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ON LOGNORMAL RANDOM VARIABLES:
I-THE CHARACTERISTIC FUNCTION
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Abstract

The characteristic function of a lognormal random variable is calculated in closed
form as a rapidly convergent series of Hermite functions in a logarithmic vari-
able. The series coefficients are Nielsen numbers, defined recursively in terms of
Riemann zeta functions. Divergence problems are avoided by deriving a func-
tional differential equation, solving the equation by a de Bruijn integral transform,
expanding the resulting reciprocal Gamma function kernel in a series, and then in-
voking a convergent termwise integration. Applications of the results and methods
to the distribution of a sum of independent, not necessarily identical lognormal
variables are discussed. The result is that a sum of lognormals is distributed as a
sum of products of lognormal distributions. The case of two lognormal variables
is outlined in some detail.

Introduction

Lognormal distributions are widely and increasingly used to fit data from
radar, physical and biological lifetimes, incomes, stock market prices, geog-
raphy and geology. They also appear in Brownell's (1955) method of regu-
larizing quantum mechanical calculations.

The paper is divided into four sections. Section 1 is devoted to basic
formulas and to the derivation of a functional differential equation for the
characteristic function. Section 2 takes up the application of the de Bruijn
integral transform to solving the equation, and to proving that there is a
unique solution of the de Bruijn type which was the correct Fourier transform,
involving a reciprocal Gamma function. The non-uniqueness problem for
lognormal moments is illustrated.
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Section 3 carries out through the tedious detail of expanding the reciprocal
Gamma function in Taylor series, term by term integration, proof of conver-
gence, and coefficient evaluation. Section 4 indicates how the functional
differential equation for the characteristic function can be used to derive a
functional equation for the embedding function, a natural and useful exten-
sion of the sum distribution, and to obtain a partially determined form of
the sum distribution as a mixture of lognormal distributions.

In many of these fields, the distribution of a sum of independent lognormal
variables (perhaps with different parameters) is of scientific interest. An
often convenient approach to sum problems is via the characteristic function
(normalised Fourier transform) of the distribution. The relative simplicity
of the lognormal distribution and of its moments and Mellin transform is
deceptive—the successful path to calculating the characteristic function is
rather roundabout, in order to avoid divergent series. The final result is
quite complicated, and therefore of primary interest to the specialist.

However, the methods are helpful in approaching the yet more difficult
problem of the sum distributions. A complete treatment of the latter will be
found in a second paper on lognormal distributions, denoted throughout by
II.

In the middle 1970's, the author was studying the effect of the atmosphere
on radar signals; in radar noise theory, molecular particles are modeled as
having a gaussian velocity distribution, and dust particles of a given type as
having a lognormal distribution. The sum of a gaussian variable and one
or more lognormal variables is therefore important. The usual approach to
sums of independent random variables is via characteristic functions (c.f.'s),
i.e., Fourier transforms. Surprisingly, the c.f. of the lognormal and also the
distribution of the sum of 2 lognormals were not in the literature (as of 1975).

In 1980, the author obtained the lognormal c.f. by formal manipulation
using the method of de Bruijn, explained later. Professor Kotlarski, a Pol-
ish probabilist then visiting USCB, remarked that the same problem had
long been considered as a "Matterhorn" by East-Zone probabilists, and was
unsolved in 1978. Unfortunately, the many double-limit interchanges were
difficult to justify by conventional methods, and the validity of the results was
questioned. Nevertheless, the result was disclosed to some radar theorists,
along with an application to the sum of a gaussian and one lognormal, but
not then published. However, one spin-off of the technique was published as
a counterexample [10] and reprinted by Crow and Shimano [4], (Dr. Crow is
a former colleague who has used the lognormal in telecommunications stud-
ies). While on sabbatical at Adelaide University in June 1989, a revisiting of
the problem by this writer yielded the fairly technical proofs included below.

Another bibliographical point: a manuscript on lognormal distributions by
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the British statistician Holgate was disclosed to me by Dr. Crow in August
1989. Holgate did not touch the exact result, but his approximations are
interesting and useful; they overlap slightly the elliptic function counterex-
ample results published in the perhaps obscure USSR reference (see [10]).
Since the book of Crow and Shimano appeared very recently, Dr. Holgate
quite probably had not noticed this item in it. Holgate uses methods more fa-
miliar than the undetermined kernel method of de Bruijn, favored by Dutch
statistical physicists (such as Van Hove) in asymptotic studies. It is flexible
enough to fit many characteristic function problems, as explained later in this
paper. In particular, normal distributions transformed by inverses of solu-
tions of linear differential equations are susceptible to the de Bruijn method.
The author has seen several technical reports in the radar field in which the
present results are applied. Understandably, they are not very readable by
the non-radar audience.

1. A functional differential equation for the lognormal characteristic function

The lognormal probability density is defined for 0 < x < oo as

,o\x) = (2na2r1/2x~' exp{-(logx - n)2/2a2}, (1)

where 0 < a , and ft is real.
The Mellin transform of p is given by

— (2no )~ \ xs~ exp{-(logx - / / ) /2<r }dx
Jo

/*OO

= {2no2)~xl1 I exp{sy-{y-fi)2/2a2}dy
J -OO

= exp(sn + s a /2) (2)

where X is a lognormal random variable whose density is p{n, a , x).
For further reference it is convenient to separate M into M+ and M~ .

Here

2+(M, a2, s) = (2no2y1/2 f°°x'~l exp[-(logx - fif/2a2]dx
J

s2a2/2) • erfc(-{as + fi/a)/21/2) (3)

by Magnus et al ([12], p. 350). As usual, we write ([12], p. 349)

erfc(u) = 1 - erf(u) = 1--%=[" e~1' dt. (4)
V^ Jo
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Similarly,

M~(fi,a2 ,s) = {2na1)~X'2 f xs~l exp{-(logx ~n)2/2a2}dx
Jo

s2a2/2)erfc((as + n/a)/2l/2), (5)

so that M — M+ + M~ follows from the fact erf is an odd function.
The integer moments of p are given by

Hn = M(/u,a2,n) = exp(nfi + n2a2/2). (6)

The obvious approach to calculation of the characteristic function
/"OO

<t>{n,a , t) — (2na ) / x~ exp{-(log;t -n) /2a }exp(itx)dx (7)
Jo

is to write exp(itx) = Y^=Q{^X)"ln^- a n d obtain by termwise integration

o2,t) = f^{it)nnJn\ (8)
/i=0

Unfortunately, the ratio

(n + l)\ / I n! n + l
exp < (n + 1 - n)n +

tends to infinity for each f / 0 , e r / O as n —» oo.
This divergence is a great nuisance, as it necessitates an entirely different

approach. Another consequence of the rapid increase of fin is that

|juj = exp(/i + no /2) and so 2 ^ |i",,| < oo.
n

Thus the Carleman [3] sufficient condition for unique determination of the
distribution from its moments is violated, as is the condition of Krein [9].
That this uniqueness fails, and indeed fails spectacularly, we shall show ex-
plicitly in Section 2.

Since we shall later be interested in non-identical lognormal variables, we
shall occasionally write (from (1) and (7))

Pj(x)=p{fijtaj,x), *j{t)=<l>{li]to),t) for j = 1 , 2 , . . . (9)

Under suitable conditions (Titchmarsh [16]) the integral (7) can be in-
verted, yielding

p{fi,e2,x) = — I exp(-ixt)cj)(/i,a2,t)dt. (10)
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Since <f>(fi, a1, -t) = <j>*(/i, a2, t),

p[x) = - f {cos{xt)&4>(t) + sin{xt)34>(t)} dt

n Jo
can be calculated from <f>(t) for t > 0 only.

Some relevant facts about p(x) are now listed.
(i) p(x) is continuous and infinitely differentiable on (0, oo).

(ii) limx_tQ+p(-i\x) = 0 for every j , so that p(x) has infinite order
contact with the x-axis at x — 0 (by convention, p(x) = 0 for
x < 0 ) .

(iii) p(x) is unimodal with its maximum at x = exp(/z - a2).
(iv) The function

{xr(p(x))}9 = constx~ exp{-q(logx - fi) /2a }

is a lognormal density (up to a scale factor in logx) and so xrp{x)
is in Lq(0, oo) for each q > 0 and each real r.

From Titchmarsh [16] (pp. 11-12, p. 72, pp. 75-76, pp. 83-86, pp. 107-
108, Theorem 79) the following three statements are implied by the previous
four statements:

0, (11)

1 fA

p(x) — lim — / exp(-itx)cj>(t)dt
A—>OO I n J_A

= lim - /
A-*oo U JQ

A

A

for each x > 0, and there is a finite bound K for the Lq norm of <t>,
defined by

f ° \<t>(t)\"dt < K f" xq-2(p(x))q dx (13)
J-oo JO

and (Plancherel's theorem)

f°° 2 f°° 2
j \<t>(.t)\ dt-2n\ \p{.x)\ dx.
J-oo Jo

Several identities for <f> are helpful. (The operations needed are justified
by the preceding paragraph.) We first note that

,a\t) = (2na2yl/2 f exp{itey - (y - fif/2a2)} dy
J

exp{ite{y+M)-y2/2o2}dy[°
J —

= <f>(O,(T2,teft), (14)
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so that
a\te% (15)

By completing the square, we obtain

ky-(y- nf/2a2 = -{y - n*kf/2a2 + {n? - ft2}/2a2 (a)

where fi*k — u + a k .
Hence, from (14) (differentiating under the integral sign) and (15), we ob-

tain a functional equation of the type called a functional differential equation,
namely

•j-(j)(H,o , t) = i(2na ) / exp{itexpy+ y - (y -/i) /2a }dt
&t J -oo

Using (a) with k = 1,

-j-(j)(H, a , t) = i(2na ) e\p{fi*. - fi )/2a }
at

/•oo

X
-oo

f°° 2 2
/ exp{^/ -{y- n\) /2a }dy

J — oo

(16)

where
K = exp{// + {a112)} and L = exp(<x2). (17)

The equation (16) is the key to the whole development below. Its solutions
are not unique per se, but together with the fact that the Fourier transform
of 4> is known, uniqueness can be verified, within the subclass possessing the
given transform.

2. Solutions of the functional differential equation

Two rather different solution methods can be found in the literature. Each
solves the equation up to an unknown function which must be determined
by initial, boundary, (or Fourier transform) conditions.

The method due to Pinney [14], produces a long and quite unusable ex-
pression, based on Titchmarsh's finite Laplace transform. A second method,
due to de Bruijn [2], is based on a Gamma function, or Barnes-Mellin trans-
form, and is much more convenient in the present case. A third and novel
method, based on Jacobi series, is mentioned because of its relation to non-
uniqueness.
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The first step in de Bruijn's method is to obtain a difference-differential
equation by a change of variable. From (14), it is sufficient to consider the
case n = 0. Let

X(t) = He), (18)
so that

X(t + a2) = <f>(exp(t + a2)) = <t>(e' • / ) . (19)

Hence by (16) and (17), we have

x\t) = <t>'{expt)-expt

(j2) (20)

as the desired (forward) difference-differential equation (with variable co-
efficient). The development below is intended to motivate the somewhat
surprising expression (28) for the solutions of (20).

De Bruijn's functional is
rk+ioo

Xs(t) = Q exp{az2 + bz + czt}S(z)T(z)dz (21)
J k—ioo

where S(z) is an arbitrary function, T(z) is the gamma function, Q is
a constant, and S(z)r{z) is analytic in a strip containing the lines {k -
zoo, k + ioo) and (k + 1 - zoo, k + 1 + zoo). The contour lies in this strip.
The resulting family of solutions of (20) is large enough to include the Xs
whose corresponding cf>s is the particular <j> required.

Clearly

2 fk+'°° 2 1
Xs(t + a) = Q exp{az2 + (b + co2)z + czt}S(z)r(z)dz (22)

J k-ioo
and

rk + ioo
XsW = Qc exp{az2 + bz + czt}S{z)zV{z)dz. (23)

J k—ioo

Shifting the line of integration within the strip and making use of
T(z+ l) = zT(z) we find

/•fc+1+IOO

x's(t) = Qc / exp{a(z-l)2+b(z-l)+c(z-l)t}S(z-l)T(z)dz. (24)
Jk+\-ioo

If now two special conditions are imposed:

S(z- l) = -S(z), and

zexp{cr2/2 + az2 + (b + co2)z + (cz + l)t}

= -cexp{a(z - I)2 + b{z - 1) + c(z - 1)0 (25)
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for all z, t, then (20) is satisfied, since the integrand is by assumption ana-
lytic in the strip between the two vertical lines of integration.

Thus S{z) is anti-periodic with anti-period 1, and a, b, c satisfy

/exp(cr /2) = -cexp(a-b)

ca1 = -2a

\=-c ' (26)

whose solutions are

a = a2/2, b = -(2v + l/2)ni, and c = - 1 (27)
where v is an integer.

Thus
rk+ioo

Xs(t) = Q exp{a2z2/2-zt-(2v + l/2)niz}S(z)r(z)dz (28)
Jk-ioo

is a solution for all t. This method of solution by an ansatz is used widely
in special function theory.

From (18), the corresponding function (j)s{t) is defined for t > 0 by
rk+ioo

4>s{t) = Q exp{az2/2-zlogt-(2v+l/2)niz}S(z)r{z)dz (29)
J k—too

and for t < 0 by <f>s(t) = <f>*s{-t).
We now wish to find choices of S(z) and v which yield the correct char-

acteristic function <j)(t) of the lognormal distribution, if possible. To this
end, let

Jt(x) = ^f°° exp(-ixt)<j>s(t) dt. (30)

Thus
rOO rk+ioo

/ exp(-ixt)
rOO rk+

/

JO Jk-i

x exp{crV/2 - z log t - {2v + l/2)niz}S(z)r{z) dz dt

= (2K) lQ f exp{<72z2/2 - (2v + \/2)niz}S{z)T(z)dz
J k — ioo

/•OO

x / Cz zxp{-ixt)dt (31)
Jo

if the function S(z) is such that the integrals can be interchanged. We later
verify that for the S(z) of interest, the interchange is valid.

Now by Erdelyi ([5], p. 118)

/ r z e x p ( - / x 0 ^ = .xz~1exp{7n(z-l)/2}r(l-z) for 0 < SRz < 1. (32)
./o
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Hereafter, we take 0 < k < 1 in the vertical integration line, to permit
use of (32). Thus substituting (32) into (31)

rk+ioo n

x xz~l exp{7r/(z - \)/2}S(z)dz

k+ioo fly

xz~X exp{a2z2/2 - 2vniz}S{z)-r— (33)
-ioo smnz

since r(z)I~(l - z) = n/sinnz and exp(-i7r/2) = - / .
Also define

f~(x) = {2n)~{ f exp(ixt)4>s(t)dt
J — oo

exp(ixt)<t>*s{t)dt

(34)

Hence the inverse Fourier transform of </>s(t) is

fs(x) = (2nyl f°° exp(-ixt)<f>s{t)dt
J

£ (35)
Note that (33) can be interpreted as a complex Laplace transform. We

now express p(0, a2 , x) as a complex transform. Compute
rk+ioork+ioo

J= exp(az• +£z)dz
J k—ioo

f°° 2
= i / exp{a(/jc) + £(ix)} d

J—oo
= i(n/af2exp(-Z2/4a). (36)

The shift from complex to real integrals in (36) is permitted by integrat-
ing around the rectangle whose vertices are k + iN, k — iN, -iN, iN,
where iV is large. The integrand is analytic in the rectangle. Moreover, the
contributions on the horizontal segments are bounded by

fK

/
Jo

2

which approaches 0 as N —> oo. Hence as N —> oo, the integral
rk+iN
f + 2

J = / exp{az + bz) dz
Jk-iN
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and the integral

riN rN

I exp{az + bz}dz = i exp{-aw -ibu}du
J-iN J-iN

tend to the same limit, namely i f™^ exp{-au2 - ibu} dz . Thus for x > 0,

a = o2/2, b = log*, (36) implies

/ exp(a z /2)xz~ dz = ix~ (2n/a ) exp{-(logx) /2a } - 2nip{x)
Jk — ioo

(37)
which is consistent with the Mellin transform formula (2).

Now if

f> (38)
p=0

then S(z - 1) = -S(z). Taking Q real, ap = 5p 0 , and v = 0, we find that
£ is real on comparing (33) and (37). More precisely, the function

< [exp(-2i/7t/z)/sin(;rz)} • ^a p s in (2 /? + \)nz -
^ p=o

must be orthogonal to exp(o2z2/2)xz~1 for all x, which implies v — 0 and
ap=3

P,o- H e n c e

/S(JC) = 2ngp(x) =p(jc) for all JC > 0 if Q = (2TT)~1. (39)

The uniqueness of the Fourier (complex Laplace) transforms also implies that
{2n)~i sin(7tz) is the unique QS{z) which fulfills the requirement fs(x) —
p{x) for all x > 0 . Thus from (29), for all / > 0, 0 < k < 1,

rk+i<X>

0(0, <r2, 0 = (2TT) / exp{(7 z2/2-z(log(0 + 7r//2)}(sin(7cz)r(z))rfz,
Jfc—ioo

(40)
or alternatively

z) (41)
k-ioo

Another approach to the functional differential equation is now explored.
Let

J 2/2 (42)
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where w(a) = J2T=-ooa"L~" /2> a > 0 and L > 1. This Jacobi series,
and all of its derivatives, converges absolutely and uniformly in t. Note that

a~"(iaL")L~n2/2 exp(iaLnt)/w(a) (43)

oo 2

iKy/a{Lt) = iK V a~nL~" /2 exp(iaLn+lt)/w(a)

= iaKL-l/2Y,a~"L"~"2/2exp(iaL"t)/w(a). (44)
n

But KL~i/2 = exp(ff2/2)(expa2)~1/2 = 1 so that

ya(t) = iKyta(Lt) (45)

as desired. Clearly the va(t) are strongly dependent on a. However, i//a

is the characteristic function of a discrete distribution pa(x) which places

weights X(a, n) = a~"L~" l2/w{a) on the points xn(a) = aLn for n =
0, ± 1, ±2, ... , where L - exp a2, and thus cannot prossibly be the char-
acteristic function of the continuous density p{x). Note that pa is unimodal,
except for ties.

The moment sequence of every pa is exactly the same as that of p , for
compute

'=0

a-(n-q)L-(n-q)ll2lw{a) = 1, (46)

so that Hq{pa)lnq{p) - 1 for each q and a > 0.
One hopes that for some mixing distribution dh{a), we have

P(x)= [ Pa{x)dh{a) and f°° dh(a) = 1 (47)
./o Jo

and so too

<t>{t)= f°° <t>a{t)dh{a). (48)
Jo

Unfortunately, the necessary dh(a) is somewhat complicated and so sheds
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little light on the sum distribution problem. However, the extraordinary non-
uniqueness of the lognormal moment problem is apparent.

3. Evaluation of the characteristic function as a series

The integral (41) is a relatively elegant formula. A more pedestrian infinite
series, complicated but rapidly convergent, can be derived directly from (41)
after a few preliminaries.

The function 1 /F(z+1) has been extensively studied by Ryzhik and earlier
by Nielsen [13]. It is an entire function (analytic in the finite plane) and so
if

fkz
k and G^maxKHz+l)!- ') , (49)

| |k=o | z | p

then Cauchy's inequality states that \dk\ < G /pk for each k, and each
p > 0. This result is not sharp enough for our needs, and is improved below.
According to Ryzhik [7] the coefficients dk are defined recursively by

do=l,(n + \)dn+x = ydn + £(-l)*C(A: + \)dn_k for n > 0, (50)
k=l

where y is Euler's constant and £(/•) = YlT=i n~' *s t n e z e t a function-
Nielsen's recursion has been used by Fransen [6] to calculate d{, d2, ... , d50

to 80 decimal places. The calculation was checked by using the functional
identity

1 ^ v ^ JI \l sin?rzE r f ( )z ) ^

and the resulting numerical identities

2m / | \m 2m

/=o

High accuracy in dx, d2, . . . is necessary because they enter alternating sums
in which they multiply factors which are quite large for some values of the
parameters. Fortunately, the dn tend to zero about as fast as l /«! .

The proof, suggested in part by Dr. Ryavec of USCB, depends on the fact
that if h{z) is any entire function with h(z) = Y^Loenz" > t n e n f° r ^ > 0 >
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Hence in particular

\dm\2R2m<±: [2n\m+reie)\-2dd (52)

but

\r(l+rei6)\-1 <\T(l-R)\-1

sinnR
nR

for R > 1,

as a rough estimate, so that \dm \2R2m < {T(R)/n}2, and thus for each R > 1,m \
mn\dm\ < T(R)/Rm = <

= y/2nexp(Bm(R)) for all R > 1, (53)

where BJR) = (/? - m - 1/2)log/? - /?.
We now choose R{m) > 1 to minimise the right side of the inequality (53)

for fixed m . Differentiation of Bm{r) yields B'm{R) = log/?-(m + 1/2)//?,
and so B'^R) = (l/R) + (m + 1/2)//?2 > 0.

The solution of the equation R{m)logR(m) = m + 1/2 would therefore
provide a minimum to Bm(R). This transcendental equation is difficult to
solve, but suggests the cruder choice /?0(m) = m/logm. Now, for each
e > 0,

B(RJm)) = (^— -m-\/l\ {logm - loglogw) - T^—
m ° \logW / OBI lOgm

— — m log m + m — -. (1 + log log m)
logm

- l/21ogm + (m + l/2)loglogw

< - (1 - e)(mlogm - m + l/21ogm)
for m sufficiently large, since m/logm, m log log m , and m log log m/ log m
are dominated asymptotically by m , m log m , and /n log w respectively.
From (53),

\d \ < v/27rexp{-(l - e)(wz logm - m+ 1/2 logm)}

(54)

Thus \dm\ - 0((m!)~(l~e)) for each e, which justifies the earlier remark that
\dm\ decreases about as fast as I/ml. A more precise bound is obtainable
but unnecessary, in view of the application.
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A more elegant proof is based on a formula of Levin [11] in his book on
meromorphic functions, namely p — limn_>00(nlog(l/n)/log|rfn|), where p
is the "type" of y/(z) = 1/F(1 + z). Since y/(z) has Weierstrass factors
of order 1, and its set of zeros is of order 1, its type p = 1. Hence for
each e > 0, there is an n(e) such that nlog(l/«) < (1 + e)\og\dn\ for all
n > n(e), which means

)

and so i//(z) is convergent for all z .
Moreover, if vm(z) = Y^,J=o d.zj is a truncated expansion of y/{z), then
(a) \¥miz) — W(z)\ —y 0 inside any compact set uniformly as m —* oo,
(b) y/(z) and y/(z) - i//m(z) are entire functions of type 1, and finally
(c) \y/(z) - Vm{z)\ < C'e\p(A'\z\) for some positive constants C', A1

for large \z\.
Clearly

-l)'dlz
l. (55)

/=o
Thus formally, on insertion of (55) in (40) and interchanging the order of
integration and summation,

<j>{0,o2,t)=l/2^2{-l)'d, z'exp{<j2z2/2-z(\ogt + ni/2)}dz.
1=0 Jk-ioo

(56)
The interchange of order in formulas (31) and (56) can now be justified,

since the exact expressions involved are finally available. To prove (31),
consider from (32) and (38) and (41) the equivalent problem of interchange
in

k+ioo

/
Jk

= £ <U-Dm r°° z"1 exp {tfV/2 - z (logr + ^ ) } dz.

By the Lebesgue domination theorem, if

*-*) = E dj-\)mzm, vn(-z) = ± dm(-lfz
m m=0

and if

= \¥n(-k - iu)\ exp(a2(k2 - u2)/2 -k\ogt + null)
< gt(u) for all n,
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where z = k + iu , u is real, and /f^ q,{u) du < oo, then

! z 2 / 2 - z Hogr + y

f
IQ k-ioo

Now by (54) et seq, take

?,(«) = ( k ( - ^ - '«)l + SUP \wn(-k - iu) - y/(-k - iu)\)
n>no

x exp{ff (k —u)/2-k log t + nu/2}.

Clearly qt(u) is bounded on compact sets, and also qt(u) is bounded by

C"e\p(A"(k2 + M2)1/2 + a2(k2 - u2)/2 -klogt + nu/2)

for large u . The last exponential is bounded by Dexp(-cr2u2/4) for large
u, as can be seen by comparing nu/2 + A"(k2 + «2) l / 2 with u2w2/4 for large
M . Hence / ^ qt(u) du < oo.

From (56), we find, using the same technique as in deriving (36), which

depends here on the fact that Nel~aN —> 0, for each / as N —* oo,

2/ z' exp(az2+Zz)dz = i
k-ioo

(57)

using Rodrigues' formula for Hermite polynomials. Thus for t > 0,

0(0, a2, t) = {7i/2(72}l/2exp{-(logf + 7n/2)2/2<72}

• £ ( - P ' d, ̂ - ' ^ { ( l o g ? + ni/2)/a • 21/2} (58)
/=o

Both from a theoretical and a practical (computing) viewpoint, the rapidity
of convergence of the series (58) is rather important. We have in (54) an
estimate of \dm\. It is now necessary to estimate Hm{(logt + ni/2)/(j-2l/2} .
Fortunately, an excellent estimate is available from the paper of Sansone [15],
for Hermite polynomials of complex arguments and large order. This has the
form

(59)
where N = 2m + 1, and fiz) = n~i/\2mrn\)~l/2 exp(-z2/2)H(z).
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It follows that, for u and v independent of m ,

and so

\H (u + i v ) \ = O(2m/2(rn\)1/2m-i/4 exp[(2m + I)1/2\v\] (60)

= \dm\\2<72\-m/2\HJ\ogt

= O{(eE+l/2)m • a'"1 • m
em^l2[e-m-x) • txV{n{wm + l)/a(Sa2)l/2},

which is roughly dominated by m~m / 2 . More precisely, for a > 1, Dm{a)
is trivially O(m~m/2+2em). For a < 1, there is an mo(a, e) and a k{a)
such that Dm{a) is bounded by k(<j)m~m/2+2em for m > mo{a, e), so that
the same estimate holds, but not uniformly in a. The terms in (58) thus
decrease almost as fast as (m!)"1^2, for large m .

In practice, 50 terms of the series (58) individually computed to 80 dec-
imal places to compensate for the oscillatory nature of the terms (by Dr. J.
Wayman) suffices to give four place accuracy for a > 0.1, but the number
of terms required rises quite rapidly as a —• 0 . The series for </>(0, a2, t) is
uniformly and absolutely convergent for t in any compact subset of (0, oo)
and defines a continuous function of ; on (0, oo), and by the conjugate sym-
metry principle, on (-oo, 0). Since \e'x'p(x)\ < p{x) and /0°°p{x)dx = 1
and

f°° lim(e'xlp(x))dx = f°° p{x)dx =
*—o+ Jo

it follows t ha t
l im <j>(0,o2, 0 = 1 = lim 0 ( 0 , a2, t)
r—0+ <-»0"

and so <j> is continuous at t = 0 and hence for all t.
The series (58) combines log? and ni/2 intimately. Their effects can be

separated by the addition formula

which yields

r
Returning to the case n ^ 0, we have

4>(H, a , 0 =

.. . .
^ i [ ^ ) (63)

/=o ^ ayJ '
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By two applications of (61), the effects of n, log?, and ni/2 on the series
(63) can be separated, at the cost of inserting a finite double sum into the
infinite series.

The leading term in (63) is

<f>0(t) = (n/(2a2))1'2 exp(-(logf + fi + ni/2)2/{2a2)).

The inverse transform of <j>0(t) is similar to the integral for (f>(t) itself, but
slightly worse because of the complex power and so does not define a nice
approximation of p(fi, a2, x).

The results for the sum of just two lognormal variables are series consid-
erably more complicated than (60), but of the same general character. In the
next section, the functional differential equation for <j> is exploited to yield
a functional equation for the embedding function, a natural enough general-
isation of the sum distribution. This in turn permits a general expression for
the sum distribution as a mixture, both discrete and continuous, of lognormal
distributions with the same " a2 " parameter but different, complex-valued,
" m " parameters, as in fact suggested long ago by H. Cramer. The explicit
weights, etc. are determined in the sequel II in terms of other classical func-
tions, Stirling numbers, and a new set of polynomials.

4. Application of functional differential equations
to the embedding and sum distributions

If Xx, X2 are independent lognormal variables with densities p , , p2,
parameters fi{, a2 and pi2, a2, then the density h2 of y2 = Xx + X2 is
given by the convolution integral h2(y) = $p{(y — x)p2(x) dx . We wish to
obtain some information on h2 without recourse to tedious analytical meth-
ods. (This is found in the sequel II.) One approach is through a generalisation
of h2 which lends itself to use of the functional differential equation (16),
exploited successfully in Sections 2 and 3.

We define the 2-embedding function g2(x, 0, , 62) by the integral

g2(x, ei, e2) = (27T)-1 r 4>{{0xt)4>2{e2t)aw(-ixt)dt (64)
J — oo

where 4>j{t) - (f>(ptj, a2, t), and 0 , , 62 are real.
Clearly, by substitution in (64),

g2(x, 1, 1) = ( 2 H ) - ' f <t>{{t)4>2{t)zM-ixt)dt = h2{x). (65)
J
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Also

g2(x,6l,0) = (2n)~i J

g2(x , 0, 02) = d-{p2{xd~x), 02 ^ 0. (66)

Thus g2 behaves like h2 , but has some useful extra parameters to operate
with. By parts integration,

g2{x, ex, e2) =

1 lim \{zxv{-ixt)<t>Ae.t)<t>2{e2t)}\A

A

-A
.(67)

By (11), (12), the first limit is zero if 0, ̂  0 or 82 ^ 0, and the second limit
yields

x f
J-°° (68)

The functional differential equation (16) immediately leads to the equation

ixt)[6xKx4>x{Lxt) + d2K24>2(L2t)]dt

= 6xKxg2(x, LX6X, 62) + 62K2g2{x, 6X, L2d2) (69)

where
Kj = exp(tij + a) 12) and Lj = exp(cr). (70)

The functional equation (69) can be fairly completely solved. First we write

rj(x) = xPj(x). (71)

From the partial boundary condition

= dlKlg2(x,Ll6i,0)

= KlL;l
Pi(xL;le;]) (72)

we infer

{ xrx{x6x~ ) = Kx6xr{{xLx~ dx~ ) and likewise

xr2{xd2
X) = K2d2r2{xL2

xd2
X).
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Now define a reduced embedding function G2(x, 6X, 02) by

g2(X, ex, e2) = r,{xe;x)r2{xd2
l)G2{x, ex, e2) (74)

and conclude from (73), (69) that

G2(x, 0,, 62) = G2(x, L , 0 , , d2) + G2(x,6x, L262), (75)

a somewhat more desirable functional equation than (69). We now try a
solution of the form

G2(x,el,e2) = m £ £ f Wmn(x,da)e^x'a]dy/X'a) (76)

where {vmn{da)} is a double sequence of complex-valued measures on fi2

and U{x), V(x) are sets of integers for each x . The dimensionality of a
is as yet unspecified. The function sequences {Pm{x,a)}, {yn(x, a)} are
complex-valued.

Clearly, we have

G2(x, 0, , 62) - G2{x,Lx6x, 02) - G2(x, 0 , , L262)

E E
meV(x)n&V(x) (77)

Thus (72) is satisfied whenever

A general solution of (75) is

TB (x,a) Tt.{x,a) . c , /-io\

L , m V y + L2"
K = 1 f o r e a c h r n , n , a , x . ( 7 8 )

(79)
yn{x, a) = {log(l -e(x, a)) + 2nin}/\ogL2

where 0 < e(x, a) < 1 for each x, a, and m, n are integers.
We note from the definition of g2 that for c > 0

g2{cx,dxex, <*202) = c - ' g 2 {x,dxejc, d2e2/c) (80)

and thus also

G2(cx, d ,0 , , d2d2) = c-lG2(x,dxex/c, d2d2/c). (81)

From (77), we have

E E W^
m€U(x)neV(x) (82)
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for all real c, x. It follows that

U(cx) = U(x) = U, V(cx) = V(x) = V,

Pm{cx,a) = 0m(x,a) = 0m(a), 7n(cx, a) = yn{x, a) = yn{a),

e(x,a) = e(a), (83)

are independent of the value of the first argument. Also

y/mn{cx, da) = c~dm"(a)y/mn(x,da) (84)

where

Interchange of c and x in (82) yields the conclusion

y/mn(x,da) — x Vmn{da) (86)

so that we have

8i(x) -
J £2

x (x ' ){x 2) .

This formula already shows that the density g2{x) is a continuous and dou-
ble discrete mixture of lognormal densities each of which has the same a1

parameter, namely a\a2j(a\ + a\).

k
lognormals of parameters (/z,, aj2), (//2, a\), . . . , (nk, a^), yields for the

The same method, applied to a sum Yk = Xi+X2-\ yXk of independent
gnormals of parameters ( / z 2 \ ^

sum density gk(x) the form

ipl(x)p2(x)...pk(x)n[= xk-i

where e,(a) + • • • + ek(a) = 1, and Qk is a set. Thus gk is also a con-
tinuous and A>tuply discrete mixture of lognormal densities, each of which
has the same "<r2 parameter", (£*= 1 oJ2)~x. The explicit determination
o f e(a),U, V,Cl2 a n d v^da) [or o f e , ( a ) , ...ek(a), [ / , , . . . , Uk , Qk ,
y/m m (da) for k > 2] is more tedious and is left to II. The analytical re-
sults are not very illuminating, unfortunately, but are quite computable using
multiple precision arithmetic.

Similar, though rather more complicated results have been obtained for
"Einstein-normal" - or Johnson type 2 - random variables, in which the
lognormal is modified by replacing the exponential (whose inverse is the
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logarithm) with a scaled hyperbolic tangent arising from "Einstein's addition
rule"

1 2 l + / ( x , ) / ( * 2 ) / c 2

This arises in the study of "naturally" truncated normal variables.
The author wishes to thank Dr. Uppuluri of ORNL, and Professors Pe-

sotchinsky, Rao, Ryavec, and Kotlarski of USCB, for careful reading of this
paper, and for their encouragement in pursuing these rather elusive problems.

For those who wish to pick out the key formulas, (15) and (16) are the
functional equations for the characteristic functions, (40) and (41) are their
Laplace transform representations, (42) and (46) give the moment non-
uniqueness example, (49) and (50) define the Nielsen coefficients which enter
the Hermite expansion (58), and the estimates which establish convergence
of (58), are in (53) et seq and (59) et seq. As for the partially determined
sum distribution, (64), (69), (74), (75), (78), (79), (85), (86), are the high
points leading to (87).
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