New nearby young star cluster candidates within 200 pc

Eric E. Mamajek[†]

Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-42, Cambridge, MA, 02138, USA email: emamajek@cfa.harvard.edu

Abstract. I briefly describe two new young star cluster candidates found within 200 pc of the Sun, associated with the 4th-magnitude stars μ Oph and 32 Ori. The μ Oph group (d $\simeq 170$ pc) has a space motion and age ($\sim 120 \pm 25$ Myr) suspiciously similar to the Pleiades, but lies in the opposite side of the sky behind ~ 0.9 mag of visual extinction in Ophiuchus. The 32 Ori group is a nearby ($d \simeq 90$ pc) loose aggregate of ~ 25 -Myr-old post-T Tauri stars co-moving with the massive binary 32 Ori (B5V+B7V) in northern Orion. The 32 Ori group accounts for part of the population of "isolated" Li-rich RASS pre-MS stars in northern Orion.

Keywords. Galaxy: open clusters and associations, solar neighborhood, stars: pre-main-sequence

1. Summary

Given the order of magnitude difference between the formation rate of embedded clusters (~4 Myr⁻¹ kpc⁻²) and open clusters (~0.3 Myr⁻¹ kpc⁻²; Lada & Lada 2003, ARA&A, 41, 57), and the recent identification of several new nearby young stellar aggregates at surprisingly close distances (d < 200 pc; e.g. η Cha, TW Hya groups; Zuckerman & Song 2004, ARA&A, 42, 685), one should not be surprised to find additional poor, young stellar groups within a few hundred pc of the Sun.

The μ Oph group (Mamajek 2) is described in detail in Mamajek (2006; AJ, in press, astro-ph/0609064). The group was first noticed as a swarm of 9 B- and A-type systems co-moving with the bright ($V = 4.6^{m}$) B8 giant μ Oph. μ Oph has three bright common proper motion companions ($\mu_{\alpha*}$, $\mu_{\delta} = -12$, -21 mas yr^{-1}) in close proximity (within 10'; ~0.5 pc projected) which appear to constitute the "nucleus", including HD 160037 (A0V), HD 160038 (B9V), and HD 159874 (B9IV/V). The proper motions, parallax data, and color-magnitude diagram positions for the nine systems are consistent with having a distance of ~170 pc and age of 125 ± 25 Myr. The heliocentric space motion ($U, V, W = -12, -24, -4 \text{ km s}^{-1}$) and age are close to that of the Pleiades, α Per, and AB Dor groups, and show the cluster to be unassociated with the Gould Belt system (<60 Myr).

The 32 Ori group (Mamajek 3) was noticed as a group of X-ray-bright late-type stars from the *ROSAT All-Sky Survey* (e.g. Alcalá *et al.* 2000, A&A, 353, 186) with similar proper motions ($\mu_{\alpha*}$, $\mu_{\delta} = +8$, -33 mas yr^{-1}) and RVs ($+18 \text{ km s}^{-1}$), co-moving with the nearby (d $\simeq 90 \text{ pc}$) massive binary 32 Ori (B5V+B7V). The ~ 25 -Myr-old group is defined by 32 Ori, RX J0520.0+0612, RX J0520.5+0616, RX J0523.7+0652, and a half dozen other young systems. The space motion of the new group is $U, V, W = (-12, -19, -9 \text{ km s}^{-1})$, which is somewhat similar to that for the ill-defined Cas-Tau association in the same region, however Cas-Tau is claimed to be older ($\sim 50 \text{ Myr}$) and more distant (~ 125 -300 pc; de Zeeuw *et al.* 1999, AJ, 117, 354). The group is clearly in the foreground of, and completely unrelated to, the Ori OB1 complex ($d \sim 400 \text{ pc}$).

† Clay Postdoctoral Fellow, Smithsonian Astrophysical Observatory

442