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Nuij Type Pencils of Hyperbolic
Polynomials

Krzysztof Kurdyka and Laurentiu Paunescu

Abstract. Nuij’s theorem states that if a polynomial p ∈ R[z] is hyperbolic (i.e., has only real roots),
then p+sp′ is also hyperbolic for any s ∈ R. We study other perturbations of hyperbolic polynomials
of the form pa(z, s) ∶= p(z) + ∑dk=1 ak sk p(k)(z). We give a full characterization of those a =
(a1 , . . . , ad) ∈ Rd for which pa(z, s) is a pencil of hyperbolic polynomials. We also give a full
characterization of those a = (a1 , . . . , ad) ∈ Rd for which the associated families pa(z, s) admit
universal determinantal representations. In fact,we show that all these sequences come from special
symmetric Toeplitz matrices.

1 Introduction

Hyperbolic polynomials emerged from PDE’s (cf. Gårding [2]), and they now appear
in various branches of mathematics; see for instance an excellent survey of Peman-
tle [8] for applications in combinatorics. In real algebraic geometry many activities
concern hyperbolic polynomials and their determinantal representations. Vinnikov’s
survey [11] is a good source on recent developments in this subject. _e goal of this
paper is a study of 1-parameter families of hyperbolic polynomials and their universal
determinantal representations. Recall that a polynomial p ∈ R[z] is called hyper-
bolic if all its roots are real. Clearly anymonic hyperbolic polynomial of degree d is a
characteristic polynomial of a symmetric d × d matrix. First, we recall the following
theorem proved by W. Nuij [7].

_eorem 1.1 Let p ∈ R[z] be a hyperbolic polynomial; then p + sp′ is hyperbolic for
any s ∈ R.

We give below a proof of this result, based on the existence of determinantal rep-
resentation of the family of the polynomials p+ sp′ , s ∈ R. In fact, we state and prove
a generalization of Nuij’s result. To this end, we propose the following deûnition.
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Deûnition 1.2 We say that a = (a1 , . . . , ad) ∈ Rd is a Nuij sequence if for any
hyperbolic polynomial p of degree d, the polynomial

(1.1) pa(z, s) ∶= p(z) +
d

∑
k=1
ak sk p(k)(z) ∈ R[z],

is hyperbolic for any s ∈ R. We denote byNd the set of all Nuij sequences in Rd .

Note that by _eorem 1.1, a = (1, 0, . . . , 0) is a Nuij sequence for any d ∈ N, d ≥ 1.
On the other hand, repeated application of_eorem 1.1 also producesNuij sequences;
for instance, we have

p + sp′ + s(p + sp′)′ = p + 2sp′ + s2p′′ .

Hence, (2, 1, 0, . . . , 0) is aNuij sequence for any d ∈ N, d ≥ 2. In Section 3we shall see,
however, that there is an essential diòerence between those two families, with respect
to their determinantal representations.

Surprisingly, the set Nd has a nice explicit description.

_eorem A A sequence a = (a1 , . . . , ad) ∈ Rd is a Nuij sequence if and only if the
polynomial

(1.2) qa(z) ∶= zd +
d

∑
k=1
ak(zd)(k) = zd +

d

∑
k=1
ak

d!
(d − k)!

zd−k

is hyperbolic.

In otherwords, the theorem states that to check that a given a = (a1 , . . . , ad) ∈ Rd
is a Nuij sequence, it is enough to check hyperbolicity of pa(z, s) only for p(z) = zd .
_e proof is given in Section 2; it is based on a deep result of Borcea and Brändén [1]
which gives a characterization of linearmaps (on the space of polynomials) preserving
hyperbolic polynomials. A nice exposition of the results of Borcea and Brändén is
given in Wagner’s paper [12].

_e second part, developed in Section 3, concerns universal determinantal repre-
sentation of some Nuij sequences.

Deûnition 1.3 We say that a = (a1 , . . . , ad) ∈ Nd ⊂ Rd admits a universal determi-
nantal representation if there exists a symmetric matrix Aa such that for any hyper-
bolic polynomial p of degree d, we have pa(z, s) = det(zI + D + sAa), where D is a
diagonal matrix whose characteristic polynomial is equal to p = pa(z, 0). _ematrix
Aa will be referred to as a matrix associated with the sequence a = (a1 , . . . , ad). We
denote byUNd the set of all Nuij sequences inRd that admit universal determinantal
representations.

Recall that a square matrix is Toeplitz if all parallels to the principal diagonal are
constant. We say that a symmetric Toeplitz matrix is special if all entries outside the
principal diagonal are equal to some β ∈ R, and of course, all entries on the principal
diagonal are equal to some α ∈ R. In the sequel, wewill denote such a d ×d matrix by
Tα ,β(d) and its determinant by tα ,β(d) ∶= detTα ,β(d) = (α − β)d−1(α + (d − 1)β).
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We obtain the following characterization of all Nuij sequences that admit universal
determinantal representations.

_eorem B A sequence a = (a1 , . . . , ad) ∈ Rd is a Nuij sequence with a universal
determinantal representation if and only if there exit α, β ∈ R such that

a i =
1
i!
tα ,β(i), i = 1, . . . , d .

2 Hyperbolic Polynomials and Nuij Sequences

First, we recall some facts about the space Hd
1 of hyperbolic (monic) polynomials

of some ûxed degree d. For x = (x1 , . . . , xd) ∈ Rd , we have the k-th elementary
symmetric polynomial

ck(x) = ∑
i1<⋅⋅⋅<ik

x i1 ⋅ ⋅ ⋅ x ik ,

for k = 1, . . . , d. We will identify any b = (b1 , . . . , bd) ∈ Rd with amonic polynomial
hb ∶= zd+∑dk=1 bkzd−k . _us,we canwriteHd

1 = c(Rn),where c = (c1 , . . . , cd)∶Rd →
Rd is the Viète map; hence, by the Tarski–Seidenberg theorem, it follows that Hd

1 is
semialgebraic. Moreover, the Viète map c = (c1 , . . . , cd)∶Rd → Rd is generically a
submersion; hence,Hd

1 = c(Rn) has nonempty interior. In fact,Hd
1 is a basic semi-

algebraic set which can be described using generalized discriminants or Bezoutians
(see a nice exposition in [9] or amore detailed one in [10]). Recent developments on
hyperbolic univariate polynomials are given by Kostov in his survey [4].
For the proof of _eorem A we need to recall several deûnitions and results

from [1].

Deûnition 2.1 ([1, Deûnition 1] ) We say that a polynomial

f (z1 , . . . , zn) ∈ C[z1 , . . . , zn]

is stable if f (z1 , . . . , zn) /= 0 for all n-tuples (z1 , . . . , zn) ∈ Cn with im(z j) > 0, for
j = 1, . . . , n. If in addition f has real coeõcients, it will be referred to as real stable.
_e set of stable and real stable polynomials in n variables will be denoted byHn(C)

and Hn(R), respectively. Note that for n = 1, a polynomial f is real stable, which
precisely means that f is hyperbolic.

Let T ∶Cd[z] → Cd[z] be a linear map, where Cd[z] stands for the vector space
(over C) of complex polynomials of degree at most d. We extend it to a linear map
T ∶Cd[z,w] → Cd[z,w], by setting T(zkw l) ∶= T(zk)w l for all k = 1, . . . , d and
l ∈ N. We now state the result that is crucial for the proof of_eorem A.

_eorem 2.2 ([1, _eorem 4]) Let T ∶Cd[z] → Cd[z] be a linear map. _en T
preserves stability if an only if either
(i) T has range of dimension at most one and is of the form T( f ) = α( f )P, where

α∶Cd[z]→ C is a linear functional and P ∈H1(C); or
(ii) T((z +w)d) ∈H2(C).
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Proof of_eorem A Assume that a = (a1 , . . . , ad) ∈ Rd is a Nuij sequence. Hence,
by Deûnition 1.2 applied to p(z) = zd with s = 1, we obtain that the polynomial pa
deûned by (1.1) is hyperbolic.

To prove the converse, let us ûx some a = (a1 , . . . , ad) ∈ Rd and assume that the
polynomial qa deûned by (1.2) is hyperbolic. We associate with the sequence a =

(a1 , . . . , ad) a linear operator Ta ∶Cd[z]→ Cd[z] deûned by

(2.1) Ta(p)(z) ∶= p(z) +
d

∑
k=1
ak p(k)(z) ∈ R[z].

Lemma 2.3 Ta((z +w)d) = qa(z +w).

Proof We ûrst expand the right-hand side of (2.1):

Ta((z +w)
d) = T(

d

∑
i=0

(
d
i
)z iwd−i

) =
d

∑
i=0

(
d
i
)wd−iT(z i

).

Note that

Ta(z i
) =

i

∑
j=0
a j(z i

)
( j)

=
i

∑
j=0
a j(z i

)
( j)

=
i

∑
j=0
a j

i!
(i − j)!

z i− j ,

so
d

∑
i=0

(
d
i
)wd−iT(z i

) =
d

∑
i=0

(
d
i
)wd−i

(
i

∑
j=0
a j

i!
(i − j)!

z i− j
) ,

hence

(2.2) Ta((z +w)
d) =

d

∑
i=0

d!
(d − i)!i!

z i− jwd−i
(

i

∑
j=0
a j

i!
(i − j)!

z i− j
) .

On the other hand,

(2.3) qa(z +w) =
d

∑
i=0

d!
(d − i)!

a i(z +w)
d−i .

● _e coeõcient in (2.2) that comes with a j , j = 0, 1, . . . , d is equal to
d

∑
i= j

d!
(d − i)!i!

i!
(i − j)!

z i− jwd−i
=

d

∑
i− j=k=0

d!
(d − k − j)!k!

zkwd− j−k .

● _e coeõcient in (2.3) that comes with a j , j = 0, 1, . . . , d is equal to

d!
(d − j)!

(z +w)
d− j

=
d!

(d − j)!

d

∑
k=0

(
d − j
k

)zkwd− j−k
=

d

∑
i− j=k=0

d!
(d − k − j)!

zkwd− j−k .

Hence, these coeõcients are equal, which proves the lemma.

By the assumption, qa has only real roots. Hence, qa(z+w) is a stable polynomial
in variables (z,w). Indeed, if im(z) > 0 and im(w) > 0, then im(z + w) > 0,
so qa(z + w) /= 0. By Lemma 2.3, we have Ta((z + w)d) = qa(z + w). Applying
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_eorem 2.2 we conclude that the operator Ta preserves stability, hence Ta restricted
to Rd[z] preserves hyperbolicity. _us, we have proved that

pa(z, 1) = p(z) +
d

∑
k=1
ak p(k)(z)

is hyperbolicwhenever p ∈ Rd[z] is hyperbolic. Let us take s ∈ R∗ and denote a(s) ∶=
(sa1 , . . . , skak , . . . , sdad). _en the polynomial

qa(s)(z) ∶= zd +
d

∑
k=1

skak(zd)(k) = zd +
d

∑
k=1

skak
n!

(n − k)!
zd−k

is again hyperbolic, since qa(s)(z) = s−dqa(sz). _us, by applying the above argu-
ment to the sequence a(s), we conclude that

pa(z, s) ∶= p(z) +
d

∑
k=1
ak sk p(k)(z)

is hyperbolic for all s ∈ R and any p ∈ Rd[z] hyperbolic. _is ends the proof of
_eorem A.

Corollary 2.4 If (a1 , a2 , . . . , ad) is a Nuij sequence for hyperbolic polynomials of
degree d, then (a1 , a2 , . . . , ad−i) is also a Nuij sequence for hyperbolic polynomials of
degree d− i , i = 1, . . . , d− 1. Moreover (a1 , a2 , . . . , ad) is aNuij sequence for hyperbolic
polynomials of arbitrary degrees if and only if it is Viète, the iteration of the standard
Nuij sequence.

Proof _e ûrst assertion is easily deduced by diòerentiation of (1.2).
_e second aõrmation is a consequence of the fact that (a1 , a2 , . . . , ad , 0, . . . , 0)

is a Nuij sequence for hyperbolic polynomials of degree k = d + i , i = 1, 2, . . . and
satisûes (1.2) for all k = d + i , i ≥ 1.

Simplifying each obtained equation by the corresponding z i , we can obtain a se-
quence of hyperbolic polynomials of degree d convergent to zd + a1zd−1 + a2zd−2 +

⋅ ⋅ ⋅ + ad , and this implies the claim. Namely, we have

( ka1 , k(k − 1)a2 , . . . , k(k − 1) ⋅ ⋅ ⋅ (k − d + 1)ad) = σ(x1(k), . . . , xd(k)) , ∀k ≥ d ,

for some x(k) = (x1(k), . . . , xd(k)) ∈ Rd . Now we can see that σ(x(k)/k) tends to
(a1 , a2 , . . . , ad) as k →∞.

2.1 Iterations of Nuij’s Sequences

Let a = (a1 , . . . , ad) ∈ Rd and b = (b1 , . . . , bd) ∈ Rd be twoNuij sequences,we deûne
their composition b ○ a ∶= c = (c1 , . . . , cd) in the following way. For any polynomial
p(z) ∈ R[z],

pc(z, s) = (pa)b(z, s) = pa(z, s) +
d

∑
k=1
bk sk

∂k pa
∂zk = p +

d

∑
k=1
ck sk p(k) .
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Note that with the convention a0 = b0 = 1, we have

ck =
k

∑
i=0
a ibk−i .

Let a1 , . . . , ar ∈ Rd . We deûne by induction the composition of r copies of se-
quences:

I1(a1
) = a1 , Ir(a1 , . . . , ar

) ∶= Ir−1(a1 , . . . , ar−1
) ○ ar .

Explicitly, if Ir(a1 , . . . , ar) = c = (c1 , . . . , cd), then
ck = ∑

i1<⋅⋅⋅<ir , i1+⋅⋅⋅+ir=k
a1
i1 ⋅ ⋅ ⋅ a

r
ir .

Let us consider the original Nuij sequences of the form

a i
= (x i , 0, . . . , 0) ∈ Rd ,

where x i ∈ R, i = 1, . . . , d. _en Id(a1 , . . . , ad) = c = (c1 , . . . , cd) is theNuij sequence
obtained by the iteration of a i and

ck = ∑
i1<⋅⋅⋅<ik

x i1 ⋅ ⋅ ⋅ x ik ,

for k = 1, . . . , d. _us, ck = ck(x1 , . . . , xd) is in fact the k-th elementary symmetric
polynomial of x1 , . . . , xd . Denote by c = (c1 , . . . , cd)∶Rd → Rd the Viète map and
recall that Hd

1 = c(Rn). _us, we obtain that Hd
1 ⊂ Nd . For d ∈ N, let us denote by

bd ∶Rd → Rd the following linear map:

bd(a1 , . . . , ak , . . . , ad) ∶= (da1 , . . . ,
d!

(d − k)!
ak , . . . , d!ad) .

_eorem A and the above discussion can be summarized as follows.

Corollary 2.5 For any d ∈ N, we haveHd
1 ⊂ Nd = b−1

d (Hd
1 ).

Example 2.6 For d = 2, we haveH2
1 = {a2

1 − 4a2 ≥ 0} ⊂ N2 = {a2
1 − 2a2 ≥ 0}.

3 Universal Determinantal Representations

We will consider 1-parameter families of hyperbolic polynomials. A polynomial

p(z, s) = zd + a1(s)zd−1
+ ⋅ ⋅ ⋅ + ad(s)

will be called a pencil of hyperbolic polynomials if and only if:
● for each s ∈ R the polynomial z ↦ p(s, z) is hyperbolic,
● each coeõcient a i(s) ∈ R[s] is of degree at most i.
For any d ≥ 1, we shall denote by PHd the space of such pencils of hyperbolic poly-
nomials.

We say that a polynomial p(z, s) admits a determinantal representation if there are
real symmetricmatrices A0 ,A1 such that

p(z, s) = det(zI + A0 + sA1),
and clearly in this case p(z, s) is a pencil of hyperbolic polynomials.

https://doi.org/10.4153/CMB-2016-079-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-079-1


Nuij Type Pencils of Hyperbolic Polynomials 567

_e following is an easy reformulation of a remarkable theoremofHelton andVin-
nikov [3].

_eorem 3.1 Any polynomial p(z, s) ∈ PHd admits a determinantal representation.

Indeed, let us set z = x−1 and s = x−1 y and ûnally

f (x , y) ∶= xd p(z, s) = xd p(x−1 , x−1 y).
_en f is a real zero polynomial in the sense of Helton–Vinnikov, so it has a deter-
minantal representation according to [3, _eorem 2.2]. In fact, as noticed by Lewis,
Parrilo, and Ramana [6], _eorem 3.1 is a positive answer to the nonhomogeneous
version of the Lax conjecture [5].

We want to characterize all Nuij sequences a = (a1 , . . . , ad) ∈ Rd such that for
any p ∈ R[z], hyperbolic polynomial of degree d, the associated pencil of hyperbolic
polynomials

pa(z, s) ∶= p +
d

∑
k=1
ak sk p(k) ∈ R[z]

admits a universal determinantal representation; by this we mean that there exists a
symmetricmatrix Aa such that pa(z, s) = det(zI + D + sAa), where D is a diagonal
matrix. In other words, −D has on the diagonal all the roots of p written in an arbi-
trary order. _e matrix Aa will be referred as a matrix associated with the sequence
a = (a1 , . . . , ad). We denote by UNd the set of all Nuij sequences in Rd that admit
universal determinantal representations.

3.1 Special Toeplitz Matrices

Recall that a square matrix is called a Toeplitz matrix if all parallels to the principal
diagonal are constant. We say that a symmetric Toeplitzmatrix is special if all entries
outside the principal diagonal are equal to some β ∈ R, and of course all entries on
the principal diagonal are equal to some α ∈ R. We will denote such amatrix by Tα ,β .

In the next proposition we will show that special Toeplitz matrices give all Nuij
sequences which admit universal determinantal representations.

Proposition 3.2 Let a = (a1 , . . . , ad) ∈ UNd . _en there exists a special Toeplitz
matrix Tα ,β that is associated with the sequence a. _e constant α is unique. For d = 2,
we have two choices β or −β. If d ≥ 3, then β is uniquely determined.

Proof Let us ûx a sequence a = (a1 , . . . , ad) ∈ UNd , and let Aa be a symmetric
matrix associated to a. It means that for any hyperbolic polynomial p ∈ R[z]we have
(3.1) pa(z, s) = det(zI + D + sAa),
where D is a diagonal matrix with characteristic polynomial equal to p. We will ûnd
a special Toeplitz matrix Tα ,β such that

pa(z, s) = det(zI + D + sTα ,β).
Following convention, we recall that a j × j minor of Aa is principal if it is the

determinant of amatrix obtained from Aa by deleting rows and columns containing
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d − j elements from the principal diagonal. With the assumption of Proposition 3.2,
we have the following lemma.

Lemma 3.3 For any j = 1, . . . , d , all j × j principal minors of Aa are equal.

Let −λ1 , . . . ,−λd be the roots of p. Since p can be chosen arbitrarily, we can con-
sider both sides of the identity (3.1) as polynomials with real coeõcients in variables
w i ∶= z + λ i , i = 1, . . . , d. Since R is a ûeld of characteristic 0, the coeõcients corre-
sponding to the monomials in w i1 ⋅ ⋅ ⋅w i j , where i1 < ⋅ ⋅ ⋅ < i j , on right and le�-hand
sides are equal. It is enough to expand both sides to check the statement of the lemma.
In particular the 1× 1 minors,which are actually the entries on the principal diagonal,
are all equal to some α ∈ R.

Lemma 3.4 Let Aa = (a i j). _en there exists β ∈ R such that for any distinct i , j we
have a2

i j = β2.

Indeed, with each entry a i j , i /= j we can associate the 2 × 2 principal minor

det( α a i j
a i j α ) = α2

− a2
i j .

Hence, by Lemma 3.3 all a2
i j are equal for i /= j. We put β2 = a2

i j . Clearly the
statement of Proposition 3.2 is trivial for β = 0, so in the sequel we assume that β /= 0.
Before analyzing the case of j× j principal minors,where j ≥ 3,we need an explicit

formula for the determinant of a special Toeplitz matrix Tα ,β .

Lemma 3.5 If Tα ,β is a special Toeplitz matrix of size d × d, then

tα ,β(d) ∶= detTα ,β = (α − β)d−1(α + (d − 1)β) .

Next we consider the 3 × 3 principal minors of the matrix Aa . We know by
Lemma 3.4 that for any i /= j we have a i j = є i j ∣β∣, where є i j ∈ {−1, 1}. We will show
that the sign of є i j can be uniformly chosen, which means that either є i j = 1 for all
i /= j, or є i j = −1 for all i /= j. Let us write this minor in the form

det
⎛
⎜
⎝

α є i j ∣β∣ є ik ∣β∣
є i j ∣β∣ α є jk ∣β∣
є ik ∣β∣ є jk ∣β∣ α

⎞
⎟
⎠
= α3

+ 2є i jє ikє jkβ2
∣β∣ − 3αβ2 .

By Lemma 3.3 all these minors are equal, so there exists ξ ∈ {−1, 1} such that for
all choices 1 ≤ i < j < k ≤ d we have

(3.2) є i jє ikє jk = ξ.

_is shows that we can chose є i j = ξ for all i /= j.
Assume now that d ≥ 4. We have to show that if we put є i j = ξ for any i /= j, then

actually all principal minors j× j, j ≥ 4 are equal to the value of a principal minor j× j,
j ≥ 4 for the original matrix Aa , so in fact they are determined just by ξ. Note that it
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is enough to consider the case α = 0 and β = 1. First, we consider the case d = 4, so

Aa =
⎛
⎜
⎜
⎜
⎝

0 є12 є13 є14
є12 0 є23 є24
є13 є23 0 є34
є14 є24 є34 0

⎞
⎟
⎟
⎟
⎠

.

For each i ≥ 2, we multiply the i-th row of Aa by є1i and use relation (3.2). _us we
obtain thematrix

Ba ∶=
⎛
⎜
⎜
⎜
⎝

0 є12 є13 є14
1 0 ξє13 ξє14
1 ξє12 0 ξє14
1 ξє12 ξє13 0

⎞
⎟
⎟
⎟
⎠

.

For each j ≥ 2, wemultiply the j-th column of Ba by є1 j and use the fact that є21i = 1.
So we obtain thematrix

Ca ∶=
⎛
⎜
⎜
⎜
⎝

0 1 1 1
1 0 ξ ξ
1 ξ 0 ξ
1 ξ ξ 0

⎞
⎟
⎟
⎟
⎠

.

Multiplying the ûrst row and the ûrst column of Ca by ξ, we can see that

detCa = ξ2 detT0,1 = t0,1(4) = −3.

But on the other hand, detCa = (є12є13є14)2 detAa = detAa . Accordingly, we can
assume that Aa = T0,ξ . _e same argument applies for any d > 4. Hence the existence
in Proposition 3.2 follows.

To proof the uniqueness, note that α and β2 are uniquely determined. Clearly the
equation a3 =

1
3! (α − β)

2(α + 2β) uniquely determines β.

As a consequence we obtain the following characterization of Nuij sequences that
admit universal determinantal representations.

_eorem B A sequence a = (a1 , . . . , ad) ∈ Rd is a Nuij sequence with a universal
determinantal representation if and only if there exits α, β ∈ R such that

a i =
1
i!
tα ,β(i), i = 1, . . . , d .

Proof If Tα ,β is a specialToeplitzmatrix, then for any hyperbolic polynomial p(z) =
(z + λ1) . . . (z + λd), we have a pencil of polynomials

pa(z, s) ∶= p +
d

∑
k=1
ak sk p(k)(z) = det(zI + D + sTα ,β),

where a i =
1
i ! tα ,β(i), and D is a diagonal matrix with entries λ1 , . . . , λd . So the se-

quence a = (a1 , . . . , ad) is a Nuij sequence with a universal determinantal repre-
sentation. Conversely, if a = (a1 , . . . , ad) ∈ Rd is a Nuij sequence with a universal
determinantal representation, then by Proposition 3.2 the associated matrix can be
chosen as a special Toeplitz matrix Tα ,β . Hence, a i =

1
i ! tα ,β(i).
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Example 3.6 Note that the original Nuij sequence a = (1, 0, . . . , 0) has a universal
determinantal representation. Indeed, T1,1, which has all entries equal to 1, is the
matrix associated with this sequence. Note that this also proves Nuij’s _eorem 1.1.

Remark 3.7 A composition of the original Nuij sequence a = (1, 0, . . . , 0) with
itself gives a Nuij sequence b = (2, 1, 0, . . . , 0) that has no universal determinantal
representation for d ≥ 3. Indeed, if there exist α, β ∈ R such that b i =

1
i ! tα ,β(i), i =

1, 2, 3, then α = 2 and α2−β2 = 2. Hence, β = ±
√

2. But, then 6b3 = α3+2β3−3αβ2 /= 0,
so b3 /= 0, which is a contradiction.
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