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SECOND FOX SUBGROUPS OF ARBITRARY GROUPS 

MARIO CURZIO AND C. KANTA GUPTA 

ABSTRACT. We give a complete description of the second Fox subgroup G n 
(1 + A2(G)A(7/)) relative to a given normal subgroup H of an arbitrary finitely gen
erated group G. 

Introduction. Let H be a normal subgroup of a finitely generated group G and let 
A(G) = ZG(G - 1), A(H) = ZG(H - 1) denote the augmentation ideals of the in
tegral group ring ZG. The n-th Fox subgroup of G relative to H is defined to be G n 
(l + A"(G)A(//)). It is a normal subgroup of G consisting of all elements g G G with 
g - 1 G AW(G)A(//). Identification of the subgroup G H (l + AW(G)A(//)) is the so-
called general Fox problem. The identification G D (l + A(G)A(//)) = [//,//] fol
lows easily from the corresponding well-known Magnus-Schumann-Fox theorem when 
G is assumed to be free ([8; page 6], cf. [1], [3]). Identification of the n-th Fox sub
group when G is a free group is now completely known: Enright [2], Hurley [9] and 
Gupta [4] for n = 2; Gupta and Gupta [5] for H = G'; N. Gupta [6] for G/H finite; 
N. Gupta [7], Yunus [13] and Hurley [10] for arbitrary H. We refer the reader to Chap
ter III of N. Gupta [8] for details. In the general case, when n — 2 and G is a split 
extension of//, a solution can be found in Khambadkone [11]. When G is an arbitrary 
finitely generated group, the identification of the general n-th Fox subgroup for n > 2 
remains a long-standing open problem. In this paper we resolve the case n = 2 by prov
ing that: G H ( 1 + A2(G)A(//)) = [//, / / , / / ] [ / / n G', H H G']KG(H), where KG(H) is a 
certain specifically defined subgroup contained in H' (Theorem B). 

Preliminaries. We use notation and terminology from Chapter III of [8]. Let F be 
a free group of finite rank, and let T, R be normal subgroups of F with T < R. Denote 
by f = ZF(F- 1), r = ZF(R - 1), t = ZF(T- 1), the ideals of the free integral group 
ring ZF of F. With G — FjT and H = R/T, in the language of free group rings, the n-th 
general Fox subgroup problem translates to the identification of the normal subgroup 
FH (1 + fwr +1) of F. In what follows we shall restrict to the'case n — 2. 

We may assume that F — (xi,X2,... ,xm) is free of finite rank m > 2 and that F/R 
admits a pre-abelian presentation where R is the normal closure 

(1) R=(xUuXe
2
2^...,Xe

m
mUU\^m+2,^Y 
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with em | em-\ | • • • | e\ > 0, &• E F' ~ [F9F], i = 1,2,... (see, for instance, [12, 

Section 3.3]), T < R. Being a subgroup of the free group F, R is itself a free group and 

we may assume that 

(2) R = sgp{n, r 2 , . . . , rw, rm+i, rm+2,...}, 

where ry- G F7 for y > m + 1 and r/ = xf £/ for 1 < i < m and T < R. Modulo 
[R HF\Rn F'][R, R, R], every element w e Rf can be written as 

(3) w= n [^o-p n E ^ I S 
1 <i<j<m 1 <£<m 

where «/,, bkq G Z. 

For w G /?' as in (3), define 

(4) (̂w) = n ^ r i o ^ ^ 
(5) zk(w)= EI r^eRnf. 

q>m+l 

THE SECOND FOX SUBGROUPS. Let F be a free group of finite rank and F, R be 
normal subgroups of F with T < R. Define 

(6) W = sgp{w e R' | (yk(w)zk(w))ek E R'T for all 1 < k < m}, 

where ̂ (w), ẑ (vv) are as defined in (4), (5). 

We state and prove our main result as: 

THEOREM A. Let R, T, W be subgroups of the free group F — (x\,X2,...,xm)as 

defined by (I), (2) and (6). Then FH(1 + f2r + t) = W[RnFf,RnFf][R,R9R]T. 

PROOF. Since[RnFf
9RnFf]-\ Ç (rnf2)(rnf2) Ç f2r, [R,R,R]-\ Ç r r r Ç f2r 

and T-1 Ç t, it follows that each of the factors [RCFf
 9 RHF']9 [R9 R9 R] and T is contained 

in FD (1 + f2r +1). To see that W is also contained in FD (1 + f2r + t), let wGi^'be an 
arbitrary generating element of W as defined by (6). Then, by (3), 

w = I l [n,rj]a'J I I [rk,rq]
b«9 aiJ9 bkq G Z, 

1 <i<j<m 1 <£<m 
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and expansion of w — 1 modulo f2 r gives 

" - ! = E K(r/-l)(o-l)-^(0-1)^-1)} 
1 <i<j<m 

= E {('/-OOf - l ) + (o-l)(rp-l)} 
1 <i<j<m 

+ E fa-l)(Zi(w)-l) (by (5)) 

= Z(rk- i)(n '•r0" n y -1) + E fa - D ^ W - 0 
\<k<m yi<k k<j ' \<k<m 

= E (n~ l)(w(w) - 1) + E (n - \)(zk(w) - 1) (by (4)) 
\<k<m \<k<m 

= E (*?-i)(v*("0z*(w)-i) 
1</Km 

= E e*(x* - l)(^(w)zit(w) - l) 
\<k<m 

1</Km v y 

Thus, by (6), w - 1 Ç f(r2 + t) Ç f2t + t and consequently, 

W[RnF\RnF'][R,R,K\T < FH{\ + \2ï + t). 

For the reverse inequality, we set 

X = W[R(lFf,RnF'][R,R,R]T 

and assume by way of contradiction that 

/ G FH (1 + f2r + t) and/ $X. 

Then, for all x G l , 
/ i G F n ( l + f2r + t) and> <£X. 

It follows that for each x there exists tx £ T such that/c — 1 = ^ — 1 (mod f2r + ft). 
Equivalency,^:1 G Fn(l+f2r+ft) . Replacing x by JCÇ"1, if necessary, we may assume 
that, for all x G l , 

(7) > G F n ( l + f2r + ft) andJx&X. 

Since FH (1 + f2r + ft) < FH(1 + f r) = /?', by (3) we may write 

jk= n [^oP II fo,^ (mod [flnF',/? nF'p,/?,/?]), 
\<i<j<m \<k<m 

q>m+\ 

where a,y, 6^ G Z. 
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Expansion of fa — 1 modulo f21 gives, as before, 

(8) fa - 1 = £ (*k ~ \)((yk(fx)zk(fxj)ek - l ) , 

where yk(fx), zk(fx) are defined by (4) and (5). 

Since, by hypothesis,fa - 1 £ f2r + ft = f(fr + t), it follows from (8) that 

(9) £ (x, - \)((yk(fx)zk(fa))ek - l ) G f(fr + t). 
\<k<m V J 

Now, since f is a free right ZF-module with basis {xk — 1 ; 1 < k < m} (see [3] or [8]), 
(9) yields 

({yk(fa)zk(fa))ek-l)e\x + t fo ra l l*= l , . . . , /w . 

Since FH (1 + f r + t) = R'T (see [8]), it follows that (yk(fa)zk(fx))ek G R'T for each Jfc. 
By (6), this yields^* G FT which, in turn, implies/ G WX — X, contrary to the choice of 
/ (by (7)). This completes the proof of the theorem. 

Let H be a normal subgroup of a finitely generated group G. We may choose a set 
{gi , . . . , gm } of elements of G so that 

(i) G j G' is generated by {g, G',. . . ,gwG'}; 

(ii) HG' /G' is generated by {/*iG', . . . , ^ G ' } with ht = gf, e,- > 0 for each /. 
For each g G H' of the form 

g= II [A«,*/r (mod [//,//,//]), 
1 <i<j<m 

put 

\ -<* k<j j 

Define 

* G ( # ) = sgp|g = n [h, hjp ; yk(gfk G / / ' ( / / n G')'*, \<k<m\. 
1 <i<j<m ] 

Then, with G = F / T and / / = R/T,WQ have the natural isomorphisms ZG = ZF/t 
and ZH = r /1 which translate the subgroup FF of F given by (6) to the subgroup KG{H) 
defined above. Thus, we may state Theorem A as, 

THEOREM B. G n ( l + A2(G)A(//)) = KG(H)[H,H,H][HDG',Hn G'\ 
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