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1. Introduction. The theory of non-negative matrices was initiated by 
Perron (7) and Frobenius (4). Wielandt in (11) gives an elegant exposition of 
the subject. 

It is well known to workers in the field that if a matrix A has all its entries 
non-negative real numbers, then the pattern of zeros and non-zeros of A 
completely determines the pattern of zeros and non-zeros in every power of A. 
Ptak in (8) and Ptak and Sedlacek in (9) describe this behaviour in terms of 
some combinatorial constructs. 

The main object of this paper is to discuss the structure of powers of a reduc
ible non-negative matrix in terms of properties of the directed graph of the 
matrix. The constituents of a reducible matrix are irreducible, and the structure 
of powers of irreducible matrices has been considered in (3, 4, 8, 9, 11). In 
this paper there is a discussion of the structure of the subdiagonal blocks in 
powers of reducible matrices. 

2. Definitions, notation, and background. A finite directed graph D has 
a vertex set F = { l , 2 , . . . , w } and a set of edges each of which is an ordered 
pair (i, j) of vertices. We say that the edge (i, j) joins vertex i to vertex j . 
We say that i is joined to j by a path of length m in D if D has a set of m edges 
(i, ki) (fei, k2) (&2, kz) . . . (km-uj). A path of length m from vertex i to vertex i 
is called a cycle of length m. An edge (i, i) is a cycle of length 1. Such a cycle is 
called a loop. If (i, i) is an edge, the vertex i is a loop vertex. If the edges of a 
cycle are such that each vertex which occurs appears exactly once as the first 
member of an edge, the cycle is called a circuit. A directed graph D is strongly 
connected if, for any ordered pair of vertices i and j with i ^ j , there is a path 
in D from vertex i to vertex j . Thus a graph with one vertex and no edges is 
strongly connected. 

The remarks in this section are well known. In some cases the proofs which 
are given are simpler than those found elsewhere. 

REMARK 1. In a directed graph D, the greatest common divisor of the lengths 
of all the cycles is equal to the greatest common divisor of the lengths of all the 
circuits. 

Proof. Since a circuit is a cycle, the g.c.d. of the cycle lengths divides the 
length of every circuit. 
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Since a cycle is a union of circuits, the g.c.d. of the circuit lengths divides 
the length of every cycle. 

If D is strongly connected, the g.c.d. of the cycle lengths is denoted by d 
and is called the index of imprimitivity of D. 

REMARK 2. Let D be a strongly connected directed graph. If dt is the g.c.d. of 
the lengths of the cycles through vertex i, then dt is equal to the index of imprimitivity 
ofD. 

Proof. Let a cycle through vertex j have length ntj. Since D is strongly 
connected, there is a path from i to j and a path from j to i. Let such paths 
have lengths u and v respectively. Combining these two paths, we have a cycle 
of length u + v through vertex i. Combining this cycle with the cycle of length 
mj through vertex j we have a cycle of length u + v + Mj through i. It follows 
that dt divides both u + v and u + v + ntj. Hence dt divides w;- and thus dt 

divides dj. Similarly dj divides dt. Thus dt = dj and Remark 2 follows. 

REMARK 3. Let D be a strongly connected directed graph with index of imprimi
tivity d. If two paths from vertex i to vertex j have lengths u and v respectively, then 
u = v (mod d). 

Proof. Let a path from j to i have length /. There are cycles through i of 
lengths u + t and v + t respectively. Thus u + / = v + t = 0 (mod d). 

Remark 3 enables us to partition the vertex set F of a strongly connected 
directed graph into disjoint non-null sets of imprimitivity. Select an arbitrary 
vertex, say vertex 1 for definiteness. For k = 1, 2, 3, . . . , d, define a set Ik to 
consist of all vertices i such that the lengths of all the paths from vertex 1 to 
vertex i are congruent to k (mod d). Vertex 1 is in Id. The following remark is 
immediate. 

REMARK 4. If the strongly connected directed graph D has sets of imprimitivity 
Ii, 12, . . . , Idj then the length of any path from vertex i £ Ir to vertex j Ç Is is 
congruent to s — r (mod d). 

The theorem stated as Remark 5 is due to Schur. A proof is given in 
(6, pp. 6f ). 

REMARK 5. A set of positive integers which is closed under addition contains 
all but a finite number of multiples of its greatest common divisor. 

REMARK 6. Let D be a strongly connected directed graph with index d of imprimi
tivity. Then there exists an integer N such that if the vertices i and j belong re
spectively to the imprimitivity sets Ir and IS1 then there are paths from i to j of 
length s — r + td for all t > N. 

Proof. There is a path from i to j and thus there exists a non-negative 
integer vtj such that the length of this path is s — r -\- vtjd. Now apply 
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Remark 5, considering the set of lengths of cycles through vertex j which is 
closed under addition. There exists Nj such that there are cycles of length 
vd through vertex j for all v > Nj. Taking N to be the maximum of {vij + Nj} 
taken over all ordered pairs of vertices, the result follows. 

In a directed graph D, two collections of sets of paths from vertex i to vertex 
j are said to be equivalent if the union of the sets of each collection contains all 
but a finite number of the paths of the union of the sets of the other collection. 
Let b be an integer and let u be a positive integer. A set of paths in a directed 
graph D is said to be a (b, u) -sequence of paths from vertex i to vertex j if and only 
if (1) for every path in the set there exists an integer t such that the length 
of the path is b + tu and (2) there exists an integer N such that for every 
integer / > N there is a path in the set of length b + tu. Thus a (&i, u)-sequence 
is equivalent to a (62, w)-sequence if and only if b\ = b2 (mod u). In Remark 5 
the set of paths from i to j is an (s — r, ^-sequence. 

Let A be an n by n matrix whose entries atj are all real numbers. A is said 
to be reducible if there exists a permutation matrix P such that 

where 0 represents a zero matrix and C and D are square matrices. Otherwise, 
A is said to be irreducible. Thus an n by n matrix of zeros is irreducible if 
n = 1 and reducible if n > 1. If A is reducible, there is a permutation matrix P 
such that 

Ci 

C21 c2 
c„ C32 

t 'Wil ^ m 2 

where each submatrix Cp (p = 1, 2, . . . , m) is square and irreducible. The 
matrices Cv are called the constituents of A. The uniqueness of the constituents, 
apart from transformation by a permutation matrix, follows from the fact that 
the strong components of a directed graph are uniquely determined. An 
algorithm for finding these constituents has been given in (2) and in (5). The 
matrix P~lAP will be called a canonical transform of the reducible matrix A. 
If we partition the matrix P~lAP by means of the constituents, the sub-
matrices above the diagonal of constituents are zero. The submatrices below 
the diagonal, denoted by Crs, r > s, are called the subdiagonal blocks of A. Let 
the rows and columns of A be indexed 1,2, . . . , n from top to bottom and left 
to right in the usual manner. Let Fv, p = 1, 2, . . . , m, denote the set of those 

C3 

2 Cmz (-"m 
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rows or columns of A which are the rows or columns of Cp. Thus the row set of 
Crs is Fr and the column set is Fs. Let P~1AkP = (a*/*0) and let 

p-±AkP = 
C 3 1 W C 3 2 W 

CTOi<*> C w 2 w 

c3( f c ) 

We have <:„<*> = Cp*. 
A matrix 4̂ is non-negative if all its entries are zero or positive. A matrix A 

is positive if all its entries are positive and this is written A > 0. If a matrix A 
is non-negative and irreducible, then A is said to be primitive if and only if 
there exists a positive integer t such that 4̂ l > 0. It is well known (4, 7, 11) 
that if A is non-negative and irreducible, then A is primitive if and only if A 
has a unique characteristic root of maximum modulus and if this root has 
multiplicity 1. A non-negative irreducible matrix A which is not primitive is 
called imprimitive. 

The directed graph DA of an n by n matrix A of reals has vertex set 
V = (1, 2, . . . , n). The ordered pair (i,j) is an edge of DA if and only if 

dij 7*- 0 . 

The following remark is well known (1, 5, 10). 

REMARK 7. The matrix A is irreducible if and only if DA is strongly connected. 

Let A be an irreducible matrix and let 7i, 72, . • . , /</, d > 1, be the sets of 
imprimitivity of DA. Clearly, there exists a permutation matrix Q such that 

Q-XAQ = 

01 Br 
• 02 B2 

Od-i Bd-\ 
Bd oa 

Here Ou 02, . . . , Od are square zero matrices and, for k = 1, 2, . . . , d, the set 
IJC, considered as a set of integers, is the row and column set of Ok in A. The 
matrices B\, B2f . . . , Bd are rectangular non-zero matrices. If A is an irreducible 
matrix for which d > 1, the matrix Q~lAQ will be called a canonical transform 
of the irreducible matrix A. In (3), these matrices have been called the cyclic 
components of A with respect to Q. Every entry of Q~lAQ which is not in 
B\y B2, . . . , or Bd is zero. The sets Ji, 72, . . • , Id may be called the sets of 
imprimitivity of the matrix A (as well as of DA) and d may be called the 
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index of imprimitivity of A. Clearly, if A is non-negative, d is the smallest 
power of Q~lAQ which has the form diagC^i, A2l . . . , Ad). The matrices 
Au A2, . . . , Ad have been called the diagonal components of Ad with respect 
to Q (3). If / is a divisor of d, there exists a permutation matrix R such that 
R~lAfR has the form diag(^i*, A2*, . . . , Af) (3, 10). 

REMARK 8. If A is non-negative, the graph DA has a path of length t from 
vertex i to vertex j if and only if atj

(t) > 0. 

REMARK 9. If A is imprimitive with index of imprimitivity d and if 
Ai, A2, . . . , Ad are the diagonal components of Ad with respect to Q, then Ap is 
primitive for p = 1, 2, . . . , d. 

Proof. By Remark 6, if i £ IP and j G Ip we have paths from i to j in D of 
lengths td for all t > Np. By Remark 6, a*/'d) > 0 for i and j in Iv and t > Np. 
Thus Av

l > 0 for t > Nv. 

Remark 9 has been generalized in (3). 
In a directed graph D each vertex belongs to exactly one maximal strongly 

connected subgraph. These subgraphs are called the strong components of D. 
We denote them by Du D2, . . . , Bm\ let Fp be the vertex set of Dp. The directed 
graph D* induced by the partitioning V = Fi + F2 + . . . + Fm is defined 
as follows. The vertices of Z>* are Fu F2, . . . , Fm and an ordered pair (Fr, Fs) 
is an edge of D* if and only if there exists i £ Fr, j G Fs such that (i, j ) is an 
edge of Z>. It is well known (1,5) that Fi, F2l . . . , Fm may be so indexed that 
(Fr, Fs) is an edge of D* only if r > s. If m > 1, D* is not strongly connected, 
for with this indexing there is no path from Fi to any other vertex. There are 
m strong components of D* each consisting of a single vertex. 

Now let A be a reducible matrix with constituents Ci, C2. . . , Cw and let 
DA be the directed graph of A. The strong components of DA are the subgraphs 
DCp and the indexing may be arranged so that Fv is the vertex set of D Cpy 

p = 1, 2, . . . , m. The set Fp can be thought of either as the vertex set of 
DCp, or as the row or column set of Cp. If DA* is the graph induced from DA 

by the partitioning V = i7! + F2 + . . . + Fp, it follows that (FT, Fs),r > s, is 
an edge of DA* if and only if Crs ^ 0 and that (Fr, Fr) is an edge if and only if 
Cr 9*0. 

If Cp 9e 0, let dp be the index of imprimitivity of Cp. If Cp = 0, dp is un
defined. It is worth noting, in this connection, that if Cp = 0, then Cp is a 1 by 1 
matrix, since, if n > 1, an n by n zero matrix is reducible. 

3. The structure of powers of a non-negative reducible matrix. Let A 
be a reducible matrix with constituents Ci, C2, . . . , Cm and subdiagonal blocks 
CTS, r > s. The matrix Cp

{k) is equal to the feth power of Cp and Q is irreducible. 
The structure of powers of irreducible matrices has been discussed in (3, 8, 11). 
In this section, the structure of subdiagonal blocks Crs

(k) which occur in the 
&th power of P~lAP is discussed. 

https://doi.org/10.4153/CJM-1965-031-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-031-9


POWERS OF NON-NEGATIVE MATRICES 323 

THEOREM 1. Let A be a reducible non-negative matrix with constituents 
Ci, C2, . . . , Cm and let Fi, F2, . . . , Fm be the row (or column) sets of these 
constituents. Let r and s be a pair of integers 1 < r < s < m. Then exactly one 
of the following four alternatives holds : 

(1) cr,<*> =0forallk. 
(2) For some k, Crs

{k) 9e 0, but there exists N such that Crs
(k) = 0 for k > N. 

(3) There exists N such that Crs™ > 0 for k > N. 
(4) Corresponding to every integer N and to every pair i, j , with i G Fr and 

j G Fs there exists ki > N, k2 > N such that a{/
kl) = 0 and a*/*2* > 0. 

Proof. The four alternatives are mutually exclusive. It remains only to 
show that they are exhaustive. To this end we show that: 

(a) if, for i G Fr,j G Fs there exists N such that a*/*0 > 0 for k > N, then 
for every pair of vertices i0 G F T and jo G Fs there exists M such that a i0J-0

(k) > 0 
for k > M, and 

(b) if, for i G Fr, j G Fs there exists N such that a*/*} = 0 for k > N, then 
for every pair of vertices i0 6 Fr and j0 € Fs there exists M such that 
aiQj0W = 0 for k > M. 

To prove (a) note, since DCr is strongly connected, that if i 9^ io, there is a 
path in DCr from i0 to i. Now define u(i^ i) as follows. If i 7e iof u(i0, i) is the 
length of the shortest path from i0 to i and if i = io, # (io, i) = 0. Similarly, 
define v(j,jo) to be the length of the shortest path from j to jo if j 9^ j 0 and to 
be zero if j = jo. Thus for k > N + u(i0} i) + v(j,jo) there is a path from 
io to jo of length k. Thus, if M = N + w(i0, i) + v(j,jo) we have ai0j0

(lc) > 0 
for & > i¥". (b) follows at once, also. 

If none of (1), (2), or (3) holds, then at least one pair of vertices i and j , 
i G Frt j € Fs, has the property that to every N there corresponds ki > N 
and k2> N such that a,/*^ = 0 and a</*a) > 0. From (a) and (b) it follows 
that every pair of vertices i and j , i G FT, j G /%, has this property. Thus 
alternative (4) holds. 

In the induced graph DA*, Fs is not a loop vertex if and only if Cs is a 1 by 1 
zero matrix. Thus Fs is a loop vertex if and only if ds is defined. The following 
theorem concerns a path in Z)A* none of the edges of which is a loop and at 
least one vertex of which is a loop vertex. 

THEOREM 2. / / (FP1, FP2), (FP2, Fpz), . . . (Fpt_lt Fpt) is a path in DA*, 
p\ > pi > • • • > Pu and if CPq T^ 0 for at least one q, and if u is the greatest 
common divisor of those dVq which are defined, then, for every pair i, j , i G FP19 

j G Fpt, there exist integers b and N such that atj^
k) > 0 for k = b + wu and 

w > N. If u = 1, then alternative (3) of Theorem 1 holds. 

Proof. There exists an entry aili2 of CP1P2 which is > 0 , aizU > 0 in CP2PZ, 
aihi& > 0 in CP3Pi, . . . , and ai2t_zi2t_2 > 0 in Cpt_lpt. If CP1 = 0, then i = ix 

and if CP1 9
e 0 and i 9^ ii, then since DCpi is strongly connected, there exists 
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a path in DCpi from i to i\. If i2 9
e i%, then CP2 9

e 0 and there exists a path in 
DCp2 from i2 to i3. Continuing, finally we have i2t-2 = j or a path in £*cPf from 
i2 -̂2 to j . Let the length of the resulting path from i to j be 6. 

By Remarks 3 and 5, for each q = 1,2, . . . ,t such that CPq 9
e 0 there 

exists Nq such that for wq > Nqi DCp has a cycle of length wqdq through i2q-2 

for q = 2, 3, . . . , t and through i\ for g = 1. Thus we have paths from i to j 
of length b + J^wqdPq for all «/ff > iV^ where the summation is over all 
q = 1, 2, . . . , t for which CVq 9

e 0. By Remark 5, there exists a (6, w)-sequence 
of paths from i to j . 

The following example is interesting. It illustrates the fact that alternative 
(3) of Theorem 1 may hold when the number u of Theorem 2 is > 1 : 

0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 
0 1 1 0 0 0 1 0 0 0 

We can apply Theorem 2, since we have the path (F2, Fi) consisting of a single 
edge in DA*. Moreover, C2 and C\ are 9*0 with d2 = 4 and d\ = 6. Suppose we 
choose i = 9 and j — 4 as the pair of vertices respectively in F2 and Fi. We 
can take aili2 to be #10,2 or ai0>3- In the first case we have the path (9, 10) 
(10, 2) (2, 3) (3, 4) of length 6 = 4 from vertex 9 to vertex 4; in the second 
case we have the path (9, 10) (10, 3) (3, 4) of length 6 = 3 . These paths may 
be augmented by adding cycles of length d\ = 6 in DCl and d2 = 4 in DC2> 
Thus from vertex 9 to vertex 4 in DA we have paths of length 4 + 6^1 + A.w2 

and 3 + 6^i + Aw2 for all W\ and w2. The number u of Theorem 2 is the 
g.c.d. of 4 and 6. Thus u = 2, and we have a (4, 2)-sequence and a (3, 2)-
sequence of paths from 9 to 6. Since 4 and 3 are congruent to 0 and 1 (mod 2), 
the collection consisting of these two sequences is equivalent to a (0,1) sequence 
of paths from 9 to 6. Thus a96

(A:) > 0 for k > some integer N. By Theorem 1, 
alternative (3) holds, and we have C2i

(Jc) > 0 for all sufficiently large k. 
We now describe criteria for deciding whether alternative (1), (2), (3), or 

(4) of Theorem 1 hold. 

CRITERION (a). If i G Fr and j G Fsy then alternative (1) holds if and only if 
there is no path in DA from vertex i to vertex j . 

CRITERION (b). If i G Fri andj G Fs, alternative (2) holds if and only if there 
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is at least one path in DA from vertex i to vertex j but no (b, u) -sequence of paths 
from i to j . Given a path in DAfrom i to j , the corresponding induced path in DA* 
must be such that if Fv is a vertex of the induced path, then Cv is a 1 by 1 zero 
matrix. This means that no vertex of the induced path can be a loop vertex in DA*. 

CRITERION (C). If i Ç. Fr and j G Fs, then alternative (3) holds if and only if 
there is a (0, 1) -sequence of paths of DA from vertex i to vertex j . 

Any path of length b in DA from i G Fr to j G Fs induces a path in DA*. 
The path of length b in DA gives rise to a (b, w)-sequence of paths in DAl if 
and only if at least one of the vertices Fp of the induced path is such that 
Cp 5* 0. Now suppose that at least one path from i to j gives rise to a (b, u)-
sequence. Let g be the maximum number of mutually non-equivalent sequences 
which have the same second member u. Denoting these sequences by (bi, u), 
(b2y # ) , . . . , (bg, u) we see that no two 6's are in the same residue class (mod u). 
Thus g < u. If g = u, then the collection of g distinct sequences is equivalent 
to a (0, l)-sequence. 

CRITERION (d). If i G Fr and j G Fs and if there exist u mutually non-
equivalent sequences of paths from i toj each of which has the same second member u, 
then alternative (3) holds. 

Two different paths from vertex i to vertex j in DA may induce different 
paths from FT to Fs in DA*, and these may give rise to a (bi, ux) sequence and 
a (62, u2)-sequence with U\ ^ u2. Since the number of paths from Fr to Fs in 
DA* with no edges which are loops is finite, there must be at most a finite 
number M of such distinct u's. Now let 

(bix,ui) x = 1,2, . . . ,vi, 
(b2x,u2) x = 1,2,. . . ,v2l 

(bMx, uM) x = 1, 2, . . . , vMy 

denote the totality of mutually non-equivalent sequences of paths from 
i to j . If vy = Uy for some y = 1, 2, . . . , M", then the sequences (byx, uy), 
x = 1, 2, . . . , vy, are together equivalent to a (0, 1)-sequence and alternative 
(3) holds. In any case, let L be the least common multiple of U\, u2l . . . , uM. 
Each sequence (byx1 uy) is equivalent to the following collection Xyx of mutually 
non-equivalent sequences : 

(fivzl L), (byx + Uy, L), (byx + 2Uy, L) , . . . , (fiyx + L ~ Uy,L). 

There are L/uy sequences in the collection 2yx. Now let S denote the union 
of the collections Eyx for y = 1 , 2 , . . . , i f and x = 1 , 2 , . . . , ^ . Two sequences 
of the collection 2 are equivalent if and only if their first members are in the 
same residue class (modL). 
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CRITERION (e). If i G Frandj G Fs and if the collection 2 contains L mutually 
non-equivalent sequences of paths from vertex i to vertex j , then 2 is equivalent 
to a (0, I)-sequence and alternative (3) holds. 

CRITERION (f). If i G FT and j G Fs and if the collection 2 contains at least 
one sequence but fewer th&n L mutually non-equivalent sequences of paths from 
vertex i to vertex j , then alternative (4) holds. 

Alternative (4) of Theorem 1 is the most interesting and complex of the 
four alternatives. We conclude this section with a decomposition of the sub-
diagonal blocks which yields a more rounded characterization in this case. 

Suppose that Cr ^ 0 and Cs 9
e 0 and let dr and ds be their indices of 

imprimitivity. Let drs be the greatest common divisor of dr and ds. For 
(b, w)-sequences of paths from vertex i G FT to vertex j G Fs, the second 
members Ui, u2y . . . , um are divisors of dr and ds and hence are divisors of drs. 
Thus the least common multiple of Ui, u2, . . . , ur is a divisor of drs, and hence 
a (b, L)-sequence of paths is equivalent to drs/L mutually non-equivalent 
sequences with second member drs. The permutation matrix P used to achieve 
a canonical transform of the reducible matrix A can be so chosen that it 
achieves a canonical transform of any constituent Cv for which dp > 1. Let 
IiT, Izr, • • • , la/ be the sets of imprimitivity of DCr and let iY, / / , . . . , Ids

s 

be the sets of imprimitivity of DCs. The set Fr is the union of Ji7*, I2
r, . . . , Idr

r 

and the set Fs is the union of i~is, I2, . . . , Ids
s. Now let Crs be partitioned 

C = 

rrs 
°11 
frs Cr Ids 

c:\ c. dr2 C drds_ 

so that Cp%, 1 < p < dr, 1 < g < ds, is the submatrix with row set / / and 
column set Iq

s. Let Q|(fc) denote the submatrix of Crs
(îc) which has row set 

1/ and column set Iq
s. In this setting, we have the following theorem. 

THEOREM 3. If CT ^ 0, Cs ^ 0, and if 

ii G Ip ji G Iqi
s, i2 G /„ J2 G 4 

an̂ Z if b\ + pi — qi ^ b2 + p2 — q<i (mod ^ r s ) , /^w there exists a (6lf (Zrs)-
sequence of paths in DA from i\to jiif and only if there exists a (b2j drs)-sequence 
of paths from i2 to j 2 . 

Proof. Suppose there exists a (6i, drs)-sequence of paths in DA from i\ to 
j \ . Since D C r has index of imprimitivity dr, there exists a path from i2 to i\ in 
P C r of length pi — p2 + edr for some integer ^. Also, there exists a path in 
DCs from j i to j 2 of length g2 — q\ + fdr, where / is an integer. Since 
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&i + pi — P2 + qi — £1 = b2 (mod dTS), these paths combine with the (Ji, drs) 
sequence from ix to 71 to yield a (J2, d„) sequence from i2 to j 2 . 

Now let i G ^ , 7 G Fs and let 7r be a path from i to 7 which has no subgraph 
which is a cycle. Let S(T) be the length of x. Let 7^, FP1, FP2, . . . Fpt, Fs, be 
the vertices of Z}A* in the path induced by w. Select a vertex on T in each of 
Fr, FP1, . . . , FPn Fs and let V(w) be the resulting set of vertices. Let H(w) 
be the set of lengths of cycles through these vertices and let u(w) be the greatest 
common divisor of the set H(w). Thus u(w) divides drs. Let F(w) be the largest 
multiple of u (T) which is not expressible as a non-negative linear combination 
of the numbers in H(r). F(ir) exists by Remark 5. Let N(w) = s(r) + F(T) 
and let Nrs — max{iV(7r)} taken over all acyclic paths from a vertex i G Fr 

to a vertex 7 G Fs for all choices of V(r). Nrs exists since the cardinality of the 
set {N(ir)} is finite. In this setting we have the following theorem. 

THEOREM 4. If Cr 7* 0, Cs ^ 0, if 

ii € Ipir, ji € Iqi', i2 G IPi
r, 72 G /«*, 

if ki + pi — qi = k2 + P2 — q2 (mod d„) , if atljl<
kl) > 0 awd if k2 > Nrsi 

then ai2j2<**> > 0. 

Proof. Since a^^^ > 0, there is a path of length &i from ix to ji. Let x be 
an acyclic subpath from i\ to 7*1. Consider a path which results by adjoining 
to T a path from i2 to ii in .D Cr and a path from 71 to 72 in Z> Cs >

 a n d let a: be a 
path from i2 to72 which is an acyclic subpath of this path. We have u(a) = u (ir). 
Also 

s (a) = s (IT) + pi — p2 + q2 — qi (mod drs), 
k2 •= ki + pi — p2 + q2 — qi (mod dr8), 
ki E= S(TT) (mod U(T)). 

Thus 
&2 == 5(a) (mod «(«)). 

Also &2 > N(a) = s(a) + F (a). It follows that k2 = 5(a), where fis a positive 
integer. Hence fu (a) > ^(a) . But since fu (a) is a multiple of u(a) which is 
greater than F (a), it follows that fu (a) is a non-negative linear combination 
of the numbers in H (a). Thus we have a path from i2 to j 2 of length &2 and 
ai2j2^ > 0. 

There are a number of useful corollaries to this theorem. 

COROLLARY 1. If Cr 9* 0, Cs 9* 0, if 

ii € Ipir, ji £ Jffi*, *2 € i"M
r, 72 G /„*, 

#" *i + £1 — <Li = k2 + p2 — q2 (mod drs), if ki > Nrs and k2 > NTS, then 
aiiji(kl) > 0 if and only if ai2j2

ik2) > 0. 
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Putting pi = p2 and qi = q2 = q in Corollary 1, we have Corollary 2. 

COROLLARY 2. If CT ^ 0, Cs 9e 0, i\ and i2 G / / , ji and j2 G / / , ki = &2 

(mod drs) and if ki > Nrs,k2 > N^thena^j^ > 0ifandonlyifai2h
(k2) > 0. 

Putting ki = &2 in Corollary 2, we get Corollary 3. 

COROLLARY 3. If Cr ^ 0, Cs ^ 0 awd if k > NrS} then either CT
v
s
q
{lc) > 0 or 

Cpq{jc) = 0 for every such k. 

COROLLARY 4. If Cr 9*0, Cs ?* 0, if ki > Nrsi k2 > Nrs and if 

ki + pi — qi = k2 + p2 — q2 (mod d„) , 

then C£%> > 0 if and only if Cr
pfqf > 0. 

COROLLARY 5. / / Cr ^ 0 , Cs ^ 0, if k > NTS and if pi — qi = p2 — q2 

(mod drs), then C%™ > 0 if and only if C££ > 0. 

There are obvious modifications of Theorems 3 and 4 when exactly one of 
Cr and Cs is zero, with drs being replaced by whichever one of dT and ds is 
defined. 

When Cr = Cs = 0, then Cr and Cs are 1 by 1 zero matrices and CTS is 1 by 1. 
Whether or not CTS

{1c) is zero is decided by criterion (e) or criterion (f). 
As an example consider the 22 by 22 reducible matrix shown below. In this 

0 1 0 
1 0 1 
1 1 0 

1 ! 

"ft"~T— 

0 1 1 0 0 
0 0 0 1 0 
0 0 0 1 0 
0 0 0 0 1 
1 0 0 0 0 O ' i 
A ! V V ; A : V o i \ ^ _ ^ 

T i Vij A À ! V | A 1 0 
* i * ! * 

1 
* 1 * 0 

* | * | * * ! * * ; * * * ; * 1 1 
* , * , * * ; * * ! * | * i 

* i * *i * 0 

A) v v ; A ! v A ! Vi 1 * 0 1 1 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 
0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 

r i V I A A ! V ! A 
V j A A ! V i A 

v ; A 
V ! A 

* 
* 

0 1 1 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 
0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 

A i v v i A ; v 
A ! V V j A ; V 
A] V V ! A ! V 

A ! V 
A ! V 
A | V 

* 
* 
* 

0 1 1 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 
0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 

V I A A \ V ! A V i A * 

0 1 1 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 
0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 

A ! V V ! A j V A i V * 

0 1 1 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 
0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 ! ! i V ; A A V [ A V i A * 

0 1 1 0 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 
0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 
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matrix we have m = 7 with d\ = 1, d2 = 4, d% = 2, d4 undefined, d5 = 1, 
d6 undefined, and d7 = 6. The subdiagonal blocks Crs are bounded by solid 
lines. Within these blocks the submatrices CT

V\ are bounded by dotted lines. 
For the places in the matrix below the diagonal blocks there exists N such 

that the positive or zero state of the entry in each place can be described for 
all powers of t > N according to the following legend : 

* indicates that the entry is zero, 
A indicates that the entry is zero if t is odd and positive if t is even, 
V indicates that the entry is positive if / is odd and zero if t is even. 

An entry in a place not identified by *, A, or V is positive. 
In (3) the authors have made an observation relative to Markov chains. 

Specifically, if A is the transition matrix of an ergodic Markov chain which 
is irregular and if the index of imprimitivity of A is d (d > 1), then there are 
d limiting forms for A l as / —» 00 and these are expressible in terms of the fixed 
vector of one of the diagonal components of Ad and the cyclic components of A. 
If the Markov chain is not ergodic, then the transition matrix is reducible. 
For such a matrix, the results of (3) may be combined with the results of this 
paper to assist in finding the various limiting forms of the powers of the 
matrix. 

Postscript (June 2, 1964). At a matrix conference held in Gatlinburg, 
Tennessee, April 13-18, 1964, M. S. Lynn and O. Taussky called our attention 
to the following reference: D. Rosenblatt, On the graphs and asymptotic forms 
of finite Boolean relation matrices and stochastic matrices. Naval Res. Logistic 
Quart., 4 (1957), 151-67. 

This paper contains several fundamental results on the role of graph theory 
in the study of non-negative matrices. Two such results which the authors of 
this paper have used in much of their work are the following: (1) A non-
negative matrix is irreducible if and only if the corresponding directed graph 
is strongly connected, and (2) a non-negative matrix is primitive if and only 
if the corresponding directed graph is strongly connected and the circuit 
lengths are relatively prime. 

Had the authors been aware of this paper before, they would have included 
it as a reference in several of their previous papers. 
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