THE STRUCTURE OF POWERS OF NON-NEGATIVE MATRICES

A. L. DULMAGE AND N. S. MENDELSOHN

1. Introduction. The theory of non-negative matrices was initiated by Perron (7) and Frobenius (4). Wielandt in (11) gives an elegant exposition of the subject.

It is well known to workers in the field that if a matrix A has all its entries non-negative real numbers, then the pattern of zeros and non-zeros of A completely determines the pattern of zeros and non-zeros in every power of A. Ptak in (8) and Ptak and Sedlacek in (9) describe this behaviour in terms of some combinatorial constructs.

The main object of this paper is to discuss the structure of powers of a reducible non-negative matrix in terms of properties of the directed graph of the matrix. The constituents of a reducible matrix are irreducible, and the structure of powers of irreducible matrices has been considered in (3, 4, 8, 9, 11). In this paper there is a discussion of the structure of the subdiagonal blocks in powers of reducible matrices.
2. Definitions, notation, and background. A finite directed graph D has a vertex set $V=\{1,2, \ldots, n\}$ and a set of edges each of which is an ordered pair (i, j) of vertices. We say that the edge (i, j) joins vertex i to vertex j. We say that i is joined to j by a path of length m in D if D has a set of m edges $\left(i, k_{1}\right)\left(k_{1}, k_{2}\right)\left(k_{2}, k_{3}\right) \ldots\left(k_{m-1}, j\right)$. A path of length m from vertex i to vertex i is called a cycle of length m. An edge (i, i) is a cycle of length 1 . Such a cycle is called a loop. If (i, i) is an edge, the vertex i is a loop vertex. If the edges of a cycle are such that each vertex which occurs appears exactly once as the first member of an edge, the cycle is called a circuit. A directed graph D is strongly connected if, for any ordered pair of vertices i and j with $i \neq j$, there is a path in D from vertex i to vertex j. Thus a graph with one vertex and no edges is strongly connected.

The remarks in this section are well known. In some cases the proofs which are given are simpler than those found elsewhere.

Remark 1. In a directed graph D, the greatest common divisor of the lengths of all the cycles is equal to the greatest common divisor of the lengths of all the circuits.

Proof. Since a circuit is a cycle, the g.c.d. of the cycle lengths divides the length of every circuit.

[^0]Since a cycle is a union of circuits, the g.c.d. of the circuit lengths divides the length of every cycle.

If D is strongly connected, the g.c.d. of the cycle lengths is denoted by d and is called the index of imprimitivity of D.

Remark 2. Let D be a strongly connected directed graph. If d_{i} is the g.c.d. of the lengths of the cycles through vertex i, then d_{i} is equal to the index of imprimitivity of D.

Proof. Let a cycle through vertex j have length m_{j}. Since D is strongly connected, there is a path from i to j and a path from j to i. Let such paths have lengths u and v respectively. Combining these two paths, we have a cycle of length $u+v$ through vertex i. Combining this cycle with the cycle of length m_{j} through vertex j we have a cycle of length $u+v+m_{j}$ through i. It follows that d_{i} divides both $u+v$ and $u+v+m_{j}$. Hence d_{i} divides m_{j} and thus d_{i} divides d_{j}. Similarly d_{j} divides d_{i}. Thus $d_{i}=d_{j}$ and Remark 2 follows.

Remark 3. Let D be a strongly connected directed graph with index of imprimitivity d. If two paths from vertex i to vertex j have lengths u and v respectively, then $u \equiv v(\bmod d)$.

Proof. Let a path from j to i have length t. There are cycles through i of lengths $u+t$ and $v+t$ respectively. Thus $u+t \equiv v+t \equiv 0(\bmod d)$.

Remark 3 enables us to partition the vertex set V of a strongly connected directed graph into disjoint non-null sets of imprimitivity. Select an arbitrary vertex, say vertex 1 for definiteness. For $k=1,2,3, \ldots, d$, define a set I_{k} to consist of all vertices i such that the lengths of all the paths from vertex 1 to vertex i are congruent to $k(\bmod d)$. Vertex 1 is in I_{d}. The following remark is immediate.

Remark 4. If the strongly connected directed graph D has sets of imprimitivity $I_{1}, I_{2}, \ldots, I_{d}$, then the length of any path from vertex $i \in I_{r}$ to vertex $j \in I_{s}$ is congruent to $s-r(\bmod d)$.

The theorem stated as Remark 5 is due to Schur. A proof is given in (6, pp. 6f).

Remark 5. A set of positive integers which is closed under addition contains all but a finite number of multiples of its greatest common divisor.

Remark 6. Let D be a strongly connected directed graph with index d of imprimitivity. Then there exists an integer N such that if the vertices i and j belong respectively to the imprimitivity sets I_{r} and I_{s}, then there are paths from i to j of length $s-r+t d$ for all $t \geqslant N$.

Proof. There is a path from i to j and thus there exists a non-negative integer $v_{i j}$ such that the length of this path is $s-r+v_{i j} d$. Now apply

Remark 5, considering the set of lengths of cycles through vertex j which is closed under addition. There exists N_{j} such that there are cycles of length $v d$ through vertex j for all $v \geqslant N_{j}$. Taking N to be the maximum of $\left\{v_{i j}+N_{j}\right\}$ taken over all ordered pairs of vertices, the result follows.

In a directed graph D, two collections of sets of paths from vertex i to vertex j are said to be equivalent if the union of the sets of each collection contains all but a finite number of the paths of the union of the sets of the other collection. Let b be an integer and let u be a positive integer. A set of paths in a directed graph D is said to be a (b, u)-sequence of paths from vertex i to vertex j if and only if (1) for every path in the set there exists an integer t such that the length of the path is $b+t u$ and (2) there exists an integer N such that for every integer $t \geqslant N$ there is a path in the set of length $b+t u$. Thus a (b_{1}, u)-sequence is equivalent to a (b_{2}, u)-sequence if and only if $b_{1} \equiv b_{2}(\bmod u)$. In Remark 5 the set of paths from i to j is an $(s-r, d)$-sequence.

Let A be an n by n matrix whose entries $a_{i j}$ are all real numbers. A is said to be reducible if there exists a permutation matrix P such that

$$
P^{-1} A P=\left[\begin{array}{cc}
C & O \\
E & D
\end{array}\right],
$$

where O represents a zero matrix and C and D are square matrices. Otherwise, A is said to be irreducible. Thus an n by n matrix of zeros is irreducible if $n=1$ and reducible if $n>1$. If A is reducible, there is a permutation matrix P such that

$$
P^{-1} A P=\left[\begin{array}{lllllll}
C_{1} & & & & & \\
C_{21} & C_{2} & & & & \\
C_{31} & C_{32} & C_{3} & & & & \\
\cdot & \cdot & \cdot & & & & \\
\cdot & \cdot & \cdot & & & & \\
\cdot & \cdot & \cdot & & & & \\
C_{m 1} & C_{m 2} & C_{m 3} & \cdot & \cdot & \cdot & C_{m}
\end{array}\right]
$$

where each submatrix $C_{p}(p=1,2, \ldots, m)$ is square and irreducible. The matrices C_{p} are called the constituents of A. The uniqueness of the constituents, apart from transformation by a permutation matrix, follows from the fact that the strong components of a directed graph are uniquely determined. An algorithm for finding these constituents has been given in (2) and in (5). The matrix $P^{-1} A P$ will be called a canonical transform of the reducible matrix A. If we partition the matrix $P^{-1} A P$ by means of the constituents, the submatrices above the diagonal of constituents are zero. The submatrices below the diagonal, denoted by $C_{r s}, r>s$, are called the subdiagonal blocks of A. Let the rows and columns of A be indexed $1,2, \ldots, n$ from top to bottom and left to right in the usual manner. Let $F_{p}, p=1,2, \ldots, m$, denote the set of those
rows or columns of A which are the rows or columns of C_{p}. Thus the row set of $C_{r s}$ is F_{r} and the column set is F_{s}. Let $P^{-1} A^{k} P=\left(a_{i j}{ }^{(k)}\right)$ and let

$$
P^{-1} A^{k} P=\left[\begin{array}{lllllll}
C_{1}{ }^{(k)} & & & & & & \\
C_{21}{ }^{(k)} & C_{2}{ }^{(k)} & & & & & \\
C_{31}{ }^{(k)} & C_{32}{ }^{(k)} & C_{3}{ }^{(k)} & & & & \\
\cdot & \cdot & \cdot & \cdot & & & \\
\cdot & \cdot & \cdot & & \cdot & & \\
\cdot & \cdot & \cdot & & & \cdot & \\
C_{m 1}{ }^{(k)} & C_{m 2}{ }^{(k)} & \cdot & \cdot & \cdot & & C_{m}{ }^{(k)}
\end{array}\right] .
$$

We have $C_{p}{ }^{(k)}=C_{p}{ }^{k}$.
A matrix A is non-negative if all its entries are zero or positive. A matrix A is positive if all its entries are positive and this is written $A>0$. If a matrix A is non-negative and irreducible, then A is said to be primitive if and only if there exists a positive integer t such that $A^{t}>0$. It is well known (4, 7, 11) that if A is non-negative and irreducible, then A is primitive if and only if A has a unique characteristic root of maximum modulus and if this root has multiplicity 1. A non-negative irreducible matrix A which is not primitive is called imprimitive.

The directed graph D_{A} of an n by n matrix A of reals has vertex set $V=(1,2, \ldots, n)$. The ordered pair (i, j) is an edge of D_{A} if and only if $a_{i j} \neq 0$.

The following remark is well known ($\mathbf{1}, \mathbf{5}, \mathbf{1 0}$).
Remark 7. The matrix A is irreducible if and only if D_{A} is strongly connected.
Let A be an irreducible matrix and let $I_{1}, I_{2}, \ldots, I_{d}, d>1$, be the sets of imprimitivity of D_{A}. Clearly, there exists a permutation matrix Q such that

$$
Q^{-1} A Q=\left[\begin{array}{llllll}
O_{1} & B_{1} & & & & \\
\cdot & O_{2} & B_{2} & & & \\
\cdot & & \cdot & & & \\
\cdot & & & \cdot & & \\
\cdot & & & & O_{d-1} & B_{d-1} \\
B_{d} & & & & & O_{d}
\end{array}\right]
$$

Here $O_{1}, O_{2}, \ldots, O_{d}$ are square zero matrices and, for $k=1,2, \ldots, d$, the set I_{k}, considered as a set of integers, is the row and column set of O_{k} in A. The matrices $B_{1}, B_{2}, \ldots, B_{d}$ are rectangular non-zero matrices. If A is an irreducible matrix for which $d>1$, the matrix $Q^{-1} A Q$ will be called a canonical transform of the irreducible matrix A. In (3), these matrices have been called the cyclic components of A with respect to Q. Every entry of $Q^{-1} A Q$ which is not in B_{1}, B_{2}, \ldots, or B_{d} is zero. The sets $I_{1}, I_{2}, \ldots, I_{d}$ may be called the sets of imprimitivity of the matrix A (as well as of D_{A}) and d may be called the
index of imprimitivity of A. Clearly, if A is non-negative, d is the smallest power of $Q^{-1} A Q$ which has the form $\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{d}\right)$. The matrices $A_{1}, A_{2}, \ldots, A_{d}$ have been called the diagonal components of A^{d} with respect to Q (3). If f is a divisor of d, there exists a permutation matrix R such that $R^{-1} A^{f} R$ has the form $\operatorname{diag}\left(A_{1}{ }^{*}, A_{2}{ }^{*}, \ldots, A_{f}{ }^{*}\right)(\mathbf{3}, \mathbf{1 0})$.

Remark 8. If A is non-negative, the graph D_{A} has a path of length t from vertex i to vertex j if and only if $a_{i j}{ }^{(t)}>0$.

REmARK 9. If A is imprimitive with index of imprimitivity d and if $A_{1}, A_{2}, \ldots, A_{d}$ are the diagonal components of A^{d} with respect to Q, then A_{p} is primitive for $p=1,2, \ldots, d$.

Proof. By Remark 6, if $i \in I_{p}$ and $j \in I_{p}$ we have paths from i to j in D of lengths $t d$ for all $t \geqslant N_{p}$. By Remark $6, a_{i j}{ }^{(t d)}>0$ for i and j in I_{p} and $t \geqslant N_{p}$. Thus $A_{p}{ }^{t}>0$ for $t \geqslant N_{p}$.

Remark 9 has been generalized in (3).
In a directed graph D each vertex belongs to exactly one maximal strongly connected subgraph. These subgraphs are called the strong components of D. We denote them by $D_{1}, D_{2}, \ldots, D_{m}$; let F_{p} be the vertex set of D_{p}. The directed graph D^{*} induced by the partitioning $V=F_{1}+F_{2}+\ldots+F_{m}$ is defined as follows. The vertices of D^{*} are $F_{1}, F_{2}, \ldots, F_{m}$ and an ordered pair (F_{r}, F_{s}) is an edge of D^{*} if and only if there exists $i \in F_{r}, j \in F_{s}$ such that (i, j) is an edge of D. It is well known $(\mathbf{1}, \mathbf{5})$ that $F_{1}, F_{2}, \ldots, F_{m}$ may be so indexed that (F_{r}, F_{s}) is an edge of D^{*} only if $r \geqslant s$. If $m>1, D^{*}$ is not strongly connected, for with this indexing there is no path from F_{1} to any other vertex. There are m strong components of D^{*} each consisting of a single vertex.

Now let A be a reducible matrix with constituents $C_{1}, C_{2} \ldots, C_{m}$ and let D_{A} be the directed graph of A. The strong components of D_{A} are the subgraphs $D_{C_{p}}$ and the indexing may be arranged so that F_{p} is the vertex set of $D_{C_{p}}$, $p=1,2, \ldots, m$. The set F_{p} can be thought of either as the vertex set of $D_{C_{p}}$, or as the row or column set of C_{p}. If $D_{A}{ }^{*}$ is the graph induced from D_{A} by the partitioning $V=F_{1}+F_{2}+\ldots+F_{p}$, it follows that $\left(F_{r}, F_{s}\right), r>s$, is an edge of $D_{A}{ }^{*}$ if and only if $C_{r s} \neq 0$ and that $\left(F_{r}, F_{r}\right)$ is an edge if and only if $C_{r} \neq 0$.

If $C_{p} \neq 0$, let d_{p} be the index of imprimitivity of C_{p}. If $C_{p}=0, d_{p}$ is undefined. It is worth noting, in this connection, that if $C_{p}=0$, then C_{p} is a 1 by 1 matrix, since, if $n>1$, an n by n zero matrix is reducible.
3. The structure of powers of a non-negative reducible matrix. Let A be a reducible matrix with constituents $C_{1}, C_{2}, \ldots, C_{m}$ and subdiagonal blocks $C_{r s}, r>s$. The matrix $C_{p}{ }^{(k)}$ is equal to the k th power of C_{p} and C_{p} is irreducible. The structure of powers of irreducible matrices has been discussed in $(\mathbf{3}, \mathbf{8}, \mathbf{1 1})$. In this section, the structure of subdiagonal blocks $C_{r s}{ }^{(k)}$ which occur in the k th power of $P^{-1} A P$ is discussed.

Theorem 1. Let A be a reducible non-negative matrix with constituents $C_{1}, C_{2}, \ldots, C_{m}$ and let $F_{1}, F_{2}, \ldots, F_{m}$ be the row (or column) sets of these constituents. Let r and s be a pair of integers $1 \leqslant r<s \leqslant m$. Then exactly one of the following four alternatives holds:
(1) $C_{r s}{ }^{(k)}=0$ for all k.
(2) For some $k, C_{r s}{ }^{(k)} \neq 0$, but there exists N such that $C_{r s}{ }^{(k)}=0$ for $k>N$.
(3) There exists N such that $C_{r s}{ }^{(k)}>0$ for $k>N$.
(4) Corresponding to every integer N and to every pair i, j, with $i \in F_{r}$ and $j \in F_{s}$ there exists $k_{1}>N, k_{2}>N$ such that $a_{i j}{ }^{\left(k_{1}\right)}=0$ and $a_{i j}{ }^{\left(k_{2}\right)}>0$.

Proof. The four alternatives are mutually exclusive. It remains only to show that they are exhaustive. To this end we show that:
(a) if, for $i \in F_{r}, j \in F_{s}$ there exists N such that $a_{i j}{ }^{(k)}>0$ for $k>N$, then for every pair of vertices $i_{0} \in F_{r}$ and $j_{0} \in F_{s}$ there exists M such that $a_{i_{0} j_{0}}{ }^{(k)}>0$ for $k>M$, and
(b) if, for $i \in F_{r}, j \in F_{s}$ there exists N such that $a_{i j}{ }^{(k)}=0$ for $k>N$, then for every pair of vertices $i_{0} \in F_{r}$ and $j_{0} \in F_{s}$ there exists M such that $a_{i_{0} j_{0}}{ }^{(k)}=0$ for $k>M$.

To prove (a) note, since $D_{C_{r}}$ is strongly connected, that if $i \neq i_{0}$, there is a path in $D_{C_{r}}$ from i_{0} to i. Now define $u\left(i_{0}, i\right)$ as follows. If $i \neq i_{0}, u\left(i_{0}, i\right)$ is the length of the shortest path from i_{0} to i and if $i=i_{0}, u\left(i_{0}, i\right)=0$. Similarly, define $v\left(j, j_{0}\right)$ to be the length of the shortest path from j to j_{0} if $j \neq j_{0}$ and to be zero if $j=j_{0}$. Thus for $k>N+u\left(i_{0}, i\right)+v\left(j, j_{0}\right)$ there is a path from i_{0} to j_{0} of length k. Thus, if $M=N+u\left(i_{0}, i\right)+v\left(j, j_{0}\right)$ we have $a_{i_{0} j_{0}}{ }^{(k)}>0$ for $k>M$. (b) follows at once, also.

If none of (1), (2), or (3) holds, then at least one pair of vertices i and j, $i \in F_{r}, j \in F_{s}$, has the property that to every N there corresponds $k_{1}>N$ and $k_{2}>N$ such that $a_{i j}{ }^{\left(k_{1}\right)}=0$ and $a_{i j}{ }^{\left(k_{2}\right)}>0$. From (a) and (b) it follows that every pair of vertices i and $j, i \in F_{r}, j \in F_{s}$, has this property. Thus alternative (4) holds.

In the induced graph $D_{A}{ }^{*}, F_{s}$ is not a loop vertex if and only if C_{s} is a 1 by 1 zero matrix. Thus F_{s} is a loop vertex if and only if d_{s} is defined. The following theorem concerns a path in $D_{A}{ }^{*}$ none of the edges of which is a loop and at least one vertex of which is a loop vertex.

Theorem 2. If $\left(F_{p_{1}}, F_{p_{2}}\right),\left(F_{p_{2}}, F_{p_{3}}\right), \ldots\left(F_{p_{t-1}}, F_{p_{t}}\right)$ is a path in $D_{A}{ }^{*}$, $p_{1}>p_{2}>\ldots>p_{t}$, and if $C_{p_{q}} \neq 0$ for at least one q, and if u is the greatest common divisor of those $d_{p_{q}}$ which are defined, then, for every pair $i, j, i \in F_{p_{1}}$, $j \in F_{p t}$, there exist integers b and N such that $a_{i j}{ }^{(k)}>0$ for $k=b+$ wu and $w>N$. If $u=1$, then alternative (3) of Theorem 1 holds.

Proof. There exists an entry $a_{i_{1} i_{2}}$ of $C_{p_{1 p 2}}$ which is $>0, a_{i_{3} i_{4}}>0$ in $C_{p_{2 p_{3}}}$, $a_{i_{5} i_{6}}>0$ in $C_{p_{3} p_{4}}, \ldots$, and $a_{i_{2 t-3 i_{2 t-2}}}>0$ in $C_{p_{t-1} p_{t}}$. If $C_{p_{1}}=0$, then $i=i_{1}$ and if $C_{p_{1}} \neq 0$ and $i \neq i_{1}$, then since $D_{c_{p_{1}}}$ is strongly connected, there exists
a path in $D_{C_{p_{1}}}$ from i to i_{1}. If $i_{2} \neq i_{3}$, then $C_{p_{2}} \neq 0$ and there exists a path in $D_{C_{p_{2}}}$ from i_{2} to i_{3}. Continuing, finally we have $i_{2 t-2}=j$ or a path in $D_{C_{p_{t}}}$ from $i_{2 t-2}$ to j. Let the length of the resulting path from i to j be b.

By Remarks 3 and 5 , for each $q=1,2, \ldots, t$ such that $C_{p_{q}} \neq 0$ there exists N_{q} such that for $w_{q}>N_{q}, D_{C_{p_{q}}}$ has a cycle of length $w_{q} d_{q}$ through $i_{2 q-2}$ for $q=2,3, \ldots, t$ and through i_{1} for $q=1$. Thus we have paths from i to j of length $b+\sum w_{q} d_{p_{q}}$ for all $w_{q}>N_{q}$ where the summation is over all $q=1,2, \ldots, t$ for which $C_{p_{q}} \neq 0$. By Remark 5 , there exists a (b, u)-sequence of paths from i to j.

The following example is interesting. It illustrates the fact that alternative (3) of Theorem 1 may hold when the number u of Theorem 2 is >1 :

$$
A=\left[\begin{array}{llllll:llll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ll}
C_{1} & O \\
C_{21} & C_{2}
\end{array}\right] .
$$

We can apply Theorem 2 , since we have the path $\left(F_{2}, F_{1}\right)$ consisting of a single edge in $D_{A}{ }^{*}$. Moreover, C_{2} and C_{1} are $\neq 0$ with $d_{2}=4$ and $d_{1}=6$. Suppose we choose $i=9$ and $j=4$ as the pair of vertices respectively in F_{2} and F_{1}. We can take $a_{i_{1} i_{2}}$ to be $a_{10,2}$ or $a_{10,3}$. In the first case we have the path $(9,10)$ $(10,2)(2,3)(3,4)$ of length $b=4$ from vertex 9 to vertex 4 ; in the second case we have the path $(9,10)(10,3)(3,4)$ of length $b=3$. These paths may be augmented by adding cycles of length $d_{1}=6$ in $D_{C_{1}}$ and $d_{2}=4$ in $D_{C_{2}}$. Thus from vertex 9 to vertex 4 in D_{A} we have paths of length $4+6 w_{1}+4 w_{2}$ and $3+6 w_{1}+4 w_{2}$ for all w_{1} and w_{2}. The number u of Theorem 2 is the g.c.d. of 4 and 6 . Thus $u=2$, and we have a $(4,2)$-sequence and a (3, 2)sequence of paths from 9 to 6 . Since 4 and 3 are congruent to 0 and $1(\bmod 2)$, the collection consisting of these two sequences is equivalent to a (0,1) sequence of paths from 9 to 6 . Thus $a_{96}{ }^{(k)}>0$ for $k>$ some integer N. By Theorem 1, alternative (3) holds, and we have $C_{21}{ }^{(k)}>0$ for all sufficiently large k.

We now describe criteria for deciding whether alternative (1), (2), (3), or (4) of Theorem 1 hold.

Criterion (a). If $i \in F_{r}$ and $j \in F_{s}$, then alternative (1) holds if and only if there is no path in D_{A} from vertex i to vertex j.

Criterion (b). If $i \in F_{r}$, and $j \in F_{s}$, alternative (2) holds if and only if there
is at least one path in D_{A} from vertex i to vertex j but no (b, u)-sequence of paths from i to j. Given a path in D_{A} from i to j, the corresponding induced path in $D_{A}{ }^{*}$ must be such that if F_{p} is a vertex of the induced path, then C_{p} is a 1 by 1 zero matrix. This means that no vertex of the induced path can be a loop vertex in $D_{A}{ }^{*}$.

Criterion (c). If $i \in F_{r}$ and $j \in F_{s}$, then alternative (3) holds if and only if there is a $(0,1)$-sequence of paths of D_{A} from vertex i to vertex j.

Any path of length b in D_{A} from $i \in F_{r}$ to $j \in F_{s}$ induces a path in $D_{A}{ }^{*}$. The path of length b in D_{A} gives rise to a (b, u)-sequence of paths in D_{A}, if and only if at least one of the vertices F_{p} of the induced path is such that $C_{p} \neq 0$. Now suppose that at least one path from i to j gives rise to a (b, u)sequence. Let g be the maximum number of mutually non-equivalent sequences which have the same second member u. Denoting these sequences by (b_{1}, u), $\left(b_{2}, u\right), \ldots,\left(b_{g}, u\right)$ we see that no two b 's are in the same residue class $(\bmod u)$. Thus $g \leqslant u$. If $g=u$, then the collection of g distinct sequences is equivalent to a (0,1)-sequence.

Criterion (d). If $i \in F_{r}$ and $j \in F_{s}$ and if there exist u mutually nonequivalent sequences of paths from i to j each of which has the same second member u, then alternative (3) holds.

Two different paths from vertex i to vertex j in D_{A} may induce different paths from F_{r} to F_{s} in $D_{A}{ }^{*}$, and these may give rise to a (b_{1}, u_{1}) sequence and a (b_{2}, u_{2})-sequence with $u_{1} \neq u_{2}$. Since the number of paths from F_{r} to F_{s} in $D_{A}{ }^{*}$ with no edges which are loops is finite, there must be at most a finite number M of such distinct u 's. Now let

denote the totality of mutually non-equivalent sequences of paths from i to j. If $v_{y}=u_{y}$ for some $y=1,2, \ldots, M$, then the sequences $\left(b_{y_{x}}, u_{y}\right)$, $x=1,2, \ldots, v_{y}$, are together equivalent to a $(0,1)$-sequence and alternative (3) holds. In any case, let L be the least common multiple of $u_{1}, u_{2}, \ldots, u_{M}$. Each sequence ($b_{y_{x}}, u_{y}$) is equivalent to the following collection $\Sigma_{y x}$ of mutually non-equivalent sequences:

$$
\left(b_{y_{x}}, L\right),\left(b_{y_{x}}+u_{y}, L\right),\left(b_{y_{x}}+2 u_{y}, L\right), \ldots,\left(b_{y_{x}}+L-u_{y}, L\right)
$$

There are L / u_{y} sequences in the collection $\Sigma_{y x}$. Now let Σ denote the union of the collections $\Sigma_{y x}$ for $y=1,2, \ldots, M$ and $x=1,2, \ldots, v_{y}$. Two sequences of the collection Σ are equivalent if and only if their first members are in the same residue class $(\bmod L)$.

Criterion (e). If $i \in F_{r}$ and $j \in F_{s}$ and if the collection Σ contains L mutually non-equivalent sequences of paths from vertex i to vertex j, then Σ is equivalent to a (0,1)-sequence and alternative (3) holds.

Criterion (f). If $i \in F_{r}$ and $j \in F_{s}$ and if the collection Σ contains at least one sequence but fewer thin L mutually non-equivalent sequences of paths from vertex i to vertex j, then alternative (4) holds.

Alternative (4) of Theorem 1 is the most interesting and complex of the four alternatives. We conclude this section with a decomposition of the subdiagonal blocks which yields a more rounded characterization in this case.

Suppose that $C_{r} \neq 0$ and $C_{s} \neq 0$ and let d_{r} and d_{s} be their indices of imprimitivity. Let $d_{r s}$ be the greatest common divisor of d_{r} and d_{s}. For (b, u)-sequences of paths from vertex $i \in F_{r}$ to vertex $j \in F_{s}$, the second members $u_{1}, u_{2}, \ldots, u_{m}$ are divisors of d_{r} and d_{s} and hence are divisors of $d_{r s}$. Thus the least common multiple of $u_{1}, u_{2}, \ldots, u_{r}$ is a divisor of $d_{r s}$, and hence a (b, L)-sequence of paths is equivalent to $d_{r s} / L$ mutually non-equivalent sequences with second member $d_{r s}$. The permutation matrix P used to achieve a canonical transform of the reducible matrix A can be so chosen that it achieves a canonical transform of any constituent C_{p} for which $d_{p}>1$. Let $I_{1}{ }^{r}, I_{2}{ }^{r}, \ldots, I_{d_{r}}{ }^{r}$ be the sets of imprimitivity of $D_{C_{r}}$ and let $I_{1}{ }^{s}, I_{2}{ }^{s}, \ldots, I_{d_{s}}{ }^{s}$ be the sets of imprimitivity of $D_{C_{s}}$. The set F_{r} is the union of $I_{1}{ }^{r}, I_{2}{ }^{r}, \ldots, I_{d_{r}}{ }^{r}$ and the set F_{s} is the union of $I_{1}{ }^{s}, I_{2}{ }^{s}, \ldots, I_{d_{s}}{ }^{s}$. Now let $C_{r s}$ be partitioned

$$
C_{r s}=\left[\begin{array}{llllll}
C_{11}^{r s} & C_{12}^{r s} & \cdot & \cdot & \cdot & C_{1 d_{s}}^{r s} \\
C_{21}^{r s} & C_{22}^{r s} & \cdot & \cdot & \cdot & C_{2 d_{s}}^{r s} \\
\cdot & & & & & \\
\cdot & & & & & \\
\cdot & & & & & \\
C_{d r_{1}}^{r s} & C_{d r_{2}}^{r s} & \cdot & \cdot & \cdot & C_{d d_{d}}^{r s}
\end{array}\right],
$$

so that $C_{p q}^{r s}, 1 \leqslant p \leqslant d_{r}, 1 \leqslant q \leqslant d_{s}$, is the submatrix with row set $I_{p}{ }^{r}$ and column set $I_{q}{ }^{s}$. Let $C_{p q}^{r s(k)}$ denote the submatrix of $C_{r s}{ }^{(k)}$ which has row set $I_{p}{ }^{r}$ and column set $I_{q}{ }^{s}$. In this setting, we have the following theorem.

Theorem 3. If $C_{r} \neq 0, C_{s} \neq 0$, and if

$$
i_{1} \in I_{p_{1}}{ }^{r}, \quad j_{1} \in I_{q_{1}}{ }^{s}, \quad i_{2} \in I_{p_{2}}{ }^{r}, \quad j_{2} \in I_{q_{2}}{ }^{s}
$$

and if $b_{1}+p_{1}-q_{1} \equiv b_{2}+p_{2}-q_{2}\left(\bmod d_{\tau s}\right)$, then there exists a $\left(b_{1}, d_{\tau s}\right)$ sequence of paths in D_{A} from i_{1} to j_{1} if and only if there exists a $\left(b_{2}, d_{r s}\right)$-sequence of paths from i_{2} to j_{2}.

Proof. Suppose there exists a $\left(b_{1}, d_{\tau s}\right)$-sequence of paths in D_{A} from i_{1} to j_{1}. Since $D_{C_{r}}$ has index of imprimitivity d_{r}, there exists a path from i_{2} to i_{1} in $D_{C_{r}}$ of length $p_{1}-p_{2}+e d_{r}$ for some integer e. Also, there exists a path in $D_{C_{s}}$ from j_{1} to j_{2} of length $q_{2}-q_{1}+f d_{r}$, where f is an integer. Since
$b_{1}+p_{1}-p_{2}+q_{2}-q_{1} \equiv b_{2}\left(\bmod d_{r s}\right)$, these paths combine with the $\left(b_{1}, d_{r s}\right)$ sequence from i_{1} to j_{1} to yield a ($b_{2}, d_{r s}$) sequence from i_{2} to j_{2}.

Now let $i \in F_{r}, j \in F_{s}$ and let π be a path from i to j which has no subgraph which is a cycle. Let $s(\pi)$ be the length of π. Let $F_{r}, F_{p_{1}}, F_{p_{2}}, \ldots F_{p_{t}}, F_{s}$, be the vertices of $D_{A}{ }^{*}$ in the path induced by π. Select a vertex on π in each of $F_{r}, F_{p_{1}}, \ldots, F_{p_{t}}, F_{s}$ and let $V(\pi)$ be the resulting set of vertices. Let $H(\pi)$ be the set of lengths of cycles through these vertices and let $u(\pi)$ be the greatest common divisor of the set $H(\pi)$. Thus $u(\pi)$ divides $d_{r s}$. Let $F(\pi)$ be the largest multiple of $u(\pi)$ which is not expressible as a non-negative linear combination of the numbers in $H(\pi) . F(\pi)$ exists by Remark 5. Let $N(\pi)=s(\pi)+F(\pi)$ and let $N_{r s}=\max \{N(\pi)\}$ taken over all acyclic paths from a vertex $i \in F_{r}$ to a vertex $j \in F_{s}$ for all choices of $V(\pi)$. $N_{r s}$ exists since the cardinality of the set $\{N(\pi)\}$ is finite. In this setting we have the following theorem.

Theorem 4. If $C_{r} \neq 0, C_{s} \neq 0$, if

$$
i_{1} \in I_{p_{1}}{ }^{7}, \quad j_{1} \in I_{q_{1}}{ }^{s}, \quad i_{2} \in I_{p_{2}}{ }^{\top}, \quad j_{2} \in I_{q_{2}}{ }^{s}
$$

if $k_{1}+p_{1}-q_{1} \equiv k_{2}+p_{2}-q_{2}\left(\bmod d_{r s}\right)$, if $a_{i_{1} j_{1}}{ }^{\left(k_{1}\right)}>0$ and if $k_{2}>N_{r s}$, then $a_{i_{2} j_{2}}{ }^{\left(k_{2}\right)}>0$.

Proof. Since $a_{i_{1} j_{1}}{ }^{\left(k_{1}\right)}>0$, there is a path of length k_{1} from i_{1} to j_{1}. Let π be an acyclic subpath from i_{1} to j_{1}. Consider a path which results by adjoining to π a path from i_{2} to i_{1} in $D_{C_{r}}$ and a path from j_{1} to j_{2} in $D_{C_{s}}$, and let α be a path from i_{2} to j_{2} which is an acyclic subpath of this path. We have $u(\alpha)=u(\pi)$. Also

$$
\begin{aligned}
s(\alpha) & \equiv s(\pi)+p_{1}-p_{2}+q_{2}-q_{1}\left(\bmod d_{r s}\right), \\
k_{2} & \equiv k_{1}+p_{1}-p_{2}+q_{2}-q_{1}\left(\bmod d_{r s}\right), \\
k_{1} & \equiv s(\pi)(\bmod u(\pi)) .
\end{aligned}
$$

Thus

$$
k_{2} \equiv s(\alpha)(\bmod u(\alpha))
$$

Also $k_{2}>N(\alpha)=s(\alpha)+F(\alpha)$. It follows that $k_{2}=s(\alpha)$, where f is a positive integer. Hence $f u(\alpha)>F(\alpha)$. But since $f u(\alpha)$ is a multiple of $u(\alpha)$ which is greater than $F(\alpha)$, it follows that $f u(\alpha)$ is a non-negative linear combination of the numbers in $H(\alpha)$. Thus we have a path from i_{2} to j_{2} of length k_{2} and $a_{i_{2} j_{2}}{ }^{\left(k_{2}\right)}>0$.

There are a number of useful corollaries to this theorem.
Corollary 1. If $C_{r} \neq 0, C_{s} \neq 0$, if

$$
i_{1} \in I_{p_{1}}{ }^{\tau}, \quad j_{1} \in I_{q_{1}}^{s}, \quad i_{2} \in I_{p_{2}}{ }^{r}, \quad j_{2} \in I_{q_{2}}^{s},
$$

if $k_{1}+p_{1}-q_{1} \equiv k_{2}+p_{2}-q_{2}\left(\bmod d_{\tau s}\right)$, if $k_{1}>N_{\tau s}$ and $k_{2}>N_{\tau s}$, then $a_{i_{1} j_{1}}{ }^{\left(k_{1}\right)}>0$ if and only if $a_{i_{2} j_{2}}{ }^{\left(k_{2}\right)}>0$.

Putting $p_{1}=p_{2}$ and $q_{1}=q_{2}=q$ in Corollary 1, we have Corollary 2.
Corollary 2. If $C_{r} \neq 0, C_{s} \neq 0, i_{1}$ and $i_{2} \in I_{p}{ }^{r}, j_{1}$ and $j_{2} \in I_{q}{ }^{s}, k_{1} \equiv k_{2}$ $\left(\bmod d_{r s}\right)$ and if $k_{1}>N_{r s}, k_{2}>N_{r s}$, then $a_{i_{1} j_{1}}{ }^{\left(k_{1}\right)}>0$ if and only if $a_{i_{2} j_{2}}{ }^{\left(k_{2}\right)}>0$.

Putting $k_{1}=k_{2}$ in Corollary 2, we get Corollary 3.
Corollary 3. If $C_{r} \neq 0, C_{s} \neq 0$ and if $k>N_{r s}$, then either $C_{p q}^{s(k)}>0$ or $C_{p q}^{s s(k)}=0$ for every such k.

Corollary 4. If $C_{r} \neq 0, C_{s} \neq 0$, if $k_{1}>N_{r s}, k_{2}>N_{r s}$ and if

$$
k_{1}+p_{1}-q_{1} \equiv k_{2}+p_{2}-q_{2}\left(\bmod d_{\tau s}\right)
$$

then $C_{p_{1} q 1}^{r s(k)}>0$ if and only if $C_{p_{2} q_{2}}^{\tau s(k)}>0$.
Corollary 5. If $C_{r} \neq 0, C_{s} \neq 0$, if $k>N_{r s}$ and if $p_{1}-q_{1} \equiv p_{2}-q_{2}$ $\left(\bmod d_{r s}\right)$, then $C_{p 1 q 1}^{r s(k)}>0$ if and only if $C_{p_{2} q 2}^{r s(k)}>0$.

There are obvious modifications of Theorems 3 and 4 when exactly one of C_{r} and C_{s} is zero, with $d_{r s}$ being replaced by whichever one of d_{r} and d_{s} is defined.

When $C_{r}=C_{s}=0$, then C_{r} and C_{s} are 1 by 1 zero matrices and $C_{r s}$ is 1 by 1. Whether or not $C_{r s}{ }^{(k)}$ is zero is decided by criterion (e) or criterion (f).

As an example consider the 22 by 22 reducible matrix shown below. In this

matrix we have $m=7$ with $d_{1}=1, d_{2}=4, d_{3}=2, d_{4}$ undefined, $d_{5}=1$, d_{6} undefined, and $d_{7}=6$. The subdiagonal blocks $C_{r s}$ are bounded by solid lines. Within these blocks the submatrices $C_{p q}^{r s}$ are bounded by dotted lines.

For the places in the matrix below the diagonal blocks there exists N such that the positive or zero state of the entry in each place can be described for all powers of $t>N$ according to the following legend:

* indicates that the entry is zero,
\triangle indicates that the entry is zero if t is odd and positive if t is even,
∇ indicates that the entry is positive if t is odd and zero if t is even. An entry in a place not identified by ${ }^{*}, \Delta$, or ∇ is positive.

In (3) the authors have made an observation relative to Markov chains. Specifically, if A is the transition matrix of an ergodic Markov chain which is irregular and if the index of imprimitivity of A is $d(d>1)$, then there are d limiting forms for A^{t} as $t \rightarrow \infty$ and these are expressible in terms of the fixed vector of one of the diagonal components of A^{d} and the cyclic components of A. If the Markov chain is not ergodic, then the transition matrix is reducible. For such a matrix, the results of (3) may be combined with the results of this paper to assist in finding the various limiting forms of the powers of the matrix.

Postscript (June 2, 1964). At a matrix conference held in Gatlinburg, Tennessee, April 13-18, 1964, M. S. Lynn and O. Taussky called our attention to the following reference: D. Rosenblatt, On the graphs and asymptotic forms of finite Boolean relation matrices and stochastic matrices, Naval Res. Logistic Quart., 4 (1957), 151-67.

This paper contains several fundamental results on the role of graph theory in the study of non-negative matrices. Two such results which the authors of this paper have used in much of their work are the following: (1) A nonnegative matrix is irreducible if and only if the corresponding directed graph is strongly connected, and (2) a non-negative matrix is primitive if and only if the corresponding directed graph is strongly connected and the circuit lengths are relatively prime.

Had the authors been aware of this paper before, they would have included it as a reference in several of their previous papers.

References

1. A. L. Dulmage, Diane M. Johnson, and N. S. Mendelsohn, Connectivity and reducibility of graphs, Can. J. Math., 14 (1962), 529-39.
2. A. L. Dulmage and N. S. Mendelsohn, Two algorithms for bipartite graphs, J.S.I.A.M., 11 (1963), 183-94.
3. ———The characteristic equation of an imprimitive matrix, J. S.I.A.M., 11 (1963), 1034-45.
4. G. Frobenius, Über Matrizen aus nichtnegativen Elementen, S. B. Preuss. Akad. Wiss., 23 (1912), 456-77.
5. F. Harary, A graph theoretic approach to matrix inversion by partitioning, Numer. Math., 4 (1962), 128-135.
6. J. G. Kemeny and J. L. Snell, Finite Markov chains (Princeton, 1960).
7. D. Perron, Zur Theorie der Matrizen, Math. Ann., 64 (1907), 248-63.
8. V. Ptak, On a combinatorial theorem and its application to non-negative matrices, Czechoslovak Math. J., 8 (83) (1958), 487-95.
9. V. Ptak and J. Sedlacek, On the index of imprimitivity of non-negative matrices, Czechoslovak Math. J., 8 (83) (1958), 496-501.
10. R. S. Varga, Matrix iterative analysis (Englewood Cliffs, N.J., 1962).
11. H. Wielandt, Unzerlegbare nichtnegative Matrizen, Math. Z., 52 (1950), 642-8.

University of Alberta and
University of Manitoba

[^0]: Received March 17, 1964. This research was supported by the United States Air Force Office of Scientific Research.

