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THE ABBENA-THURSTON MANIFOLD AS A CRITICAL POINT 

JOON-SIK PARK AND WON TAE OH 

ABSTRACT. The Abbena-Thurston manifold (M,g) is a critical point of the func­
tional 1(g) = j M ( | trQ3 — R)dVg, where Q is the Ricci operator and R is the scalar 
curvature, and then the index of 1(g) and also the index of — 1(g) are positive at (M,g). 

1. Introduction. Let M be a compact symplectic manifold with a symplectic form 
Q. From Q(X, Y) = g(X, J Y), g and J are created simultaneously by polarization. A met­
ric g created in this way is called an associated metric and the set of these metrics will 
be denoted by A. In particular A is the set of all almost Kàhler metrics on M which have 
Q as their fundamental 2-form. Let M be the set of all Riemannian metrics of volume 
1 on M. The *-Ricci tensor and the ^-scalar curvature of an almost Hermitian manifold 
are defined by 

ft*/- — RikitJ Jj-> R*'. = R*1, 

where R^K is the component of the curvature tensor. 
Blair and Ianus [3] showed that g G A with QJ = JQ is a critical point of K(g)\ = 

JM(R -R*)dV and H(g): = JM R dV on JÏ. Here, R is the scalar curvature of (M, g). Since 
R — R* = — ̂ |VJ|2 [7], Kahler metrics are maxima of functional K(g). Moreover, Y. 
Muto [4] has studied whether a given Einstein metric gives a minimum of//(g) or not. 

It is natural to ask for some concrete functional / on A (or 9\{) such that a given 
metric g0 is a critical point of functional /. And then, it is interesting to compute the 
second derivative of 1(g) at the critical point ga. 

In this paper, we show that the Abbena-Thurston manifold, which is a compact sym­
plectic and not Kàehlerian and not Einstein manifold, is a critical point of some function 
/(g), and investigate the index of/(g) and the index of—/(g). 

2. A.-T. manifold as a critical point. 
G I ( 4 , 0 defined by 

Let G be the closed connected subgroup of 

/ 1 
0 
0 
0 

«12 

1 
0 
0 

«13 

«23 

1 
0 

0 
0 
0 

e2ma 

a\2,a\3,a2?,,a G R 

Received by the editors March 22, 1994. 
AMS subject classification: Primary: 58E11; Secondary: 53C15, 53C25.. 
© Canadian Mathematical Society 1996. 

352 

https://doi.org/10.4153/CMB-1996-042-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-042-3


THE ABBENA-THURSTON MANIFOLD AS A CRITICAL POINT 353 

i.e.,G = H x S] is the product of the Heisenberg group H and S1. Let T be the discrete 
subgroup of G with integer entries and M = G /T. Denote by x,y,z, t coordinates on G, 
say for ,4 G G,x(A) = a\i,y(A) — a2i,z(A) = a\^,t(A) = a. If LB is left translation by 
B G G,VBdx = dx,LBdy — dy,L*B(dz — xdy) — dz — xdy,L*Bdt = dt. In particular, 
these forms are invariant under the action of T; let 7r: G —> M, then there exist 1 -
forms ori, oc, c*3 and a^ on M such that dx = 7r*ai, dy = T^OCI, dz — xdy — i^oc^ and 
dt — 7r*a4. Setting Q = a^ A a\ + #2 A 0:3, we see that Q A Q ^ O and dQ = 0 on M 
giving M a symplectic structure. The vector fields 

d d d d ô 
e\ = TT-, ^2 = — +x—, £3 = — , £4 = — 

ox dy dz dz dt 

are dual to dx, dy, dz — x dy, dt and are left invariant. Moreover, {e,} is orthonormal with 
respect to the left invariant metric on G given by 

ds1 = dx2 + dy2 + (dz -xdy)2 + ûfr2. 

On M, the corresponding metric is g = £ c*/ (g) a,. The Riemannian manifold (M,g) is 
referred to as the Abbena-Thurston manifold. Moreover, M carries an almost complex 
structure J defined by 

Je\ = e4, Je2 = —^3, Je^, = e2, Je^ — —e\. 

Then noting that £l(X, Y) = g(X,JY), we see that g is an associated metric. 
The curvature of g was computed by E. Abbena in [1]. With respect to the basis {et}, 

the non-zero components of the curvature tensor are 

^1221 = — T , ^2332 = T , ^1331 = T-

Thus the Ricci operator Q is given by the matrix 

l - h 
0 
0 

\ 0 

0 
1 
2 

0 
0 

0 
0 
1 
2 
0 

°\ 0 
0 
0 / 

and we note that Q2 is parallel with respect to the Levi-Civita connection of g but that Q 
is not parallel. 

REMARK. From the expression for Q it is clear that (M,g) is not Einstein nor is 
QJ = JQ. Thus the metric is not a critical point of//(g): = $MRdVg considered as a 
functional on M or on A or for K(g): = jM(R - R*) dVg on J2(C fW). Here, M is the set 
of all Riemannian metrics of volume 1 on G/Y = M, and SI is the set of all associated 
metrics on (M, Q). 
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In the following we use local coordinates, and tensors are expressed in their compo­
nents with respect to the natural frame. When we take a C°° curve g(t) in fW, we get 
several tensor fields defined by 

Ot 

(1) D£=l(VyD?+V;Z)?-V*D,-,-), 

where V means the covariant differentiation with respect to the metric g(t). Then, 

(2) !tf/} = ̂ /. | 4 / = ̂ . l ^ - v ^ - v ^ , , 
where {;'}, Kh

kjj and Rj,- denote the Christoffel symbol of the metric g, the components of 
the curvature and Ricci tensors respectively. 

Then we get 

PROPOSITION 1. The Abbena-Thurston manifold is a critical point of the functional 

I(g) = jM(\trQ'-R)dVg 

OVf where R is the scalar curvature. 

PROOF. By straightforward computation, we get in general 

(3) ^/(g(0) - JM[2(V„ViRJkR
hH + VmVjRikR

km - V"'VmRkRkJ 

-g i jVmy,R' kR^ - 2Rk
lR^Rmi + i fy ) 

+ \{\*&-R)gi0JdVg. 

Since Q2 is parallel and Q3 — \Q on the Abbena-Thurston manifold, we see [3, Lemma 
of p. 25] that this metric on the underlying manifold M — G/V is a critical point of/(g). 

REMARK. This Proposition stems from conversations between D. E. Blair and the 
second author. 

Now, differentiating JM dV = 1, we get 

(4) x. a, 
id

Lr 

JM* Ot 

UWdv=L[D,'D''-hD!il]dv-
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Using general facts (2),(4) and Green's Theorem, and the facts trQ = ~^Q3 — \Q a nd 
\7Q2 = 0 on (M,g), we get by computing 

- {VD'^hDji) - l-(v'D^)(V,Di) + urftVitfyytfy 

+ 2fl*'(V,V,^XV*VJ*'*) + 2/r(V,V,-Z#(V* V'Dj) 

+ 4#J-/(V/tV,Z^)(V/V/£>'/) - 2/r(V/V'D;,XV*V*£>j) 

- 8**(V*V*DJXV/4) + g^CV/^XV'^) 
- l ô ^ C V ^ X V * ^ * ) - SRsbDVRjMD1") 

+ 16RJ'R,kDPCVjD>li) + SRikDhR*(VjDfli) 

+ 4RsiRijD
i
blCVsD

bl) + SRsiRijD
l
hs(V,Dih) 

+ SD'bRbsRjDnRij]dVg. 

The right hand side of (4) is a functional of the tensor field £>,,. Denote this integral by 
AD). 

DEFINITION 2. Let (D be the set of all symmetric tensor fields D 

(6) f trDdV=0. 
J M 

Let us say that the dimension of the vector space {D G T> \ J(D) < 0} (resp. {D G Œ> | 
—J(D) < 0}) is the index of the functional 1(g) (resp. —7(g)) at the critical point (M,g) 
of/(g). 

Then we obtain 
THEOREM 3. Let 1(g) be the integral as defined in Proposition 1. Then the index of 

1(g) and also the index of—1(g) are positive at the Abbena-Thurston metric on (M. 

PROOF. If we put Djt = fgji where/ is a C°° function such that ^fdV = 0, then we 
have from (4) 

- 4^/*,*(W)(Vft/) - / 2 - 9(V;/)(V(/) 

-(V,VÎ/)(V*VV)]</K. 

All the local calculations on M will be done on G and on its Lie algebra g because G is 
locally isomorphic to M. Let x\x2 ,x3 ,x4 be local coordinates of M and G — HxS{ such 
thatx1, x2, x3 are local coordinates of H and x4 is a local coordinates of S]. The local 

(5) 
I dfl Jo 

(7) I dfi ) t = 0 
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components R4 and R44 with respect to local coordinates x1 ,x2,x3,x4 of (M,g) are zero. 
We can choose functions/ on M which make (7) negative. This proves that the index of 
1(g) is positive. 

Now, let's prove that the index of —1(g) is positive. 
Let U be a coordinate neighbourhood of M, and let TV C U be a neighbourhood of a 

point p0 G U, where the local coordinates are such that 

& = % {j} = o 

at/?o- We assume that N is sufficiently small so that there exists a positive number e such 
that g satisfies in N 

\gy-oy\Ke, \g*-6y\<e, \{»}\<e. 

We want to take a suitable C°° tensor field Dp. We know that for any given tensor field 
Dp there exist g(t) such that 

dgA = 

dt Jo 
Djt. 

First we assume D\ — 0 on M. Then we get from (1) and (5) 

d2I(g)\ 
(8) 

where 

atL J o J M 

(9) F, := {VD^iVhDji) - ^ÇVhDjtfShD>>) - W'R^Rp'Ry, 

(10) F2 := SR^RjiiWD») - 4tf.stZ)%(V/V
/Z>"), 

(11) F3 := 2RksRi(VJD
l
i)(VkD',) - 4«%(V/zyA)(V*/>;.) 

+ 4RsiRu(VlI>
k(VDks) - SR*iRijÇVlD>k)C7sD>k), 

(12) F4 := -2^(V,V7^XV tV
sD'k - 2/T(V/V/£>;)(Vi. V'£>J) 

- 2^(V/V /A/)(V*V*D:;.) - 4/^'(V*V I-DJXV /V /D'' /) 

+ 4fls/(V/V
/A/)(V*V.s£>'*) + 4*"(V/Vy£>!xV* V*£>j). 

Define 5,-,- by 
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gf^Sji + tSji. 

Then5)/ satisfy |5)/| <lonA^. 
Assume Djt vanishes everywhere except in the interior of TV, and define Mi ,M2,M3 

and Ma, by 

A/, := max{|Dy/(p)|;p G W;/J - 1,2,3,4}, 

( 1 3 ) M2 :=max{|apf-A(p)|;p€iVi/,/,A= 1,2,3,4}, 

M3 := sup{|ôy{£}(p)|;/7 G JV;/,ij,* = 1,2,3,4}, 

M4 := max{|d/(5yA*)(p)|;/> £ N\lJJ,k = 1,2,3,4}. 

From (13), we obtain on TV 

\Rji\<m+o(e2)9 

(14) IVyAvl <M2 + 8Mi£, 

|a/(V;AA-)|<M5, 

where M5 := M4 + 8MiM3 + 8M2£, andy,/,/,& — 1,...,4. In the following we put n = 4. 
Using (13) and (14), we find 

(The first term of F4) 

= -2/?cé(V /V /A,)(V / tV,JD,a)g"gVW 
= E E E -2Rcb[d,{VjDie) - {,;}vrDfe - {;;}V,A., - {,;}vp,r] 

c,6 /,/,/> k,s,d,a 

• [3*(V5A*,) - {£}V,A/fl - {£}V5ZV - {£}V5A„] 

• (<5C5 + eScs)(Sbj + eSty-X /̂ + sSel)(bak + eSak)(6di + e5^-) 

< 4rc6M3(M4)
2 + 16«7Mi(M3)

2M4 + 16«8(Mi)2(M3)
3 

+ (32«8M!M2M3 + 16n7M2M4 + 24n7M2M5 + 20«8(M5)2)M3e + o{e2). 

Similarly, we get by computing 

(15) F, < I YtfPih + ô/A-A)ô^y/| ~ E (djDih)
2 + 64«8M2M3 

+ \2n4M]M2£ + 9n\M2)
2£ + 320«8M2MJ + 0{e\ 

(16) F2 < 48^7M!(M3)
2M4 + 96n8(M02(M3)

3 

+ 240«7MiM3(« M2M3 + M3M4 + In Mx(M3)
2) + o(e2), 

(17) F3 < 12n7(M2)
2(M3)

2 + (360M2 + 288«Mx)n
7 M2(M3)

2e + o(e2), 
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(18) FA < 36n6(MJ + AnMxM3MA + 4n2(M])
2(M3)

2)M3 

+ (288«MiM2M3 + 144M2M4 + 2\6M2M5 

+ \80n(M5)
2)n7M3£ + O{E2). 

Now let us consider a tensor field 7},, which vanishes everywhere except in the interior 
of Af, such that all components are identically zero except 

7̂ 12 = ?2i = / , 

where/ is a C°° function. By putting 

Dji := Tj, - X-Tlké
k
gji = Tji - \fgng}u 

we get D\ = 0 and 

\djD,h - djTih\ < (|/1 +\\djf\)èlh£ + o(£
2). 

Hence, 
M, = (max [/!)( 1 + o(e)), M2 < max(|d/| + \f\e)( 1 + o(e2)) 

and M4 = max |ô/5,/|. Moreover, M3 is constant which is the geometric quantity of 
(M,g) and Ms = Ma, +8M\M} + %M2e. Therefore, we can neglect all minor terms in 
F\ + F2 + F3 + F4. Now we replace djDn, by djTih to obtain 

= I t-(o3/)2 - {d4)2 + C(M, ,Mi,Mi, M4)] dV, 
JM 

where C(M,,M2,M3,M4) := 304/i8(Mi)2(M3)
3 + \92n7M](M3)

2M4 + 12n1(M2)
2{M3f + 

36«6A/3(M4)
2. 

As there exist functions/ on (M,g) for which the last integral is negative, the index 
of —1(g) is positive. 

Thus we have proved this theorem. 

REMARK. (M,g) is also a critical point for AT in a different context; C. M. Wood [6] 
showed that the Abbena metric on the Thurston manifold is a critical point of K defined 
with respect to variations through almost complex structures J which preserve g. For 
this problem the critical point condition is [7, V*VJ] = 0, where V*W is the rough 
Laplacian of the metric in question. 
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