SECOND FOX SUBGROUPS OF ARBITRARY GROUPS

MARIO CURZIO AND C. KANTA GUPTA

Abstract

We give a complete description of the second Fox subgroup $G \cap$ $\left(1+\Delta^{2}(G) \Delta(H)\right)$ relative to a given normal subgroup H of an arbitrary finitely generated group G.

Introduction. Let H be a normal subgroup of a finitely generated group G and let $\Delta(G)=\mathbf{Z} G(G-1), \Delta(H)=\mathbf{Z} G(H-1)$ denote the augmentation ideals of the integral group ring $\mathbf{Z} G$. The n-th Fox subgroup of G relative to H is defined to be $G \cap$ $\left(1+\Delta^{n}(G) \Delta(H)\right)$. It is a normal subgroup of G consisting of all elements $g \in G$ with $g-1 \in \Delta^{n}(G) \Delta(H)$. Identification of the subgroup $G \cap\left(1+\Delta^{n}(G) \Delta(H)\right)$ is the socalled general Fox problem. The identification $G \cap(1+\Delta(G) \Delta(H))=[H, H]$ follows easily from the corresponding well-known Magnus-Schumann-Fox theorem when G is assumed to be free ([8; page 6], cf. [1], [3]). Identification of the n-th Fox subgroup when G is a free group is now completely known: Enright [2], Hurley [9] and Gupta [4] for $n=2$; Gupta and Gupta [5] for $H=G^{\prime}$; N. Gupta [6] for G / H finite; N. Gupta [7], Yunus [13] and Hurley [10] for arbitrary H. We refer the reader to Chapter III of N. Gupta [8] for details. In the general case, when $n=2$ and G is a split extension of H, a solution can be found in Khambadkone [11]. When G is an arbitrary finitely generated group, the identification of the general n-th Fox subgroup for $n \geq 2$ remains a long-standing open problem. In this paper we resolve the case $n=2$ by proving that: $G \cap\left(1+\Delta^{2}(G) \Delta(H)\right)=[H, H, H]\left[H \cap G^{\prime}, H \cap G^{\prime}\right] K_{G}(H)$, where $K_{G}(H)$ is a certain specifically defined subgroup contained in H^{\prime} (Theorem B).

Preliminaries. We use notation and terminology from Chapter III of [8]. Let F be a free group of finite rank, and let T, R be normal subgroups of F with $T \leq R$. Denote by $\mathfrak{f}=\mathbf{Z} F(F-1), \mathfrak{r}=\mathbf{Z} F(R-1), \mathfrak{t}=\mathbf{Z} F(T-1)$, the ideals of the free integral group ring $\mathbf{Z} F$ of F. With $G=F / T$ and $H=R / T$, in the language of free group rings, the n-th general Fox subgroup problem translates to the identification of the normal subgroup $F \cap\left(1+\mathfrak{f}^{n} \mathfrak{r}+\mathfrak{t}\right)$ of F. In what follows we shall restrict to the case $n=2$.

We may assume that $F=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ is free of finite rank $m \geq 2$ and that F / R admits a pre-abelian presentation where R is the normal closure

$$
\begin{equation*}
R=\left\langle x_{1}^{e_{1}} \xi_{1}, x_{2}^{e_{2}} \xi_{2}, \ldots, x_{m}^{e_{m}} \xi_{m}, \xi_{m+1}, \xi_{m+2}, \ldots\right\rangle^{F} \tag{1}
\end{equation*}
$$

The first author was supported by CNR, Italy.
The second author was supported by NSERC, Canada.
Received by the editors November 23, 1993.
AMS subject classification: $20 \mathrm{C} 07,16 \mathrm{~A} 27$.
(c) Canadian Mathematical Society 1995.
with $e_{m}\left|e_{m-1}\right| \cdots \mid e_{1} \geq 0, \xi_{i} \in F^{\prime}=[F, F], i=1,2, \ldots$ (see, for instance, [12, Section 3.3]), $T \leq R$. Being a subgroup of the free group F, R is itself a free group and we may assume that

$$
\begin{equation*}
R=\operatorname{sgp}\left\{r_{1}, r_{2}, \ldots, r_{m}, r_{m+1}, r_{m+2}, \ldots\right\} \tag{2}
\end{equation*}
$$

where $r_{j} \in F^{\prime}$ for $j \geq m+1$ and $r_{i}=x_{i}^{e_{i}} \xi_{i}$ for $1 \leq i \leq m$ and $T \leq R$. Modulo $\left[R \cap F^{\prime}, R \cap F^{\prime}\right][R, R, R]$, every element $w \in R^{\prime}$ can be written as

$$
\begin{equation*}
w=\prod_{1 \leq i<j \leq m}\left[r_{i}, r_{j}\right]^{a_{j j}} \prod_{\substack{1 \leq k \leq m \\ q \geq m+1}}\left[r_{k}, r_{q}\right]^{b_{k q}}, \tag{3}
\end{equation*}
$$

where $a_{i j}, b_{k q} \in Z$.
For $w \in R^{\prime}$ as in (3), define

$$
\begin{align*}
& y_{k}(w)=\prod_{i<k} r_{i}^{-a_{i k}} \prod_{k<j} r_{j}^{a_{k j}} \in R, \tag{4}\\
& z_{k}(w)=\prod_{q \geq m+1} r_{q}^{b_{k q}} \in R \cap F^{\prime} . \tag{5}
\end{align*}
$$

The second Fox subgroups. Let F be a free group of finite rank and T, R be normal subgroups of F with $T \leq R$. Define

$$
\begin{equation*}
W=\operatorname{sgp}\left\{w \in R^{\prime} \mid\left(y_{k}(w) z_{k}(w)\right)^{e_{k}} \in R^{\prime} T \text { for all } 1 \leq k \leq m\right\}, \tag{6}
\end{equation*}
$$

where $y_{k}(w), z_{k}(w)$ are as defined in (4), (5).
We state and prove our main result as:

Theorem A. Let R, T, W be subgroups of the free group $F=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ as defined by (l), (2) and (6). Then $F \cap\left(1+\mathfrak{f}^{2} \mathfrak{r}+\mathfrak{t}\right)=W\left[R \cap F^{\prime}, R \cap F^{\prime}\right][R, R, R] T$.

Proof. Since $\left[R \cap F^{\prime}, R \cap F^{\prime}\right]-1 \subseteq\left(\mathfrak{r} \cap \mathfrak{f}^{2}\right)\left(\mathfrak{r} \cap f^{2}\right) \subseteq \mathfrak{f}^{2} \mathfrak{r},[R, R, R]-1 \subseteq \mathfrak{r r x} \subseteq f^{2} \mathfrak{r}$ and $T-1 \subseteq \mathrm{t}$, it follows that each of the factors $\left[R \cap F^{\prime}, R \cap F^{\prime}\right],[R, R, R]$ and T is contained in $F \cap\left(1+\mathfrak{f}^{2} \mathfrak{r}+\mathrm{t}\right)$. To see that W is also contained in $F \cap\left(1+\mathfrak{f}^{2} \mathfrak{r}+\mathrm{t}\right)$, let $w \in R^{\prime}$ be an arbitrary generating element of W as defined by (6). Then, by (3),

$$
w=\prod_{1 \leq i<j \leq m}\left[r_{i}, r_{j}\right]^{a_{i j}} \prod_{\substack{1 \leq k \leq m \\ q \geq m+1}}\left[r_{k}, r_{q}\right]^{b_{k q}}, \quad a_{i j}, b_{k q} \in Z,
$$

and expansion of $w-1$ modulo $f^{2} \mathfrak{r}$ gives

$$
\begin{aligned}
w-1 \equiv & \sum_{1 \leq i<j \leq m}\left\{a_{i j}\left(r_{i}-1\right)\left(r_{j}-1\right)-a_{i j}\left(r_{j}-1\right)\left(r_{i}-1\right)\right\} \\
& +\sum_{1 \leq k \leq m}\left(r_{k}-1\right)\left(\prod_{q \geq m+1} r_{q}^{b_{k q}}-1\right) \\
\equiv & \sum_{1 \leq i<j \leq m}\left\{\left(r_{i}-1\right)\left(r_{j}^{a_{j i}}-1\right)+\left(r_{j}-1\right)\left(r_{i}^{-a_{i j}}-1\right)\right\} \\
& +\sum_{1 \leq k \leq m}\left(r_{k}-1\right)\left(z_{k}(w)-1\right) \quad(\text { by }(5)) \\
\equiv & \sum_{1 \leq k \leq m}\left(r_{k}-1\right)\left(\prod_{i<k} r_{i}^{-a_{i k}} \prod_{k<j} r_{j}^{a_{k j}}-1\right)+\sum_{1 \leq k \leq m}\left(r_{k}-1\right)\left(z_{k}(w)-1\right) \\
\equiv & \sum_{1 \leq k \leq m}\left(r_{k}-1\right)\left(y_{k}(w)-1\right)+\sum_{1 \leq k \leq m}\left(r_{k}-1\right)\left(z_{k}(w)-1\right) \quad \text { (by (4)) } \\
\equiv & \sum_{1 \leq k \leq m}\left(x_{k}^{e_{k}}-1\right)\left(y_{k}(w) z_{k}(w)-1\right) \\
\equiv & \sum_{1 \leq k \leq m} e_{k}\left(x_{k}-1\right)\left(y_{k}(w) z_{k}(w)-1\right) \\
\equiv & \sum_{1 \leq k \leq m}\left(x_{k}-1\right)\left(\left(y_{k}(w) z_{k}(w)\right)^{e_{k}}-1\right) .
\end{aligned}
$$

Thus, by (6), $w-1 \subseteq f\left(\mathfrak{r}^{2}+\mathrm{t}\right) \subseteq \mathfrak{f}^{2} \mathfrak{r}+\mathrm{t}$ and consequently,

$$
W\left[R \cap F^{\prime}, R \cap F^{\prime}\right][R, R, R] T \leq F \cap\left(1+\mathfrak{f}^{2} \mathfrak{t}+\mathrm{t}\right) .
$$

For the reverse inequality, we set

$$
X=W\left[R \cap F^{\prime}, R \cap F^{\prime}\right][R, R, R] T
$$

and assume by way of contradiction that

$$
f \in F \cap\left(1+\mathfrak{f}^{2} \mathrm{r}+\mathrm{t}\right) \quad \text { and } f \notin X
$$

Then, for all $x \in X$,

$$
f x \in F \cap\left(1+\mathfrak{f}^{2} \mathrm{r}+\mathrm{t}\right) \quad \text { and } f x \notin X
$$

It follows that for each x there exists $t_{x} \in T$ such that $f x-1 \equiv t_{x}-1\left(\bmod \mathfrak{f}^{2} \mathrm{r}+\mathfrak{f t}\right)$. Equivalently, $f x t_{x}^{-1} \in F \cap\left(1+\mathfrak{f}^{2} \mathrm{r}+\mathfrak{f t}\right)$. Replacing x by $x t_{x}^{-1}$, if necessary, we may assume that, for all $x \in X$,

$$
\begin{equation*}
f x \in F \cap\left(1+\mathfrak{f}^{2} \mathfrak{r}+\mathfrak{f t}\right) \quad \text { and } f x \notin X . \tag{7}
\end{equation*}
$$

Since $F \cap\left(1+\mathfrak{f}^{2} \mathrm{r}+\mathrm{ft}\right) \leq F \cap(1+\mathfrak{f r})=R^{\prime}$, by (3) we may write

$$
f x \equiv \prod_{1 \leq i<j \leq m}\left[r_{i}, r_{j}\right]^{a_{j j}} \prod_{\substack{1 \leq k \leq m \\ q \geq m+1}}\left[r_{k}, r_{q}\right]^{b_{k q}}\left(\bmod \left[R \cap F^{\prime}, R \cap F^{\prime}\right][R, R, R]\right)
$$

where $a_{i j}, b_{k q} \in Z$.

Expansion of $f x-1$ modulo $f^{2} r$ gives, as before,

$$
\begin{equation*}
f x-1 \equiv \sum_{1 \leq k \leq m}\left(x_{k}-1\right)\left(\left(y_{k}(f x) z_{k}(f x)\right)^{e_{k}}-1\right) \tag{8}
\end{equation*}
$$

where $y_{k}(f x), z_{k}(f x)$ are defined by (4) and (5).
Since, by hypothesis, $f x-1 \in \mathfrak{f}^{2} \mathfrak{r}+\mathfrak{f t}=\mathfrak{f}(\mathfrak{f r}+\mathfrak{t})$, it follows from (8) that

$$
\begin{equation*}
\sum_{1 \leq k \leq m}\left(x_{k}-1\right)\left(\left(y_{k}(f x) z_{k}(f x)\right)^{e_{k}}-1\right) \in \mathfrak{f}(f r+t) \tag{9}
\end{equation*}
$$

Now, since \mathfrak{f} is a free right ZF-module with basis $\left\{x_{k}-1 ; 1 \leq k \leq m\right\}$ (see [3] or [8]), (9) yields

$$
\left(\left(y_{k}(f x) z_{k}(f x)\right)^{e_{k}}-1\right) \in \mathfrak{f r}+\mathrm{t} \quad \text { for all } k=1, \ldots, m
$$

Since $F \cap(1+\mathfrak{f r}+\mathrm{t})=R^{\prime} T$ (see [8]), it follows that $\left(y_{k}(f x) z_{k}(f x)\right)^{e_{k}} \in R^{\prime} T$ for each k. By (6), this yields $f x \in W$ which, in turn, implies $f \in W X=X$, contrary to the choice of f (by (7)). This completes the proof of the theorem.

Let H be a normal subgroup of a finitely generated group G. We may choose a set $\left\{g_{1}, \ldots, g_{m}\right\}$ of elements of G so that
(i) G / G^{\prime} is generated by $\left\{g_{1} G^{\prime}, \ldots, g_{m} G^{\prime}\right\}$;
(ii) $H G^{\prime} / G^{\prime}$ is generated by $\left\{h_{1} G^{\prime}, \ldots, h_{m} G^{\prime}\right\}$ with $h_{i}=g_{i}^{e_{i}}, e_{i} \geq 0$ for each i.

For each $g \in H^{\prime}$ of the form

$$
g \equiv \prod_{1 \leq i<j \leq m}\left[h_{i}, h_{j}\right]^{a_{i j}}(\bmod [H, H, H]),
$$

put

$$
y_{k}(g)=\left(\prod_{i<k} h_{i}^{-a_{i k}} \prod_{k<j} h_{j}^{a_{k j}}\right), \quad 1 \leq k \leq m .
$$

Define

$$
K_{G}(H)=\operatorname{sgp}\left\{g \equiv \prod_{1 \leq i<j \leq m}\left[h_{i}, h_{j}\right]^{a_{j i}} ; y_{k}(g)^{e_{k}} \in H^{\prime}\left(H \cap G^{\prime}\right)^{e_{k}}, 1 \leq k \leq m\right\} .
$$

Then, with $G=F / T$ and $H=R / T$, we have the natural isomorphisms $Z G \cong Z F / \mathrm{t}$ and $Z H \cong \mathrm{r} / \mathrm{t}$ which translate the subgroup W of F given by (6) to the subgroup $K_{G}(H)$ defined above. Thus, we may state Theorem A as,

THEOREM B. $\quad G \cap\left(1+\Delta^{2}(G) \Delta(H)\right)=K_{G}(H)[H, H, H]\left[H \cap G^{\prime}, H \cap G^{\prime}\right]$.
Acknowledgement. This work was initiated when the second author visited the University of Napoli in July 1991. She thanks the Mathematics Department for its warm hospitality.

References

1. G. M. Bergman and W. Dicks, On universal derivations, J. Algebra 36(1975), 193-211.
2. D. E. Enright, Triangular matrices over group rings, Doctoral Thesis, New York University, 1968.
3. K. W. Gruenberg, Cohomological Topics in Group Theory, Lecture Notes in Math. 143, Springer-Verlag, 1970.
4. C. K. Gupta, Subgroups of free groups induced by certain products of augmentation ideals, Comm. Algebra 6(1978), 1231-1238.
5. C. K. Gupta and N. D. Gupta, Power series and matrix representations of certain relatively free groups, Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, In: Lecture Notes in Math. 372, SpringerVerlag, 1974, 318-329.
6. N. Gupta, Fox subgroups of free groups, J. Pure Appl. Algebra 11(1977), 1-17.
7. \qquad Fox subgroups of free groups II, Contemp. Math. 33(1984), 223-231.
8. \qquad Free Groups Rings, Contemp. Math. Amer. Math. Soc. 66(1987).
9. T. C. Hurley, On a problem of Fox, Invent. Math. 21(1973), 294-299.
10. \qquad Identifications in a free group, J. Pure Appl. Algebra 48(1987), 249-261.
11. M. Khambadkone, On the structure of augmentation ideals in group rings, J. Pure Appl. Algebra 35(1985), 35-45.
12. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience, New York, 1966.
13. I. A. Yunus, On a problem of Fox, Soviet Math. Dokl. 30(1984), 346-350.

Department of Mathematics
University of Napoli
via Cinitia
Napoli 80126
Italy

Department of Mathematics
University of Manitoba
Winnipeg, Manitoba
R3T 2N2

