SCALAR WAVES IN THE EXTERIOR OF A SCHWARZSCHILD BLACK HOLE

S. PERSIDES

Astronomy Dept., University of Thessaloniki, Thessaloniki, Greece

Abstract. Fourier and Laplace transforms are used to study rigorously the properties of a test scalar field Ψ in the exterior of a Schwarzschild black hole of the mass *m*. In the Fourier analysis we examine the properties of the solutions of the radial wave equation and the relations of the exterior and interior solutions of the following four cases: (i) $\omega \neq 0$, $m \neq 0$, (ii) $\omega = 0$, $m \neq 0$, (iii) $\omega \neq 0$, m = 0, (iv) $\omega = 0$, m = 0.

In the Laplace analysis we show rigorously the following theorem: If $\Psi(t, r, \theta, \varphi)$ is the field of a point test particle falling into the black hole,

$$\left[\partial \Psi/\partial t\right]_{t < t_0} = 0,$$

and $\lim \Psi$ exists, then $\lim \Psi = 0$. The proof of this theorem is based on the facts that (a) $t + 2m \ln(r - 2m)$ is finite for the particle even on the horizon, and (b) the behavior of Ψ as $t \to +\infty$ is related to its Laplace transform near the origin of the complex plane.

References

Persides, S.: 1973, J. Math. Phys. 14, 1017. Persides, S.: 1974, J. Math. Phys., to appear.

C. DeWitt-Morette (ed.), Gravitational Radiation and Gravitational Collapse, 95. All Rights Reserved. Copyright © 1974 by the IAU.