p(1) = 1) and if p(x) > 0 for all x > 0, then (see Equation (2.158) of [15])

βi = 1 − ϕ(i)

ϕ(N)
, i ∈ {0, . . . , N}, (5.1)

where

ϕ(i) :=
i−1∑
j=0

j∏
k=1

qk

pk

=
i−1∑
j=0

(
N − 1

j

)−1 j∏
k=1

1 − p(k/N)

p(k/N)
, i ∈ {0, . . . , N}, (5.2)

with the convention that empty sums are equal to 0 and empty products are equal to 1. Note
that ϕ(0) = 0, ϕ(1) = 1, and ϕ(2) = 1 + q1/p1, and that ϕ(i) is increasing in i. For example,
for the haploid Moran model, ϕ(i) = i and, hence, βi = 1− i/N, i ∈ {0, . . . , N}. The column
vector (ϕ(0), . . . , ϕ(N))� is also an eigenvector to the eigenvalue 1 of �. Thus,

qiϕ(i − 1) + piϕ(i + 1) = (pi + qi)ϕ(i), i ∈ {1, . . . , N − 1}. (5.3)

Lemma 5.1. If p(x) ≥ x for all x ∈ [0, 1] then the sequence (ϕ(i))i∈{0,...,N} is log-concave,
i.e. ϕ(i − 1)ϕ(i + 1) ≤ (ϕ(i))2 for all i ∈ {1, . . . , N − 1}.

Proof. For i ∈ {1, . . . , N}, define the differences di := ϕ(i) − ϕ(i − 1) and note that (5.3)
implies that di+1 = hidi for i ∈ {1, . . . , N − 1}, where hi := qi/pi for i ∈ {1, . . . , N − 1}.
From p(x) ≥ x, x ∈ [0, 1], it follows that hi ≤ 1 for i ∈ {1, . . . , N − 1}. In the following let
i ∈ {1, . . . , N − 1} be fixed. It is easily checked that the inequality ϕ(i − 1)ϕ(i + 1) ≤ (ϕ(i))2

is equivalent to di+1di ≥ ϕ(i)(di+1 − di). Using di+1 = hidi , this is in turn equivalent
to hid

2
i ≥ ϕ(i)(hidi − di), and, hence, equivalent to hidi ≥ ϕ(i)(hi − 1), because di > 0.

Substituting in di = ϕ(i)−ϕ(i−1), it follows that this in turn is equivalent to hiϕ(i−1) ≤ ϕ(i).
But this inequality is obviously satisfied, because ϕ(i − 1) ≤ ϕ(i) and hi ≤ 1.

Assume now that 1−p is completely monotone. Then, by Theorem 3.1, for each population
size N , there exists a Markov chain Y which is dual to X with respect to H . We are now able
to repeat the arguments already used in Section 6 of [24] and Section 5 of [25]. The choice
k = N in the duality relation

N∑
j=0

π
(n)
ij hjk =

N∑
j=0

hijp
(n)
kj

leads to

P(Xn = 0 | X0 = i) = E

((
N − Yn

i

))/(
N

i

)
. (5.4)

The iN th component of the matrix (P n)� = H−1�nH is

P(Yn = i | Y0 = N) = p
(n)
Ni

=
N∑

k,l=0

(H−1)ikπ
(n)
kl hlN

=
N∑

k=0

(H−1)ikπ
(n)
k0
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=
(

N

i

) N∑
k=N−i

(−1)i+k−N

(
i

N − k

)
P(Xn = 0 | X0 = k)

=
(

N

i

) i∑
j=0

(−1)j−i

(
i

j

)
P(Xn = 0 | X0 = N − j). (5.5)

By definition, the limit βi := limn→∞ P(Xn = 0 | X0 = i) exists for each i ∈ {0, . . . , N}.
Hence, by (5.5), the limit πi := limn→∞ P(Yn = i | Y0 = N) also exists for each i ∈
{0, . . . , N}. Moreover,

N∑
i=0

πi =
N∑

i=0

lim
n→∞ P(Yn = i | Y0 = N) = lim

n→∞

N∑
i=0

P(Yn = i | Y0 = N) = 1.

Taking the limit n → ∞ in (5.4) and (5.5) leads to the one-to-one correspondence

πi =
(

N

i

) i∑
j=0

(−1)i−j

(
i

j

)
βN−j , i ∈ {0, . . . , N}, (5.6)

and

βi =
(

N

i

)−1 N∑
j=i

(
j

i

)
πN−j , i ∈ {0, . . . , N}. (5.7)

Obviously, π := (π0, . . . , πN) is a stationary distribution of Y . Note that π0 = βN = 0.
If p(1) = 1 (N is an absorbing state of X) then the dual chain Y is not irreducible as the

state 0 is disconnected from the rest of the state space. In this case, (5.6) and (5.7) relate
the extinction probabilities β0, . . . , βN of X with the invariant measure of Y restricted to the
connected states 1, . . . , N .

If p(1) < 1 (N is a partially reflecting state of X) then the dual chain Y becomes itself
absorbing at 0. Let T0 := inf{n ∈ N0 | Yn = 0} denote the extinction time of Y . If we write
down—in analogy to the calculations around (5.5)—the 0j th entries on both sides of the duality
equation (Pn)

� = H−1�nH , we obtain

P(T0 ≤ n | Y0 = j) = P(Yn = 0 | Y0 = j)

= p
(n)
j0

=
N∑

k,l=0

(H−1)0kπ
(n)
kl hlj

=
N∑

l=0

π
(n)
Nl hlj

=
N∑

l=0

P(Xn = l | X0 = N)

(
N − l

j

)/(
N

j

)

= E

((
N − Xn

j

) ∣∣∣∣ X0 = N

)/(
N

j

)
,
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giving a relationship between the distribution function of the extinction time T0 of the chain Y

started in Y0 = j and the factorial moments of N − Xn conditioned that the chain X is started
in state X0 = N .

From (5.1) and (5.6), it follows that

πi = −
(
N
i

)
ϕ(N)

i∑
j=0

(−1)i−j

(
i

j

)
ϕ(N − j), i ∈ {1, . . . , N}. (5.8)

Using (5.2), the probability πi can be expressed in terms of the function p. However, this does
not seem to result in a simple formula for πi . We verify the following property.

Lemma 5.2. The sequence (πi)i∈{1,...,N} is log-concave (LC) and positive, and, hence, uni-
modal.

Proof. For j ∈ {0, . . . , N}, define αj := ϕ(j)/ϕ(N) and α̃j := αN−j /j !, and rewrite (5.8)
in the form

πi = (N)i

i∑
j=0

(−1)i−j+1

(i − j)! α̃j , i ∈ {1, . . . , N}.

The sequence (αj )j∈{0,...,N} is LC because (ϕ(j))j∈{0,...,N} is LC by Lemma 5.1. The reversed
sequence (αN−j )j∈{0,...,N} is clearly LC. Thus, the sequence α̃ := (α̃j )j∈{0,...,N} is LC as a
product of two positive LC sequences. Now (

∑i
j=0α̃j (−1)i−j+1/(i − j)!)i∈{0,...,N} = ((α̃ ∗

u)i)i∈{0,...,N} is the convolution of the two sequences α̃ and u := (ui)i∈{0,...,N}, where ui :=
(−1)i+1/i! for i ∈ {0, . . . , N}. Note that u is alternating but LC. The convolution of two LC
sequences is LC (see [30] for instance). So ((α̃ ∗ u)i)i∈{0,...,N} is LC and positive (because πi

is positive). The sequence ((N)i)i∈{0,...,N} is positive and LC, so (πi)i∈{1,...,N} is positive and
LC as a product of two positive LC sequences. Positive LC sequences are unimodal.

Let ZN be a random variable with distribution π . As in Section 6 of [24], it follows that ZN

has PGF

E(sZN ) =
N∑

j=0

βj

(
N

j

)
sN−j (1 − s)j , s ∈ C,

and factorial moments

E((ZN)k) = (N)k

k∑
j=0

βj

(
k

j

)
(−1)j , k ∈ N0. (5.9)

In particular, µN := E(ZN) = N(1 − β1) = N/ϕ(N) and σ 2
N := var(ZN) = N(β1 − β2 +

N(β2 − β2
1 )), N ∈ N. In the following we are interested in the distributional behaviour of ZN

as N → ∞.

Proposition 5.1. (Weak law of large numbers for ZN .) Suppose that the continuous function
p : [0, 1] → [0, 1] satisfies p(0) = 0 and p(1) = 1, and that 1 − p is completely monotone. If
p �= Id then ZN/µN → 1 in probability and in Lr, r ≥ 1, as N → ∞, and E(Zk

N) ∼ (αN)k

for all k ∈ N0, where α := 1 − 1/p′(0+) ∈ (0, 1].
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Proof. Theorem 3.1(i) together with p(1) = 1 ensures that there exists a random variable η

taking values in N such that p(x) = 1 − E((1 −x)η) for all x ∈ [0, 1]. From p �= Id, it follows
that E(η) ∈ (1, ∞] and P(η = 1) < 1. In particular,

p′(0+) := lim
x↘0

p′(x) = lim
x↘0

E(η(1 − x)η−1) = E(η) ∈ (1, ∞]

and
p′(1−) := lim

x↗1
p′(x) = lim

x↗1
E(η(1 − x)η−1) = P(η = 1) ∈ [0, 1).

Furthermore, p(x) = 1 − E((1 − x)η) > 1 − E(1 − x) = x and, hence, 1 − p(x) < 1 − x for
x ∈ (0, 1). Therefore,

h(x) := x(1 − p(x))

(1 − x)p(x)
∈ (0, 1) for all x ∈ (0, 1). (5.10)

Together with limx↘0 h(x) = 1/p′(0+) < 1 and limx↗1 h(x) = p′(1−) < 1, it follows
that γ := supx∈(0,1) h(x) < 1. For each fixed k ∈ N and all N ≥ k, qk/pk = h(k/N) →
1/p′(0+) =: β as N → ∞. It follows that, for each fixed i ∈ N0,

ϕ(i) =
i−1∑
j=0

j∏
k=1

qk

pk

→
i−1∑
j=0

βj = 1 − βi

α
, N → ∞,

where α := 1 − β ∈ (0, 1]. We now verify that limN→∞ ϕ(N) = 1/α. Clearly, ϕ(N) ≥
ϕ(i) for N ≥ i and, hence, lim infN→∞ ϕ(N) ≥ limN→∞ ϕ(i) = (1 − βi)/α for all i ∈
N0, which implies that lim infN→∞ ϕ(N) ≥ 1/α, since 0 ≤ β < 1. In order to see that
lim supN→∞ ϕ(N) ≤ 1/α, fix ε > 0 and choose i = i(ε) ∈ N such that γ i/(1 − γ ) ≤ ε,
which is possible as γ < 1. From qk/pk = h(k/N) ≤ γ we conclude that, for N > i,

ϕ(N) = ϕ(i) +
N−1∑
j=i

j∏
k=1

qk

pk

≤ ϕ(i) +
N−1∑
j=i

γ j ≤ ϕ(i) + γ i

1 − γ
≤ ϕ(i) + ε.

Therefore, lim supN→∞ ϕ(N) ≤ (1 − βi)/α + ε ≤ 1/α + ε. Since ε > 0 can be chosen
arbitrarily, it follows that lim supN→∞ ϕ(N) ≤ 1/α. Thus, limN→∞ ϕ(N) = 1/α. Therefore,
for each fixed i ∈ N, the extinction probability βi satisfies βi = 1 − ϕ(i)/ϕ(N) → βi as
N → ∞. From (5.9), it follows that E((ZN/N)k) → αk as N → ∞ for all k ∈ N0, which is
equivalent to the assertion of the proposition, since 0 ≤ ZN/N ≤ 1 for all N ∈ N.

The next lemma provides precise information about the asymptotics of the mean µN =
E(ZN) and the variance σ 2

N := var(ZN) of the stationary distribution of the ancestral process.

Lemma 5.3. Suppose that the continuous function p : [0, 1] → [0, 1] satisfies p(0) = 0 and
p(1) = 1, and that 1 − p is completely monotone. If −∞ < p′′(0+) < 0 then

lim
N→∞(µN − αN) = 1 − p′′(0+)

2p′(0+)(1 − p′(0+))
and lim

N→∞
σ 2

N

N
= τ 2,

where α := 1 − 1/p′(0+) ∈ (0, 1) and τ 2 is defined in (4.6).
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Proof. As in the proof of Proposition 5.1, consider the auxiliary function h : (0, 1) → (0, 1)

defined via (5.10). Recall that h(0+) := limx↘0 h(x) = 1/p′(0+) =: β ∈ (0, 1), as p′(0+) =
E(η) ∈ (1, ∞). It is straightforward to check that

h′(x) = p(x)(1 − p(x)) − x(1 − x)p′(x)

(1 − x)2(p(x))2 , x ∈ (0, 1).

Using p(x)/x ∼ p′(0+) = 1/β and applying l’Hôpitals’ rule yields

h′(0+) := lim
x↘0

h′(x)

= lim
x↘0

p(x)(1 − p(x)) − x(1 − x)p′(x)

(p(x))2

= −1 + lim
x↘0

p(x) − x(1 − x)p′(x)

(p(x))2

= −1 + β2 lim
x↘0

p(x) − (x − x2)p′(x)

x2

= −1 + β2 lim
x↘0

p′(x) − (1 − 2x)p′(x) − x(1 − x)p′′(x)

2x

= −1 + β2 lim
x↘0

(
p′(x) − (1 − x)

p′′(x)

2

)

= −1 + β2
(

p′(0+) − p′′(0+)

2

)

= −α − β2

2
p′′(0+),

where α := 1 − β ∈ (0, 1). For each fixed k ∈ N and all N ≥ k,

qk

pk

= h

(
k

N

)
= h(0+) + h′(0+)

k

N
+ O

(
1

N2

)
= β + h′(0+)

k

N
+ O

(
1

N2

)
,

and, therefore, for fixed j ∈ N0 and N > j ,

j∏
k=1

qk

pk

= βj + h′(0+)

N

j (j + 1)

2
βj−1 + O

(
1

N2

)
.

It follows that, for each fixed i ∈ N0,

ϕ(i) =
i−1∑
j=0

j∏
k=1

qk

pk

=
i−1∑
j=0

(
βj + h′(0+)

2N
j(j + 1)βj−1 + O

(
1

N2

))

= 1 − βi

α
+ h′(0+)Mi,β

2N
+ O

(
1

N2

)
,
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where

Mi,β :=
i−1∑
j=0

j (j + 1)βj−1

= ∂2

∂2β

i−1∑
j=0

βj+1

= ∂2

∂2β

(
1 − βi+1

1 − β
− 1

)

= ∂

∂β

(
1 − βi+1

(1 − β)2 − (i + 1)
βi

1 − β

)

= 2(1 − βi+1)

(1 − β)3 + (i + 1)

(
βi−1

1 − β
− 2βi

(1 − β)2

)
− (i + 1)2 βi−1

1 − β
.

Note that M1,β = 0 and M2,β = 2, and that limi→∞ Mi,β = 2/(1 − β)3 = 2/α3, since β < 1.

In the following it is shown that

ϕ(N) = 1

α
+ h′(0+)

α3

1

N
+ O

(
1

N2

)
, N → ∞. (5.11)

As in the previous proof, let γ := supx∈(0,1) h(x) < 1. For fixed ε ∈ (0, 1) and all N ∈ N,

0 ≤ N2(ϕ(N) − ϕ(�Nε�)) = N2
N−1∑

j=�Nε�

j∏
k=1

h

(
k

N

)
≤ N2

N−1∑
j=�Nε�

γ j ≤ N2 γ �Nε�

1 − γ
→ 0

as N → ∞. Thus, it suffices to show that, for some ε ∈ (0, 1),

ϕ(�Nε�) = 1

α
+ h′(0+)

α3

1

N
+ O

(
1

N2

)
, N → ∞.

In order to see this, fix some ε ∈ (0, 1
2 ) (for example, ε = 1

4 ) and adapt the previous arguments
to the case when i := iN := �Nε� depends on N . For all k ∈ {1, . . . , iN },

qk

pk

= h

(
k

N

)
= β + h′(0+)

k

N
+ O

(
k2

N2

)
, N → ∞.

Therefore, for j ∈ {0, . . . , iN − 1},

j∏
k=1

qk

pk

= βj + h′(0+)

N

j (j + 1)

2
βj−1 + O

(
j4βj−2

N2

)
, N → ∞.
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It follows that

ϕ(iN) =
iN−1∑
j=0

j∏
k=1

qk

pk

=
iN−1∑
j=0

(
βj + h′(0+)

2N
j(j + 1)βj−1 + O

(
j4βj−2

N2

))

= 1 − βiN

α
+ h′(0+)MiN ,β

2N
+ O

(
1

N2

)

= 1

α
+ h′(0+)

α3

1

N
+ O

(
1

N2

)
,

since βiN = O(1/N2) and MiN,β = 2/α3 + O(i2
NβiN ) = 2/α3 + O(1/N). The proof of

(5.11) is complete. Taylor expansion of f (x) := 1/x at the point 1/α yields

1

ϕ(N)
= f (ϕ(N))

= f

(
1

α

)
+ f ′

(
1

α

)(
ϕ(N) − 1

α

)
+ O

((
ϕ(N) − 1

α

)2)

= α − α2
(

ϕ(N) − 1

α

)
+ O

((
ϕ(N) − 1

α

)2)

= α − h′(0+)

α

1

N
+ O

(
1

N2

)
, N → ∞,

where the last equality follows from (5.11). Hence, for each fixed i ∈ N, the extinction
probability βi satisfies

βi = 1 − ϕ(i)

ϕ(N)

= 1 −
(

1 − βi

α
+ h′(0+)Mi,β

2

1

N
+ O

(
1

N2

))(
α − h′(0+)

α

1

N
+ O

(
1

N2

))

= βi +
(

1 − βi

α2 − α

2
Mi,β

)
h′(0+)

N
+ O

(
1

N2

)
, N → ∞.

In particular, β1 = β + h′(0+)/(αN) + O(1/N2) and β2 = β2 + β(3 − β)h′(0+)/(αN) +
O(1/N2). The mean µN := E(ZN) and the variance σ 2

N := var(ZN) of the stationary
distribution therefore satisfy

lim
N→∞(µN − Nα) = lim

N→∞ N(1 − β1 − α)

= −h′(0+)

α

= 1 + β2

2α
p′′(0+)

= 1 − p′′(0+)

2p′(0+)(1 − p′(0+))
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and

lim
N→∞

σ 2
N

N
= lim

N→∞(β1 − β2 + N(β2 − β2
1 ))

= β(α + h′(0+))

= −β3

2
p′′(0+)

= −p′′(0+)

2(p′(0+))3

= τ 2,

which completes the proof.

As already mentioned at the end of Section 4, the limiting Ornstein–Uhlenbeck process in
Theorem 4.1 has stationary distribution N(0, τ 2). Based on the intuition that it is allowed to
interchange the time limit, t → ∞, and the space limit, N → ∞, it is therefore natural to state
the following conjecture.

Conjecture 5.1. (Central limit theorem for ZN .) Suppose that the continuous function
p : [0, 1] → [0, 1] satisfies p(0) = 0 and p(1) = 1, and that 1 − p is completely monotone. If
−∞ < p′′(0+) < 0 then (ZN − αN)/

√
N weakly converges to the normal law N(0, τ 2) as

N → ∞, where α := 1 − 1/p′(0+) ∈ (0, 1) and τ 2 ∈ (0, ∞) is defined in (4.6).

Remark. If Conjecture 5.1 holds then Lemma 2 of [3, p. 99] shows that ZN is locally asymptotic
normal, since (πi)i is LC by Lemma 5.2.

6. Examples

In Section 2 we introduced a fundamental example, the multitype Moran model. In this
section we provide some more details for this model. We then present further concrete examples,
some of which involve selective forces acting on particular genes or genotypes. The functions p

in these examples have also been considered in [18] in the context of a modified Wright–Fisher
model.

Example 6.1. (The K-type Moran model.) For a constant K ∈ N, consider the K-type Moran
model already introduced in Section 2. Kämmerle [19] showed that, for K = 2, the Markov
chain X has extinction probabilities βi = (

N−1
i

)
/
(2N

i

)
, i ∈ {0, . . . , N}. In particular,

ϕ(i) = 2N

N + 1

(
1 −

(
N − 1

i

)/(
2N

i

))
, i ∈ {0, . . . , N},

and, hence, ϕ(N) = 2N/(N + 1) → 2. Furthermore, Kämmerle verified that, for
K = 2, the stationary distribution of the chain Y is the hypergeometric distribution
πi = (

N
i

)(
N

i−1

)
/
( 2N
N+1

)
, i ∈ {1, . . . , N}. In particular, E(ZN) = (N +1)/2 ∼ N/2, var(ZN) =

(N2 − 1)/(4(2N − 1)) ∼ N/8, ZN/N → 1
2 in probability, and (ZN − N/2)/N1/2 weakly

converges to the normal law with mean 0 and variance 1
8 as N → ∞, in agreement with

Proposition 5.1 and Conjecture 5.1, as p′(0+) = 2 and p′′(0+) = −2.
For an arbitrary parameter K ∈ {2, 3, . . .}, we have p′(0+) = K . Therefore, ZN/N →

1−1/K in probability and in Lr, r ≥ 1, as N → ∞ by Proposition 5.1. Moreover, p′′(0+) =
−K(K−1). By Conjecture 5.1, we conjecture that (ZN −N(1−1/K))/N1/2 weakly converges
to the normal law with mean 0 and variance τ 2 = −p′′(0+)/(2(p′(0+))3) = (K − 1)/(2K2).
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Example 6.2. (A selection model.) For some parameter s > 0, let p(x) := (1 + s)x/(1 + sx).
This choice of p corresponds to the well-known selection model in which two genes A and
a are considered, where A is selectively advantageous with fitness 1 + s and a has standard
fitness 1. The variable Xn of the Markov chain X = (Xn)n∈N0 counts the number of A genes
at time (generation) n of a population of size N . The case in which s = 0 is excluded because
it corresponds to the standard Moran model. Negative values of s are also excluded because, in
this case, the function 1 − p is not completely monotone. Note that p(x) = 1 − E((1 − x)η),
where η is a random variable with distribution P(η = k) = sk−1/(1 + s)k = βαk−1, k ∈ N,
where α := s/(s + 1) ∈ (0, 1) and β := 1 − α. We have

ϕ(i) = s + 1

s

(
1 −

(
1

s + 1

)i)
= 1 − βi

α
, i ∈ {0, . . . , N}.

For this particular example, ϕ(i) does not depend on N . The extinction probability is βi =
1 − (1 − βi)/(1 − βN), i ∈ {0, . . . , N}. The chain Y has stationary distribution

πi = 1

1 − βN

(
N

i

)
αiβN−i , i ∈ {1, . . . , N},

which is the binomial distribution with parameters N and α, conditioned that it does not take the
value 0. Consequently, (ZN −αN)/(Nαβ)1/2 weakly converges to the standard normal law as
N → ∞, in agreement with Conjecture 5.1, as p′(0+) = 1+s and p′′(0+) = −2s(s+1), and,
therefore, τ 2 := −p′′(0+)/(2(p′(0+))3) = s/(s + 1)2 = αβ. Theorem 4.1 is applicable. The
limiting Ornstein–Uhlenbeck process has drift parameter µ(x) = −sx and diffusion parameter
σ 2(x) = σ 2 = 2s2/(s + 1)2. The PGF z �→ E(zZN ) = ∑N

i=1πiz
i = ((αz + β)N − βN)/(1 −

βN), z ∈ C, has at most two real roots, namely, always z = 0 and z = −2β/α, if N is even.
Both these roots have multiplicity 1. This example shows that, in general, not all the N roots of
the PGF of ZN are real. Thus, in general it is not possible to verify Conjecture 5.1 by showing
that all the roots of the PGF of ZN are real.

Example 6.3. (Selection with dominance.) Let s, h ∈ R be two parameters with s > −1 and
sh > −1. Suppose that

p(x) = (1 + s)x2 + (1 + sh)x(1 − x)

1 + sx2 + 2shx(1 − x)
. (6.1)

In this model, genotypes AA, Aa, and aa with frequencies x2, 2x(1 − x), and (1 − x)2,
respectively, have fitnesses 1 + s, 1 + sh, and 1, respectively. The parameter h measures the
degree of dominance of the heterozygote Aa. Note that (6.1) can be put into the canonical form
of deviation from neutrality as

p(x) = x + sx(1 − x)
h − x(2h − 1)

1 + sx2 + 2shx(1 − x)
,

where the fraction appearing on the right-hand side is the ratio of the difference in marginal
fitnesses of A and a to their mean fitnesses. The case in which s > 0 and h ∈ (0, 1) corresponds
to directional selection, where genotype AA has highest fitness and Aa has intermediate fitness.
In this situation, the marginal fitness of A exceeds the marginal fitness of a and selective sweeps
are expected.
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For s > 0 and h ∈ (0, 1
2 ), allele A is dominant to a, whereas, for s > 0 and h ∈ ( 1

2 , 1),
allele A is recessive to a (a stabilizing effect slowing down the sweep). The critical value h = 1

2
corresponds to balancing selection with

p(x) = x + s

2

x(1 − x)

1 + sx
.

Note that if p(x) is the selection mechanism with dominance (6.1) with parameters s and h, then
p̄(x) := 1−p(1−x) is a selection with dominance mechanism with parameters s̄ := −s/(s+1)

and h̄ := 1 − h.
It is now verified that q := 1 − p is completely monotone if and only if s = 0 or h = 1

2
or h ∈ (0, 1

2 ) and s ≥ (1 − 2h)/h2 (> 0). For s = 0, this is clear, because, in this case,
the model reduces to the standard haploid Moran model (p(x) = x). For h = 1

2 , it is easily
seen that p(x) = 1 − E((1 − x)η), where η is a random variable with distribution P(η =
1) = (2 + s)/(2(1 + s)) and P(η = k) = sk−1/(2(1 + s)k) for k ∈ {2, 3, . . .}. In particular,
q is completely monotone for h = 1

2 . Assume now that s �= 0 and that h �= 1
2 . Then we

shall soon see that q is completely monotone if and only if the roots of the denominator D

in (6.1) are real and negative. The roots are real if and only if s2h2 ≥ s(1 − 2h). We have
D := 1 + 2shx + s(1 − 2h)x2 = s(1 − 2h)(x2 + Sx + P), where S := 2h/(1 − 2h) and
P := 1/(s(1 − 2h)). Thus, the roots are both negative if and only if S > 0 and P > 0, or,
equivalently, if and only if s > 0 or h ∈ (0, 1

2 ). Thus, q is completely monotone if and only if
s = 0 or h = 1

2 or h ∈ (0, 1
2 ) and s ≥ (1 − 2h)/h2.

In the following the case in which h ∈ (0, 1
2 ) and s ≥ (1 − 2h)/h2 (> 0) is studied in more

detail. Let x+ and x− denote the two real negative roots, i.e.

x± := −sh ± √
s2h2 − s(1 − 2h)

s(1 − 2h)
= −h ± √

h2 − (1 − 2h)/s

1 − 2h
.

Note that x− ≤ x+ < 0. Both roots coincide (x+ = x− = −h/(1 − 2h)) for s = (1 − 2h)/h2.
Two cases are now distinguished.

Case 1. Assume that x+ �= x−. Then, expansion into partial fractions yields

q(x) = 1 − p(x) = (1 − x)(1 + shx)

s(1 − 2h)(x − x+)(x − x−)
= A + B

x − x+
+ C

x − x−
,

where

A := −h

1 − 2h
, B := (1 − x+)(1 + shx+)

s(1 − 2h)(x+ − x−)
, and C := (1 − x−)(1 + shx−)

s(1 − 2h)(x− − x+)
.

From s ≥ (1 − 2h)/h2, it follows that 1 + shx+ ≥ 0 and 1 + shx− ≤ 0. Thus, B, C ≥ 0,
from which it follows that q is completely monotone. The PGF of η is

E(xη) = q(1 − x) = A + B

1 − x − x+
+ C

1 − x − x−
= A + Bα+

1 − xα+
+ Cα−

1 − xα−
,

where α± := 1/(1 − x±) ∈ (0, 1). Thus, P(η = 0) = A + Bα+ + Cα− = 0 and P(η = k) =
Bαk+1+ + Cαk+1− for k ∈ N.

Case 2. Assume that x+ = x− = −h/(1 − 2h). Then, s = (1 − 2h)/h2 and q reduces to

q(x) = (1 − x)(1 + shx)

s(1 − 2h)(x − x+)2 = 1 − x

sh(x − x+)
= h(1 − x)

x(1 − 2h) + h
= A + B

x − x+
,
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where A := −1/(sh) = −h/(1−2h), as before, but B := (1−x+)/(sh) = h(1−h)/(1−2h)2.
Again, q is completely monotone, as B ≥ 0. The PGF of η is

E(xη) = q(1 − x) = A + B

1 − x − x+
= A + Bα+

1 − xα+
,

where α+ := 1/(1 − x+) ∈ (0, 1). Thus, P(η = 0) = A+Bα+ = −h/(1 − 2h)+ 1/(sh) = 0
and P(η = k) = Bαk+1+ for k ∈ N.

Suppose now that s �= 0 and that h = 1
2 or that h ∈ (0, 1

2 ) and s ≥ (1 − 2h)/h2. Then,
the conditions of Proposition 5.1 are satisfied. Therefore, ZN/N → α in probability and in
Lr, r ≥ 1, where α := 1 − 1/p′(0+) = 1 − 1/(sh + 1) = sh/(sh + 1) ∈ (0, 1). It is
straightforward to check that p′′(0+) = −2s(2sh2 + 3h − 1). Thus, by Conjecture 5.1, we
conjecture that (ZN −αN)/N1/2 weakly converges to the normal distribution with mean 0 and
variance τ 2 = −p′′(0+)/(2(p′(0+))3) = s(2sh2 +3h−1)/(sh+1)3 ∈ (0, ∞). The limiting
Ornstein–Uhlenbeck process in Theorem 4.1 has drift parameter µ(x) = −αx/(1−α) = −shx

and diffusion parameter σ 2(x) = σ 2 = −α(1−α)2p′′(0+) = 2s2h(2sh2 +3h−1)/(sh+1)3.

Finally, an example is mentioned where all the moments of η are infinite.

Example 6.4. Fix a parameter 0 < γ < 1 and consider p(x) := xγ , or, equivalently, p(x) =
1−E((1−x)η), where η is a random variable with distribution P(η = k) = (−1)k−1

(
γ
k

)
, k ∈ N.

It seems that expression (5.1) for the extinction probability βi cannot be further simplified in
this case. Note that p′(0+) = ∞, and, hence, ZN/N → 1 in probability and in Lr, r ≥ 1,
as N → ∞ by Proposition 5.1. However, Theorem 4.1 and Conjecture 5.1 are not applicable,
as p′′(0+) = −∞. We therefore do not expect a normal limiting behaviour of the stationary
distribution of Y . It would be interesting to find a nondegenerate weak limiting law of fN(ZN)

for an appropriate scaling function fN .
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