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Abstract

It is shown that under some conditions a collection of continuous mappings gives rise to
a set-valued dynamical system. Using this it is further shown that under some other
conditions the system x(t) e F(x(i)) is equivalent to a set-valued dynamical system.

1. Introduction

In mathematical economics a number of phenomena involving time can be
modelled as x(t) = f(x(t)), x(t) €E C, where / has discontinuities on the
boundary of C. In some circumstances this system is equivalent to x(t) G
F(x(t)), where F is an upper semicontinuous compact-convex valued correspon-
dence (see, for instance, Champsaur, Dreze and Henry [2]).

Other phenomena can be described by x(t) = f(x(t), «(/)), where x( . ) is a
state function and M( . ) a control function. Here / is a continuous mapping.

Another way of modelling dynamic economic phenomena is by means of a
so-called set-valued dynamical system, abbreviated as SVDS. This is done for
instance by Cherene in his monograph [3].

In all these cases we are interested in the behaviour of trajectories; hence the
fundamental object of study should be that of a trajectory.

In this paper we will show that, given a particular set of continuous functions,
there is a SVDS with as trajectories just these continuous functions. Further, we
will show that, under some conditions, x(t) G F(x(t)) is equivalent to a SVDS
and that, under some other conditions, x(t) = f(x(t), u(t)) is equivalent to
x(t) e F(x(0).
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2. Set-valued dynamical systems

In the sequel X will stand for a complete metric space with metric 8X and CX
will denote the set of all non-empty compacta of X. The letter T will stand for
the set [0, oo).

DEFINITION 1. The mapping G: X X T -> CX is called a SVDS if and only if:
(1) G(x, 0) = xfor all x G X,
(2) G(G(x, r), t) = G(x, r + t)for all x G X and for all r, t G T, and
(3) G is upper semi-continuous in x for every t G T and continuous in t for every

fixed x £ X.

Closely related definitions can be found in Cherene [3], Roxin [9] and
Kloeden [6].

DEFINITION 2. A trajectory of a SVDS with name G starting at x is a mapping

x(.): T^> X such that x(0) = x and x(r + ( ) £ G( x(r), i) for all r, t G T.

Repeating almost ad verbatim the proofs given by Roxin [9] and Kloeden [6] it
can easily be shown that:

THEOREM 1. Every trajectory is continuous. Further, let x G G(x, t); then there
is a trajectory x( .) such that x(0) = x and x(t) = x.

THEOREM 2. (Barbashin's theorem.) Let t be an arbitrary number of T and
{*,(•)} a collection of trajectories such that JC,(O)—»x0. Then there is a subse-
quence { JC,(O)} and a trajectory xo(. ) such that xt{ .) converges uniformly on [0, /]
to xo( .).'

Now we consider the problem of constructing a SVDS given a set S of
continuous mappings from T to X. Let S satisfy the following properties:

(a) For all x G X, there exists x( . ) G S with ;t(0) = x.
(b) For all i G T and for all x( . ) G S, there exists x( . ) G S such that

x(t) = x(t + t) for all / G T.
(c) For all x( . ) G S and for all x( . ) G S with x(i) = x(0) for some /* G T,

there exists x(.) G S with x(t) = x(t) for / G [0, /] and x(t) = x(t - i) for all
/ > /".

(d) For all {*,(.)} c S with x,(l) = xi+l(0), i = 1, 2, . . . , there exists x( .)
G S with x(t) = x,(/) for / - 1 < t < /.
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(e) For all t G T and for all {*,( . )} c S with X,(0)-*A:O, there exists
{x,.( .)} c {*,( • )} and xo( . ) G S such that x,( . ) -» xo( . ) uniformly on [0, /].

THEOREM 3. Let S satisfy (a) to (e); then G: X X T^>CX defined by
G(x, /) = U {x(t)\x( . ) G S, x(0) = x) is a SVDS. Further, the trajectories of
G are precisely the elements of S.

PROOF. One trivially has that G(x, 0) = x for all x G X. Further, (b) and (c)
imply that G(G(x, r), t) = G(x, r + t) for all x G X and for all r, t G T. Using
well-known characterizations of upper and lower semi-continuity (see, for ins-
tance, Hildenbrand [5]), property (3) leads to G being compact valued and upper
semi-continuous in x for every finite / G T. Now take a fixed X £ CX and
define -q(t) = G(X, t) = UxeA-C7(j:, /)• Then (e) also implies the continuity of
7j( . ); hence we are done with the first part of the theorem.

Now take a trajectory y{. ) of G defined by S. Because of (c) and (d), it
suffices to prove the existence of a mapping x( . ) G S such that/(/) = x(t) for
/ G [0, 1]. But (c) and the definition of G imply that, for all ^ G {1, 2, . . . },
there exists xq( . ) G S with^(^/(2»)) = xq(p/(2q)) forp = 1, 2, . . . . 2*. Apply-
ing (e) to {*,(.)} leads to the existence of an element x{.) G S such that
y(t) = x(t) for all dyadic numbers in [0, 1]. The mappings y( . ) and x(. ) being
continuous leads to^(/) = x(t) for / G [0, 1] and we are done with the proof.

The theorem above stresses the importance of the notion of trajectory: the
properties showing how to patch together trajectories, (b) to (d), the property of
uniform convergence, (e), and the fact that the starting points of the trajectories
form a complete metric space, (a), completely determine a SVDS. Further,
Theorem 3 can be of use in proving that a particular system in a SVDS.

3. The differential system x(t) G F(x(t))

In this section of the paper, F will denote an upper semi-continuous corre-
spondence from Rp to the set of all non-empty convex compact subsets of Rp

such that, for some a > 0,

sup |w| < a(l + \z\).
w S F(z)

DEFINITION 3. The mapping z(.) is called a solution of x{t) G F(x(t)) if and
only if z'(t) G F{z{t)) almost everywhere on [0, oo] and, for all / > 0, z( . )
restricted to [0, /] is absolutely continuous.
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Let S,(z°) denote the restrictions to [0, /] of all solutions z( . ) of x(t) G
F(x(t)) with z(0) = z°. Then:

THEOREM 4. (Castaing and Valadier [1].) For all t G [0, oo) and for all z° G Rp,
S,(z°) is non-empty and compact in Cu([0, t]; Rp), the space of continuous functions
from [0, /] —* Rp endowed with the uniform convergence topology. Further, for
every t G [0, oo), the mapping z° —> S,(z°) is upper semi-continuous.

By means of this result it is easy to prove that:

THEOREM 5. Let S denote all the solutions of x(t) G F(x(t)); then G defined by
S is a SVDS.

We would like to remark that Theorem 5 was first proved by Roxin [10, Theo-
rem 5.1] under the stronger assumption of continuity of F.

In our opinion it is conceptually elegant to start with set-valued dynamical
systems and to consider x(t) G F(x(t)) to be a special case of it since, for
instance, a lot of stability results can be phrased and proved in terms of SVDS's.
To give an example, we discuss a result taken from Champsaur, Dreze and
Henry [2]. These authors define an equilibrium point of x(t) G F(x(t)) to be a
point z such that 0 G F(z). Let G be the set-valued dynamical system associated
with x(t) G F(x(t)); then the definition of equilibrium point can be rephrased as
follows:

DEFINITION 4. A point z is an equilibrium point if there is a trajectory z( . ) of G
such that z{i) = z for all t G [0, oo).

Defining the notions limit point, quasi-stability and Lyapunov-function as is
done in [2], we have the following result:

THEOREM 6. / / there is a Lyapunov function for G then G is quasi-stable.

The proof being analogous to that of Theorem 6.1 of [2], we omit it.

Categorizing x(t) G F(x(t)) and x(t) = f(x(t), u(t)), see below, as set-valued
dynamical systems is, however, not only useful when studying Lyapunov-stabil-
ity. For instance, the notion of funnel, extensively investigated for ordinary
differential equations without uniqueness and so on, has been studied in the
framework of set-valued dynamical systems by KJoeden [8].

In general one can say, following KJoeden [7], that set-valued dynamical
systems "enable concepts and different modes of behaviour to be investigated in
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some generality without their inherent features being obscured by circumstantial
details pertaining to a particular function or analytical representation".

4. The differential system x(t) = f(x(t), u(t))

Let us say that a system of differential equations is equivalent to x(t) G
F(x(t)), where F is as in Section 2, if the solutions of the first system are
precisely those of x(t) G F(x(t)). Champsaur, Dreze and Henry [2] show that,
under certain circumstances, the system x(t) = f(x(t)) for x(t) G C is equivalent
to x(t) G F(x(t)). In this section, however, we will prove that, under certain
conditions, x(t) = f(x(t), u(t)) for u(t) G U is equivalent to x(t) G F(x(t)). Here
/ will be a continuous mapping from Rp X R" —» Rp such that \f(x, u)\ <
a(l + |JC|) for all x,u G U and for some a > 0.

DEFINITION 5. The mapping z(. ) is called a solution of x(t) = f(x(t), u(t)) for
u(t) G U if there is a mapping u(. ): [0, oo) —» U such that, for every t > 0, M( . )
is Lebesgue-measureable on [0, t] such that i(/) = f(z(t), u(t)) almost everywhere
on [0, oo). Further, z( . ) has to be absolutely continuous on [0, /] for every
t G (0, oo).

We will prove the following:

THEOREM 7. When U is compact andf(x, U):= F(x) is convex for all x G Rp,
then x(t) = f(x(t), u(t)) for u(t) G U is equivalent to x(t) G F(x(t)).

PROOF. It is easy to see that F is as in Section 2. Hence there remains to be
proved that a solution of x(t) G F(x(t)) is a solution of x(t) = f(x(t), u(t)) for
u(t) G U. Let z( . ) be such a solution. Take t G (0, oo); then we know that z( . )
is absolutely continuous on [0, t] and

z(t) = f(z(t), u,) almost everywhere for / e [0, t ] and u, G U.

As i( . ) is measurable on [0, t], there is a sequence of compact subsets {A,} c
[0, /] such that A, c A2 c A3 c . . . and [0, /] — (A, u A2 u • • • ) has measure
zero and, further, the restriction of i ( . ) to A, is continuous (Lusin's theorem).
Without loss of generality, we may assume that the measure of A, is greater than
zero. Now define D, = {(t, u)\t G A,, z(t) = f(z(t), u) for u G [ / ) and D =

2>, U D2 u
Since the measure of A, is greater than zero, we immediately have that

D, ^ 0 . Further, Dt is trivially bounded. Now take a sequence {(*,, uj)} c Dt
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such that tj —»/ and u, —» u. Then z{tj) -» z(i) and z(tj) —> z(f). As / is continu-
ous, we have that x(t) = f(x(t), u); hence (/, u) G Z>, and therefore £>, is com-
pact. Defining A = {t\(t, u) G D for some u G U), we have that A c A, u
A2 u . . . and, further, that the measure of A is equal to the measure of A, u
A2 u . . . Now the application of a selection lemma (Fleming and Rishel
[4, page 199, Lemma B]), implies the existence of a measurable function u{. ) on
[0, i] such that (/, u(t)) G D for almost all / G A; hence z(t) = f(z(t), u(t))
almost everywhere on [0, / ] .

The proof of the foregoing theorem is a slight alteration of a technique in
Fleming and Rishel [4]. Further, we would like to remark that implicit in
Theorem 7 is the existence of solutions to x(t) = f(x(t), u(t)) when f(x, U) is
convex, U is compact and \f(x, u)\ < a( l + |x|) for all x, u G U.
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