J. Austral. Math. Soc. (Series B) 22 (1981), 308—313

SOME REMARKS ON SET-VALUED DYNAMICAL SYSTEMS

J. W. NIEUWENHUIS

(Received 22 November 1979)

(Revised 26 February 1980)

Abstract

It is shown that under some conditions a collection of continuous mappings gives rise to
a set-valued dynamical system. Using this it is further shown that under some other
conditions the system x(¢) € F(x(/)) is equivalent to a set-valued dynamical system.

1. Introduction

In mathematical economics a number of phenomena involving time can be
modelled as x(¢) = f(x(?)), x(t) € C, where f has discontinuities on the
boundary of C. In some circumstances this system is equivalent to x(¢¥) €
F(x(t)), where F is an upper semicontinuous compact-convex valued correspon-
dence (see, for instance, Champsaur, Dréze and Henry [2]).

Other phenomena can be described by x(¢) = f(x(?), u(¢)), where x(.) is a
state function and u( . ) a control function. Here fis a continuous mapping.

Another way of modelling dynamic economic phenomena is by means of a
so-called set-valued dynamical system, abbreviated as SVDS. This is done for
instance by Cherene in his monograph [3].

In all these cases we are interested in the behaviour of trajectories; hence the
fundamental object of study should be that of a trajectory.

In this paper we will show that, given a particular set of continuous functions,
there is a SVDS with as trajectories just these continuous functions. Further, we
will show that, under some conditions, %(f) € F(x(?)) is equivalent to a SVDS
and that, under some other conditions, x(¢) = f(x(t), u(t)) is equivalent to
x(1) € F(x(1)).

©Copyright Australian Mathematical Society 1981
308

https://doi.org/10.1017/50334270000002654 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002654

[2] Set-valued dynamical systems 309

2. Set-valued dynamical systems

In the sequel X will stand for a complete metric space with metric §, and CX
will denote the set of all non-empty compacta of X. The letter T will stand for
the set [0, ).

DEFINITION 1. The mapping G: X X T — CX is called a SVDS if and only if:

M) G(x,0)=xforall x € X,

() G(G(x, ), ) = G(x,r + t)for all x € X and forall r,t € T, and

(3) G is upper semi-continuous in x for every t € T and continuous in t for every
fixed x € X.

Closely related definitions can be found in Cherene [3), Roxin [9] and
Kloeden [6].

DEFINITION 2. A trajectory of a SVDS with name G starting at x is a mapping
x(.): T— X such that x(0) = x and x(r + t) € G(x(r), t) forall r,t € T.

Repeating almost ad verbatim the proofs given by Roxin [9] and Kloeden [6] it
can easily be shown that:

THEOREM 1. Every trajectory is continuous. Further, let X € G(x, t); then there
is a trajectory x( .) such that x(0) = x and x(t) = Xx.

THEOREM 2. (Barbashin’s theorem.) Let t be an arbitrary number of T and
{xi(.)} a collection of trajectories such that x(0) — x,. Then there is a subse-
quence {x,; (0)} and a trajectory xy( . ) such that x; ( . ) converges uniformly on [0, 1]
to xq .).

Now we consider the problem of constructing a SVDS given a set S of
continuous mappings from 7 to X. Let § satisfy the following properties:

(a) For all x € X, there exists x( . ) € § with x(0) = x.

(b) For all 1 € T and for all x(.) € S, there exists %(.) € S such that
()= x(t + Dforallt € T.

(¢) For all X(.) € § and for all x(.) € S with X(f) = x(0) for some ¢ € T,
there: exists X(.) € S with %(¢) = x(¢) for t € [0, t] and %(¢) = x(¢ — 1) for all
t 21

(d) For all {x,(.)} C S with x,(1) = x;,,(0),i =1,2,..., there exists x(.)
€ Swith x(¢) = x(t)fori — 1 <t <.
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(¢) For all + € T and for all {x(.)} C S with x0)— x,, there exists
{x, ()} c{x(. )} and xy4( . ) € S such that x,(.) = xo( . ) uniformly on [0, 7].

THeOREM 3. Let S satisfy (a) to (e); then G: X X T— CX defined by
G(x, ) = U {x(O|x(.) €S, x(0) = x} is a SVDS. Further, the trajectories of
G are precisely the elements of S.

ProoF. One trivially has that G(x, 0) = x for all x € X. Further, (b) and (c)
imply that G(G(x, r), ) = G(x,r + ¢) for all x € X and for all r, t € T. Using
well-known characterizations of upper and lower semi-continuity (see, for ins-
tance, Hildenbrand [5]), property (3) leads to G being compact valued and upper
semi-continuous in x for every finite t € T. Now take a fixed X € CX and
define n(¢) = G(X, 1) = U ,cxG(x, t). Then (e) also implies the continuity of
7( . ); hence we are done with the first part of the theorem.

Now take a trajectory y(.) of G defined by S. Because of (¢) and (d), it
suffices to prove the existence of a mapping x( . ) € § such that y(r) = x(¢) for
t € [0, 1]. But (¢) and the definition of G imply that, for all ¢ € {1,2, ...},
there exists x,(. ) € S withy(p/(2%)) = x(p/(2%) forp = 1,2, ..., 29 Apply-
ing (¢) to {x,(.)} leads to the existence of an element x(.) € § such that
»(2) = x(¥) for all dyadic numbers in [0, 1]. The mappings y( . ) and x( . ) being
continuous leads to y(¢) = x(¢) for ¢t € [0, 1] and we are done with the proof.

The theorem above stresses the importance of the notion of trajectory: the
properties showing how to patch together trajectories, (b) to (d), the property of
uniform convergence, (e), and the fact that the starting points of the trajectories
form a complete metric space, (a), completely determine a SVDS. Further,
Theorem 3 can be of use in proving that a particular system in a SVDS.

3. The differential system x(1) € F(x(¢))

In this section of the paper, F will denote an upper semi-continuous corre-
spondence from R? to the set of all non-empty convex compact subsets of R”
such that, for some a > 0,

sup |w| < a(l + |z|).
weE F(z)

DEFINITION 3. The mapping z(.) is called a solution of x(t) € F(x(1)) if and
only if 2(1) € F(2(t)) almost everywhere on [0, oo} and, for all 1t > 0, z(.)
restricted to [0, t] is absolutely continuous.
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Let S,(z% denote the restrictions to [0, #] of all solutions z(.) of x(f) €
F(x()) with z(0) = z° Then:

THEOREM 4. (Castaing and Valadier [1).) For all t € [0, o) and for all z° € R?,
S,(2°% is non-empty and compact in C,([0, t]; R?), the space of continuous functions
from [0, t] - R? endowed with the uniform convergence topology. Further, for
every t € [0, ), the mapping z° — S,z is upper semi-continuous.

By means of this result it is easy to prove that:

THEOREM 5. Let S denote all the solutions of %(t) € F(x(t)); then G defined by
Sisa SVDS.

We would like to remark that Theorem 5 was first proved by Roxin [10, Theo-
rem 5.1] under the stronger assumption of continuity of F.

In our opinion it is conceptually elegant to start with set-valued dynamical
systems and to consider x(r) € F(x(t)) to be a special case of it since, for
instance, a lot of stability results can be phrased and proved in terms of SVDS’s.
To give an example, we discuss a result taken from Champsaur, Dréze and
Henry [2]. These authors define an equilibrium point of x(t) € F(x(t)) to be a
point z such that 0 € F(Z2). Let G be the set-valued dynamical system associated
with x(¢) € F(x(?)); then the definition of equilibrium point can be rephrased as
follows:

DEFINITION 4. A point z is an equilibrium point if there is a trajectory z( . ) of G
such that z(t) = z for all t € [0, »).

Defining the notions limit point, quasi-stability and Lyapunov-function as is
done in [2], we have the following result:

THEOREM 6. If there is a Lyapunov function for G then G is quasi-stable.
The proof being analogous to that of Theorem 6.1 of [2], we 6mit it.

Categorizing x(¢) € F(x(?)) and x(¢) = f(x(1), u(t)), see below, as set-valued
dynamical systems is, however, not only useful when studying Lyapunov-stabil-
ity. For instance, the notion of funnel, extensively investigated for ordinary
differential equations without uniqueness and so on, has been studied in the
framework of set-valued dynamical systems by Kloeden [8].

In general one can say, following Kloeden [7], that set-valued dynamical
systems “enable concepts and different modes of behaviour to be investigated in
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some generality without their inherent features being obscured by circumstantial
details pertaining to a particular function or analytical representation”.

4. The differential system x(¢) = f(x(¢), u(t))

Let us say that a system of differential equations is equivalent to x(¢) €
F(x(t)), where F is as in Section 2, if the solutions of the first system are
precisely those of x(¢) € F(x(¢)). Champsaur, Dréze and Henry [2] show that,
under certain circumstances, the system x(¢) = f(x(?)) for x(¢) € C is equivalent
to x(¢) € F(x(?)). In this section, however, we will prove that, under certain
conditions, x(¢) = f(x(f), u(?)) for u(¢) € U is equivalent to x(r) € F(x(?)). Here
f will be a continuous mapping from R? X R" — R? such that |f(x, u)| <
a(l + |x|) for all x, u € U and for some a > 0.

DEFINITION 5. The mapping z( .) is called a solution of x(t) = f(x(¢), u(t)) for
u(t) € U if there is a mapping u( .): [0, o0) — U such that, for every t > 0, u(.)
is Lebesgue-measureable on [0, t] such that (1) = f(z(t), u(t)) almost everywhere
on [0, o0). Further, z(.) has to be absolutely continuous on [0, t] for every
t € (0, o0).

We will prove the following:

THEOREM 7. When U is compact and f(x, U):= F(x) is convex for all x € R?,
then x(1) = f(x(t), u(t)) for u(t) € U is equivalent to x(t) € F(x(?)).

PrOOF. It is easy to see that F is as in Section 2. Hence there remains to be
proved that a solution of x(¢) € F(x(#)) is a solution of x(¢) = f(x(¢), u(z)) for
u(7) € U. Let z( . ) be such a solution. Take ¢ € (0, o0); then we know that z( .)
is absolutely continuous on [0, f] and

#(f) = f(z(¢), u) almost everywhere fort €[0,7] and u, € U.

As Z(.) is measurable on [0, 7], there is a sequence of compact subsets {4,;} C
[0, ] such that A, c A, c A, C ... and [0,7] — (A, U A, U ...) has measure
zero and, further, the restriction of Z( . ) to 4, is continuous (Lusin’s theorem).
Without loss of generality, we may assume that the measure of A, is greater than
zero. Now define D, = {(t, w)|t € A, Z(t) = f(z(¥), ) for u € U} and D =
D,uD,u ....

Since the measure of A, is greater than zero, we immediately have that
D, #+ @. Further, D, is trivially bounded. Now take a sequence {(#, 4)} C D,
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such that ¢ -—>1 and u; — i. Then 2(f) > z(t) and z(4) —» z(9). As f is continu-
ous, we have that x(¢) = f(x(t) #); hence (t #) € D; and therefore D, is com-
pact. Defining A = {t|(¢, u) € D for some u € U}, we have that A C 4, U
A, U ... and, further, that the measure of A is equal to the measure of A; U
A, U .... Now the application of a selection lemma (Fleming and Rishel
[4, page 199, Lemma B]), implies the existence of a measurable function u( . ) on
[0, 7] such that (¢, u(2)) € D for almost all ¢ € A; hence () = f(z(¢), u(1))
almost everywhere on [0, t-].

The proof of the foregoing theorem is a slight alteration of a technique in
Fleming and Rishel [4]. Further, we would like to remark that implicit in
Theorem 7 is the existence of solutions to x(¢) = f(x(¢), u(t)) when f(x, U) is
convex, U is compact and | f(x, u)| < a(l + |x|) for all x, v € U.
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