GEOMETRY OF G_2 ORBITS AND ISOPARAMETRIC HYPERSURFACES

REIKO MIYAOKA

Abstract. We characterize the adjoint G_2 orbits in the Lie algebra \mathfrak{g} of G_2 as fibered spaces over S^6 with fibers given by the complex Cartan hypersurfaces. This combines the isoparametric hypersurfaces of case (g, m) = (6, 2) with case (3, 2). The fibrations on two singular orbits turn out to be diffeomorphic to the twistor fibrations of S^6 and $G_2/SO(4)$. From the symplectic point of view, we show that there exists a 2-parameter family of Lagrangian submanifolds on every orbit.

§1. Introduction

The exceptional compact Lie group G_2 plays an important role in various fields of geometry. Here we are concerned with the adjoint orbits of G_2 in S^{13} , where G_2 acts on its Lie algebra $\mathfrak{g} \cong \mathbb{R}^{14}$ as an isometry with respect to the bi-invariant metric. They are the unique isoparametric hypersurfaces with six principal curvatures of multiplicity 2 (see [M4]). Those with multiplicity 1 are obtained by the inverse image of the real Cartan hypersurfaces $C^3_{\mathbb{R}}$ in S^4 under the Hopf fibration $\pi: S^7 \to S^4$ (see [M1]). The purpose of this paper is to characterize the multiplicity 2 case in conjunction with the complex Cartan hypersurfaces $C^6_{\mathbb{C}}$ in S^7 (the dimension of a hypersurface is always given in real). The difference is, however, that there is no fibration between S^{13} and S^7 . On the other hand, since $\pi^{-1}(C^3_{\mathbb{R}}) \cong C^3_{\mathbb{R}} \times S^3$, by interchanging the fiber and the base manifold we succeed in obtaining the following theorems.

THEOREM 1.1. Let M be a principal G_2 orbit in S^{13} , and let M_{\pm} be the singular orbits. Then M is diffeomorphic to G_2/T^2 , and M_{\pm} are both diffeomorphic to $\mathbb{Q}^5 = G_2/U(2)$, the complex quadratic. Each orbit has a

Received June 13, 2010. Accepted February 11, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C30, 32L25.

The author's work was partially supported by Grant-in-Aid for Scientific Research 19204006, Japan Society for the Promotion of Science (JSPS).

^{© 2011} by The Editorial Board of the Nagoya Mathematical Journal

Kähler structure with respect to the induced metric and, moreover, has a Kähler fibration:

(i) $M \to S^6$ with the fiber $C^6_{\mathbb{C}} = SU(3)/T^2$, the complex Cartan hypersurface;

(ii) $M_+ \to S^6$ with the fiber $\mathbb{C}P^2 = SU(3)/S(U(2) \times U(1))$, a fibration that is diffeomorphic to the twistor fibration on S^6 ;

(iii) $M_- \to G_2/SO(4)$ with the fiber $\mathbb{C}P^1 = SU(2)/S(U(1) \times U(1))$, which fibration is diffeomorphic to the twistor fibration on the quaternionic Kähler manifold $G_2/SO(4)$.

Hence, M_+ is not congruent to M_- in S^{13} , but the fibrations are converted from one to the other through the fibration on the principal orbits.

THEOREM 1.2. Let M and M_{\pm} be as in Theorem 1.1. Then at each point of M, there exists a 2-parameter family of Lagrangian submanifolds transferred from an SO(4) suborbit $N^6 \cong C^3_{\mathbb{R}} \times S^3$, which collapses into $N^5_{\pm} \cong \mathbb{R}P^2 \times S^3$ on M_{\pm} . These are minimal Lagrangian submanifolds of M_{\pm} and of M_0 , where the latter is the minimal principal orbit.

Theorem 1.1 is not a formal factorization of a homogeneous space but has a significant application, say, a reduction of analysis on M to that on the factored spaces (see [MO]).

Isoparametric hypersurfaces in a real space form \overline{M} are hypersurfaces with constant principal curvatures. They consist of a 1-parameter family of parallel hypersurfaces which sweeps out \overline{M} with focal submanifold(s) at the end. There are rich examples in $\overline{M} = S^n$, where the number of principal curvatures g takes values in $\{1, 2, 3, 5, 6\}$ (see [Mü]). Typical examples are given by homogeneous hypersurfaces which have been classified as the linear isotropy orbits of rank 2 symmetric spaces (see [HL]). Other than hyperspheres (g = 1) and the Clifford hypersurfaces (g = 2), those with g = 3 were found by Cartan and called the *Cartan hypersurfaces* $C_{\mathbb{F}}$ (see [C]). They are tubes over the standard embedding of $\mathbb{F}P^2$ in S^{3d+1} , where $\mathbb{F} = \mathbb{R}, \mathbb{C}$, and \mathbb{H} are Cayley numbers and d = 1, 2, 4, 8, respectively. The case g = 4 is exceptional, as there *exist* infinitely many nonhomogeneous isoparametric hypersurfaces (see [OT], [FKM]) where the classification problem (see [Y]) still remains open (see [CCJ], [I]).

When g = 6, the multiplicity of each principal curvature coincides, which takes values m = 1, 2 (see [A]). For m = 1, the hypersurfaces are homogeneous and given by the isotropy orbits of $G_2/SO(4)$ (see [DN], [M2]). Homogeneous hypersurfaces M^{12} with (g,m) = (6,2) are unique; that is,

the G_2 orbits (see [HL]). Dorfmeister and Neher [DN] conjectured that the isoparametric hypersurfaces with (g, m) = (6, 2) are homogeneous (see [M4] for the affirmative answer).

The paper is organized as follows. In Section 2, we review some basic facts of isoparametric hypersurfaces, and in Section 3, we compute basic data of G_2 orbits in terms of the root and root vectors. Finally, we prove our theorem in a refined way in Section 4.

§2. Preliminaries

We refer readers to [Th] for a survey of isoparametric hypersurfaces. Here we review fundamental facts and the notation of [M1] and [M3]. Let M be an isoparametric hypersurface in the unit sphere S^{n+1} . Let ξ be a unit normal vector field. We denote the Riemannian connection on S^{n+1} by $\tilde{\nabla}$, and we denote the induced connection on M by ∇ . Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the principal curvatures of M, and let $D_{\lambda}(p)$ be the curvature distribution of $\lambda \in \{\lambda_1, \ldots, \lambda_n\}$ with multiplicity m_{λ} . Then D_{λ} is completely integrable, and a leaf L_{λ} is an m_{λ} -dimensional sphere of S^{n+1} . Choose a local orthonormal frame e_1, \ldots, e_n consisting of unit principal vectors corresponding to $\lambda_1, \ldots, \lambda_n$. We express

(1)
$$\tilde{\nabla}_{e_{\alpha}}e_{\beta} = \Lambda^{\sigma}_{\alpha\beta}e_{\sigma} + \lambda_{\alpha}\delta_{\alpha\beta}\xi, \quad \Lambda^{\gamma}_{\alpha\beta} = -\Lambda^{\beta}_{\alpha\gamma}$$

where $1 \leq \alpha, \beta, \sigma \leq n$, using the Einstein convention. From the equation of Codazzi, we obtain for distinct $\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\gamma}$,

(2)
$$\Lambda^{\gamma}_{\alpha\beta}(\lambda_{\beta}-\lambda_{\gamma}) = \Lambda^{\beta}_{\gamma\alpha}(\lambda_{\alpha}-\lambda_{\beta}) = \Lambda^{\alpha}_{\beta\gamma}(\lambda_{\gamma}-\lambda_{\alpha}).$$

Because λ_{α} is constant on M, we can see that

(3)
$$\Lambda_{aa}^{\gamma} = 0 = \Lambda_{ab}^{\gamma}, \text{ if } \lambda_a = \lambda_b \neq \lambda_{\gamma} \text{ and } a \neq b.$$

Now, consider the case (g,m) = (6,2). As is well known, we can express

(4)
$$\lambda_i = \cot\left(\theta_1 + \frac{(i-1)\pi}{6}\right), \quad 0 < \theta_1 < \frac{\pi}{6}, 1 \le i \le 6.$$

Note that if we choose $\theta_1 = \pi/12 = -\theta_6$, we have a minimal case with

(5)
$$\lambda_1 = -\lambda_6 = 2 + \sqrt{3}, \quad \lambda_2 = -\lambda_5 = 1, \quad \lambda_3 = -\lambda_4 = 2 - \sqrt{3}.$$

Denote $D_i = D_{\lambda_i}$. We take a local frame field $e_1, e_{\bar{1}}, \ldots, e_6, e_{\bar{6}}$, where $e_i, e_{\bar{i}}$ is an orthonormal frame of D_i . For convenience, we put $\lambda_{\bar{i}} = \lambda_i$, and \underline{i} always

stands for i or \overline{i} . Each leaf $L_i = L_i(p)$ of D_i is a 2-sphere, and M has a structure of an iterated S^2 bundle over S^2 . For a = 6 or 1, define the focal map $f_a: M \to S^{13}$ by

$$f_a(p) = \cos\theta_a p + \sin\theta_a \xi_p$$

which makes $L_a(p)$ collapse into a point $\bar{p} = f_a(p)$. Then we have

(6)
$$df_a(e_j) = \sin \theta_a(\lambda_a - \lambda_j)e_j$$
 and $df_a(e_{\bar{j}}) = \sin \theta_a(\lambda_a - \lambda_j)e_{\bar{j}}$.

where the right-hand sides are considered as vectors in $T_{\bar{p}}S^{13}$ by a parallel translation of S^{13} . In the following, we always use such identification. The rank of f_a is constant, and we obtain the focal submanifold M_a of M:

$$M_a = \{\cos \theta_a p + \sin \theta_a \xi_p \mid p \in M\}.$$

We denote $M_+ = M_6$ and $M_- = M_1$. It follows that $T_{\bar{p}}M_a = \bigoplus_{j \neq a} D_j(q)$ from (6) for any $q \in f_a^{-1}(\bar{p})$. An orthonormal basis of the normal space of M_a at \bar{p} is given by

$$\eta_q = -\sin\theta_a q + \cos\theta_a \xi_q, \quad \zeta_q = e_a(q) \text{ and } \bar{\zeta}_q = e_{\bar{a}}(q),$$

for any $q \in L_a(p) = f_a^{-1}(\bar{p})$. By a standard argument, we obtain the following (see [M2], [M4]).

LEMMA 2.1. When we identify $T_{\bar{p}}M_a$ with $\bigoplus_{j=1}^5 D_{a+j}(p)$, where the indices are modulo 6, the shape operators B_{η_p} , B_{ζ_p} , and $B_{\bar{\zeta}_p}$ at \bar{p} with respect to the basis $e_{a+1}, e_{\overline{a+1}}, \ldots, e_{a+5}, e_{\overline{a+5}}$ at p are given, respectively, by the symmetric matrices

$$B_{\zeta_p} = \begin{pmatrix} 0 & B_{a+1\,a+2} & B_{a+1\,a+3} & B_{a+1\,a+4} & B_{a+1\,a+5} \\ B_{a+2\,a+1} & 0 & B_{a+2\,a+3} & B_{a+2\,a+4} & B_{a+2\,a+5} \\ B_{a+3\,a+1} & B_{a+3\,a+2} & 0 & B_{a+3\,a+4} & B_{a+3\,a+5} \\ B_{a+4\,a+1} & B_{a+4\,a+2} & B_{a+4\,a+3} & 0 & B_{a+4\,a+5} \\ B_{a+5\,a+1} & B_{a+5\,a+2} & B_{a+5\,a+3} & B_{a+5\,a+4} & 0 \end{pmatrix},$$

$$B_{\bar{\zeta}_p} = \begin{pmatrix} 0 & \bar{B}_{a+1\,a+2} & \bar{B}_{a+1\,a+3} & \bar{B}_{a+1\,a+4} & \bar{B}_{a+1\,a+5} \\ \bar{B}_{a+2\,a+1} & 0 & \bar{B}_{a+2\,a+3} & \bar{B}_{a+2\,a+4} & \bar{B}_{a+2\,a+5} \\ \bar{B}_{a+3\,a+1} & \bar{B}_{a+3\,a+2} & 0 & \bar{B}_{a+3\,a+4} & \bar{B}_{a+3\,a+5} \\ \bar{B}_{a+4\,a+1} & \bar{B}_{a+4\,a+2} & \bar{B}_{a+4\,a+3} & 0 & \bar{B}_{a+4\,a+5} \\ \bar{B}_{a+5\,a+1} & \bar{B}_{a+5\,a+2} & \bar{B}_{a+5\,a+3} & \bar{B}_{a+5\,a+4} & 0 \end{pmatrix},$$

where I (resp., zero) is the 2×2 unit (resp., zero) matrix and

(7)
$$B_{jk} = \frac{1}{\sin \theta_a (\lambda_j - \lambda_a)} \begin{pmatrix} \Lambda_{ja}^k & \Lambda_{ja}^{\bar{k}} \\ \Lambda_{\bar{j}a}^k & \Lambda_{\bar{j}a}^{\bar{k}} \end{pmatrix} = {}^t B_{kj},$$
$$\bar{B}_{jk} = \frac{1}{\sin \theta_a (\lambda_j - \lambda_a)} \begin{pmatrix} \Lambda_{j\bar{a}}^k & \Lambda_{\bar{j}\bar{a}}^{\bar{k}} \\ \Lambda_{\bar{j}\bar{a}}^k & \Lambda_{\bar{j}\bar{a}}^{\bar{k}} \end{pmatrix} = {}^t \bar{B}_{kj}.$$

In particular, we have $B_{\eta_p}(e_j) = \mu_j e_j$, where

(8)
$$\mu_j = \frac{1 + \lambda_j \lambda_a}{\lambda_a - \lambda_j} \in \left\{ \pm \sqrt{3}, \pm \frac{1}{\sqrt{3}}, 0 \right\}.$$

Since any unit normal can be expressed as η_q for some $q \in L_6(p)$, all the shape operators have the same eigenvalues with multiplicity 2.

§3. Geometric data of G_2 orbits

In this section, we investigate an adjoint G_2 orbit M in S^{13} , which is the same as an isotropy orbit of the symmetric space $G_2 \times G_2/G_2$. Here, G_2 is the automorphism group of the Cayley numbers C. Let C be generated by $\{e_0, e_1, \ldots, e_7\}$ satisfying

$$\begin{cases} e_0 = 1, \\ e_i^2 = -1, & 1 \le i \le 7, \\ e_i e_j = -e_j e_i = e_k, \end{cases}$$

where (i, j, k) is a triple on some segment or a circle of Figure 1 put in the order shown by its arrows. The automorphism group G_2 of \mathcal{C} is a subgroup of SO(7), where the metric on \mathcal{C} is given by

$$(x,y) = \Re(x\bar{y}) = \sum_{i=0}^{7} x^i y^i$$
, for $x = \sum_{i=0}^{7} x^i e_i$ and $y = \sum_{i=0}^{7} y^i e_i$.

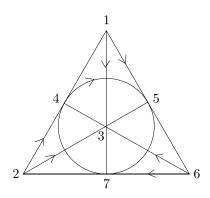


Figure 1

The Lie algebra \mathfrak{g} of G_2 is given as follows (see [OT]). Let E_{ij} be the standard basis of 7×7 matrices with \mathbb{R} -coefficients. Put $G_{ij} = E_{ij} - E_{ji}, i, j = 1, \ldots, 7$, and put

$$\mathfrak{g}_{i} = \Big\{ \eta_{1} G_{i+1i+3} + \eta_{2} G_{i+2i+6} + \eta_{3} G_{i+4i+5} \Big| \eta_{j} \in \mathbb{R}, \sum_{j=1}^{3} \eta_{j} = 0 \Big\},\$$

for $1 \leq i \leq 7$. Then \mathfrak{g} is given by

(9)
$$\mathfrak{g} = \sum_{i=1}^{7} \mathfrak{g}_i,$$

which satisfies $[\mathfrak{g}_i, \mathfrak{g}_i] = 0$ and $[\mathfrak{g}_i, \mathfrak{g}_j] = \mathfrak{g}_k$, where (i, j, k) is as before. Note that $[G_{ij}, G_{jk}] = G_{ik}$ for any $1 \leq i, j, k \leq 7$. Note also that (9) is an orthogonal decomposition with respect to the metric (,) on \mathfrak{g} given by

$$(X,Y)=-\frac{1}{2}\operatorname{Tr} XY.$$

For later use, we decompose $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$, where

$$\begin{split} \mathfrak{k} &= \mathfrak{g}_3 + \mathfrak{g}_4 + \mathfrak{g}_6, \\ \mathfrak{p} &= \mathfrak{g}_1 + \mathfrak{g}_2 + \mathfrak{g}_5 + \mathfrak{g}_7 \end{split}$$

Let $\mathfrak{g}^{\mathbb{C}}$ be the complexification of \mathfrak{g} , and let τ be the involutive automorphism of $\mathfrak{g}^{\mathbb{C}}$ given by $\tau(X) = \overline{X}$. Then $\mathfrak{g}^{\mathbb{C}} = \mathfrak{g} + \sqrt{-1}\mathfrak{g}$ is the Cartan decomposition. We identify $\sqrt{-1}\mathfrak{g}$ with \mathfrak{g} by $\sqrt{-1}X \mapsto X$. Take a maximal abelian

subspace $\mathfrak{a} = \mathfrak{g}_1 = \{\xi_1 G_{24} + \xi_2 G_{37} + \xi_3 G_{56} \mid \xi \in \mathbb{R}, \sum_{i=1}^3 \xi_i = 0\}$ of \mathfrak{g} , whose dimension, called the *rank of* $(\mathfrak{g}^{\mathbb{C}}, \tau)$, is 2. Let α be a linear form on \mathfrak{a} , and put

$$\begin{aligned} &\mathfrak{k}_{\alpha} = \left\{ X \in \mathfrak{k} \mid (\mathrm{ad}H)^{2}(X) = -\alpha(H)^{2}X \quad \text{for all } H \in \mathfrak{a} \right\}, \\ &\mathfrak{p}_{\alpha} = \left\{ X \in \mathfrak{p} \mid (\mathrm{ad}H)^{2}(X) = -\alpha(H)^{2}X \quad \text{for all } H \in \mathfrak{a} \right\}. \end{aligned}$$

Note that for $H \in \mathfrak{a}$ and a linear form α on \mathfrak{a} such that $\alpha(H) \neq 0$, adH maps \mathfrak{k}_{α} (resp., \mathfrak{p}_{α}) isomorphically onto \mathfrak{p}_{α} (resp., \mathfrak{k}_{α}) (see (12) below). Selecting a suitable ordering in the dual space of \mathfrak{a} , let Σ_{+} be the set of positive roots of \mathfrak{g} with respect to \mathfrak{a} , and let $\Sigma_{+}^{*} = \{\alpha \in \Sigma_{+}, \frac{\alpha}{2} \notin \Sigma_{+}\}$. We have

(10)
$$\Sigma_{+}^{*} = \{ \alpha_{1} = -\xi_{2}, \alpha_{2} = \xi_{1} - \xi_{2}, \alpha_{3} = \xi_{1}, \\ \alpha_{4} = \xi_{1} - \xi_{3}, \alpha_{5} = -\xi_{3}, \alpha_{6} = \xi_{2} - \xi_{3} \},$$

and the root vectors $X_i \in \mathfrak{k}_{\alpha_i}$ and $T_i \in \mathfrak{p}_{\alpha_i}$ are given by

$$\begin{aligned} X_1 &= G_{46} + G_{52} - 2G_{71}, & X_4 &= G_{46} - G_{52} & \in \mathfrak{g}_3 \\ X_2 &= G_{72} - G_{34}, & X_5 &= G_{72} + G_{34} - 2G_{15} & \in \mathfrak{g}_6 \end{aligned}$$

(11)
$$X_3 = G_{57} + G_{63} - 2G_{12}, \qquad X_6 = G_{57} - G_{63} \qquad \in \mathfrak{g}_4$$

$$T_1 = G_{26} + G_{45} - 2G_{13}, \qquad T_4 = G_{26} - G_{45} \qquad \in \mathfrak{g}_7$$

$$T_2 = G_{23} + G_{47}, \qquad T_5 = G_{47} - G_{23} - 2G_{16} \in \mathfrak{g}_5$$

$$T_3 = G_{35} + G_{67} + 2G_{14}, \qquad T_6 = -G_{35} + G_{67} \qquad \in \mathfrak{g}_2.$$

We have immediately

(12)
$$\operatorname{ad} H(X_i) = \alpha_i(H)T_i, \quad \operatorname{ad} H(T_i) = -\alpha_i(H)X_i.$$

Note that any two of the above vectors are mutually orthogonal.

Now, let $H = \xi_1 G_{24} + \xi_2 G_{37} + \xi_3 G_{56}$ be a regular element of \mathfrak{a} , and let $H^{\perp} = (\xi_3 - \xi_2)G_{24} + (\xi_1 - \xi_3)G_{37} + (-\xi_1 + \xi_2)G_{56}$ be an element of \mathfrak{a} orthogonal to H. For a hypersurface $M = \operatorname{Ad} G_2(\tilde{H})$, where $\tilde{H} = H/||H||$, by using (12) and $||H^{\perp}|| = \sqrt{3}||H||$ we can express the second fundamental tensor $A_{\tilde{H}^{\perp}}$ of M with respect to the unit normal vector $\tilde{H}^{\perp} = H^{\perp}/||H^{\perp}||$ at \tilde{H} by (see [TT])

$$A_{\tilde{H}^{\perp}}X_i = -\tilde{\nabla}_{X_i}\tilde{H}^{\perp} = -\frac{1}{\alpha_i(\tilde{H})}\frac{d}{dt}\Big|_{t=0} (\operatorname{Ad} \exp tT_i)\tilde{H}^{\perp}$$

$$\begin{split} &= -\frac{1}{\alpha_i(\tilde{H})} [T_i, \tilde{H}^{\perp}] = -\frac{\alpha_i(\tilde{H}^{\perp})}{\alpha_i(\tilde{H})} X_i = -\frac{\alpha_i(H^{\perp})}{\sqrt{3}\alpha_i(H)} X_i, \\ &A_{\tilde{H}^{\perp}} T_i = -\tilde{\nabla}_{T_i} \tilde{H}^{\perp} = \frac{1}{\alpha_i(\tilde{H})} \frac{d}{dt} \Big|_{t=0} (\operatorname{Ad} \operatorname{exp} t X_i) \tilde{H}^{\perp} \\ &= \frac{1}{\alpha_i(\tilde{H})} [X_i, \tilde{H}^{\perp}] = -\frac{\alpha_i(\tilde{H}^{\perp})}{\alpha_i(\tilde{H})} T_i = -\frac{\alpha_i(H^{\perp})}{\sqrt{3}\alpha_i(H)} T_i. \end{split}$$

Thus, the principal curvatures of M are given by

(13)
$$\lambda_{1} = -\frac{\xi_{1} - \xi_{3}}{\sqrt{3}\xi_{2}} = -\frac{1}{\lambda_{4}},$$
$$\lambda_{2} = -\frac{\sqrt{3}\xi_{3}}{\xi_{1} - \xi_{2}} = -\frac{1}{\lambda_{5}},$$
$$\lambda_{3} = \frac{\xi_{2} - \xi_{3}}{\sqrt{3}\xi_{1}} = -\frac{1}{\lambda_{6}},$$

and the unit principal vectors corresponding to λ_i are $X_i/||X_i||$ and $T_i/||T_i||$. Note that by $\lambda_1 > \cdots > \lambda_6$, (13) implies that $\xi_1 > 0 > \xi_2 > \xi_3$, and hence that

(14)
$$\alpha_i(H) > 0, \quad 1 \le i \le 6$$

follows from (10). Now, putting $e_i = X_i/||X_i||, e_{\overline{i}} = T_i/||T_i||$, we calculate the structure constants $\Lambda_{\alpha\beta}^{\gamma}$ with respect to this basis of M. As before, using (12), we obtain $X_i = (||H||/(\alpha_i(H))) \frac{d}{dt}|_{t=0} \operatorname{Ad}(\exp tT_i) \tilde{H}$. Here we have

(15)
$$\nabla_{X_i} X_j = \frac{\|H\|}{\alpha_i(H)} \frac{d}{dt}\Big|_{t=0} \operatorname{Ad}(\exp tT_i) X_j = \frac{\|H\|}{\alpha_i(H)} [T_i, X_j].$$

Similarly, we have

(16)
$$\nabla_{X_i} T_j = \frac{\|H\|}{\alpha_i(H)} [T_i, T_j],$$

(17)
$$\nabla_{T_i} X_j = -\frac{\|H\|}{\alpha_i(H)} [X_i, X_j],$$

(18)
$$\nabla_{T_i} T_j = -\frac{\|H\|}{\alpha_i(H)} [X_i, T_j].$$

Then, noting that $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, [\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}, [\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$, we see that $\Lambda_{ij}^k = \Lambda_{ij}^{\overline{k}} = \Lambda_{\overline{i}j}^{\overline{k}} = \Lambda_{\overline{i}j}^{\overline{k}} = 0$, $1 \leq i, j, k \leq 6$ (be careful for the indices with and without bars).

Moreover, by (11) and (12), we obtain $\Lambda_{\alpha\beta}^{\gamma} = 0$ if two of the indices—say, (α, β) —satisfy $\alpha \in [1]$ and $\beta \in [4]$, or $\alpha \in [2]$ and $\beta \in [5]$, or $\alpha \in [3]$ and $\beta \in [6]$, where $[i] = \{i, \overline{i}\}$. Thus, the possible nonzero $\Lambda_{\alpha\beta}^{\gamma}$ are

$$\begin{split} \left\{ [\alpha], [\beta], [\gamma] \right\} &= \{1, 2, 3\}, \{1, 2, 6\}, \{1, 3, 5\}, \{1, 5, 6\}, \\ &\{2, 3, 4\}, \{2, 4, 6\}, \{3, 4, 5\}, \{4, 5, 6\}. \end{split}$$

For computation of these, Table 1 shows $[A, B], A, B \in \mathfrak{g}$.

Table 1

	X_2	T_2	X_3	T_3	X_4	T_4	X_5	T_5	X_6	T_6
X_1	$-X_3$	$-T_3$					$-2X_3 - 3X_6$			T_5
T_1	T_3	$-X_3$	$-2T_5 + 3T_2$	$2X_5 - 3X_2$			$-2T_3 + 3T_6$	$2X_3 - 3X_6$	T_5	$-X_5$
X_2			$-X_1$	T_1	$-X_6$	-			X_4	T_4
T_2			$-T_1$	$-X_1$	T_6	$-X_6$			T_4	$-X_4$
X_3					X_5	T_5	$2X_1 - 3X_4$	$-2T_1 - 3T_4$		
T_3					$-T_5$	X_5	$2T_1 - 3T_4$	$2X_1 + 3X_4$		
X_4							X_3	$-T_3$	$-X_2$	T_2
T_4							T_3	X_3	$-T_2$	$-X_2$
X_5									$-X_1$	T_1
T_5									$-T_1$	$-X_1$

REMARK 3.1. M is a Kähler manifold with complex structure J defined by $JX_i = T_i, JT_i = -X_i$. This is a general theory, but the vanishing of the torsion N and ∇J can be shown directly from Table 1 and (15)–(18).

Here we may assume that $\lambda_1 = 2 + \sqrt{3} = -(\xi_1 - \xi_3)/\sqrt{3}\xi_2$, from which it follows that $\xi_1/\xi_2 = -(2+\sqrt{3})$. Thus, noting (14), we obtain

(19)
$$\frac{\|H\|}{\alpha_1(H)} = \sqrt{3}(\sqrt{3}+1), \qquad \frac{\|H\|}{\alpha_2(H)} = 1, \qquad \frac{\|H\|}{\alpha_3(H)} = \sqrt{3}(\sqrt{3}-1), \\ \frac{\|H\|}{\alpha_4(H)} = (\sqrt{3}-1), \qquad \frac{\|H\|}{\alpha_5(H)} = \sqrt{3}, \qquad \frac{\|H\|}{\alpha_6(H)} = (\sqrt{3}+1).$$

Now, it follows that

$$(20) \qquad \begin{pmatrix} \Lambda_{16}^2 & \Lambda_{\overline{16}}^{\overline{2}} \\ \Lambda_{\overline{16}}^2 & \Lambda_{\overline{16}}^{\overline{2}} \end{pmatrix} = \begin{pmatrix} \Lambda_{1\overline{6}}^2 & \Lambda_{\overline{16}}^{\overline{2}} \\ \Lambda_{\overline{16}}^2 & \Lambda_{\overline{16}}^{\overline{2}} \end{pmatrix} = \begin{pmatrix} \Lambda_{1\overline{6}}^3 & \Lambda_{\overline{16}}^{\overline{2}} \\ \Lambda_{\overline{16}}^2 & \Lambda_{\overline{16}}^{\overline{3}} \end{pmatrix} = \begin{pmatrix} \Lambda_{4\overline{2}}^3 & \Lambda_{4\overline{2}}^{\overline{3}} \\ \Lambda_{4\overline{2}}^2 & \Lambda_{4\overline{2}}^{\overline{3}} \end{pmatrix} = \begin{pmatrix} \Lambda_{4\overline{2}}^3 & \Lambda_{4\overline{2}}^{\overline{3}} \\ \Lambda_{4\overline{2}}^3 & \Lambda_{4\overline{2}}^{\overline{3}} \end{pmatrix} = 0,$$
$$\begin{pmatrix} \Lambda_{16}^5 & \Lambda_{\overline{16}}^{\overline{5}} \\ \Lambda_{\overline{16}}^5 & \Lambda_{\overline{16}}^{\overline{5}} \end{pmatrix} = -\frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{2}}J, \qquad \begin{pmatrix} \Lambda_{1\overline{6}}^5 & \Lambda_{\overline{16}}^{\overline{5}} \\ \Lambda_{\overline{16}}^5 & \Lambda_{\overline{16}}^{\overline{5}} \end{pmatrix} = -\frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{2}}I,$$

$$\begin{pmatrix} \Lambda_{26}^4 & \Lambda_{26}^{\bar{4}} \\ \Lambda_{26}^4 & \Lambda_{26}^{\bar{4}} \end{pmatrix} = -\frac{1}{\sqrt{2}}J, \qquad \begin{pmatrix} \Lambda_{26}^4 & \Lambda_{26}^{\bar{4}} \\ \Lambda_{26}^4 & \Lambda_{26}^{\bar{4}} \end{pmatrix} = -\frac{1}{\sqrt{2}}I,$$

$$(21) \quad \begin{pmatrix} \Lambda_{51}^3 & \Lambda_{51}^{\bar{3}} \\ \Lambda_{51}^3 & \Lambda_{51}^{\bar{3}} \end{pmatrix} = -\sqrt{2}J, \qquad \begin{pmatrix} \Lambda_{51}^3 & \Lambda_{51}^{\bar{3}} \\ \Lambda_{51}^3 & \Lambda_{51}^{\bar{3}} \end{pmatrix} = -\sqrt{2}I,$$

$$\begin{pmatrix} \Lambda_{231}^3 & \Lambda_{51}^{\bar{3}} \\ \Lambda_{231}^2 & \Lambda_{231}^{\bar{3}} \end{pmatrix} = \frac{\sqrt{3}(\sqrt{3}-1)}{\sqrt{2}}J, \qquad \begin{pmatrix} \Lambda_{231}^2 & \Lambda_{231}^{\bar{3}} \\ \Lambda_{231}^2 & \Lambda_{231}^{\bar{3}} \end{pmatrix} = \frac{\sqrt{3}(\sqrt{3}-1)}{\sqrt{2}}I,$$

$$\begin{pmatrix} \Lambda_{45}^3 & \Lambda_{45}^{\bar{3}} \\ \Lambda_{45}^3 & \Lambda_{45}^{\bar{3}} \end{pmatrix} = -\frac{\sqrt{3}-1}{\sqrt{2}}J, \qquad \begin{pmatrix} \Lambda_{45}^3 & \Lambda_{45}^{\bar{3}} \\ \Lambda_{45}^3 & \Lambda_{45}^{\bar{3}} \end{pmatrix} = -\frac{\sqrt{3}-1}{\sqrt{2}}I,$$

where

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Then by (7) and $1/\sin\theta_a = \pm\sqrt{2}(\sqrt{3}+1)$ for a = 1, 6, respectively, we have B_{ζ} and $B_{\bar{\zeta}}$ of M_+ by Lemma 2.1:

$$B_{\zeta} = \begin{pmatrix} 0 & 0 & 0 & 0 & \sqrt{3}J \\ 0 & 0 & 0 & \frac{1}{\sqrt{3}}J & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{\sqrt{3}}J & 0 & 0 & 0 \\ -\sqrt{3}J & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{3}}I & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}}I & 0 & 0 & 0 \\ \sqrt{3}I & 0 & 0 & 0 & 0 \end{pmatrix}.$$
(22)

Similarly, denoting the shape operators of M_{-} by C_{ζ} and $C_{\bar{\zeta}}$, $\zeta, \bar{\zeta} \in D_1$, we can express these with respect to $D_2 \oplus \cdots \oplus D_6$ as

(23)
$$C_{\zeta} = \begin{pmatrix} 0 & J & 0 & 0 & 0 \\ -J & 0 & 0 & -\frac{2}{\sqrt{3}}J & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{2}{\sqrt{3}}J & 0 & 0 & J \\ 0 & 0 & 0 & -J & 0 \end{pmatrix},$$

$$C_{\bar{\zeta}} = \begin{pmatrix} 0 & -I & 0 & 0 & 0 \\ -I & 0 & 0 & \frac{2}{\sqrt{3}}I & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{2}{\sqrt{3}}I & 0 & 0 & -I \\ 0 & 0 & 0 & -I & 0 \end{pmatrix}.$$

In particular, M_+ is not congruent to M_- in S^{13} .

§4. Geometry of G_2 orbits

In [M1, Proposition 2.1], we show that an isoparametric hypersurface N^6 in S^7 with (g,m) = (6,1) is the inverse image of a real Cartan hypersurface $C^3_{\mathbb{R}} \cong SO(3)/(\mathbb{Z}_2 + \mathbb{Z}_2)$ under the Hopf fibration $\pi: S^7 \to S^4$. Since the restriction of the fibration to a proper subset of S^4 is trivial, we have a homeomorphism

(24)
$$N^6 \cong C^3_{\mathbb{R}} \times S^3.$$

Note that $C^3_{\mathbb{R}}$ is a principal orbit of the adjoint action of SO(3) on the space of traceless symmetric matrices $\operatorname{Sym}^0(\mathbb{R},3)$. We can express (24) in terms of the decomposition of the tangent bundle of N^6 into two integrable distributions $TN = \mathcal{R} \oplus \mathcal{S}$ given by

(25)
$$\mathcal{R} = \operatorname{span}\{e_2, e_4, e_6\},\\ \mathcal{S} = \operatorname{span}\{e_1 - \lambda_1 e_4, e_2 + \lambda_2 e_5, e_3 + \lambda_3 e_6\},$$

where S is the direction of the Hopf fiber (see [M1, p. 188, line 6]) and is totally geodesic. On the other hand, \mathcal{R} corresponds to the Lie algebra $\mathfrak{so}(3)$ in $\mathfrak{so}(4)$, since $\Lambda_{24}^j = 0$, $\Lambda_{26}^j = 0$, $\Lambda_{46}^j = 0$ hold except for the indices consisting of $\{2, 4, 6\}$. Thus, \mathcal{R} is also integrable. Note that N is an arbitrary principal orbit, and λ_i are given by (4) for some $\theta_1 \in (0, \pi/6)$.

In the case (g,m) = (6,2), a parallel argument is *not* valid because of the lack of corresponding fibrations. Instead, since SU(3) is a subgroup of G_2 , and its Lie algebra is generated by $\mathfrak{a} \oplus \operatorname{span}\{X_2, T_2, X_4, T_4, X_6, T_6\}$, the subspace

(26)
$$\mathcal{R} = D_2 \oplus D_4 \oplus D_6$$

defines an integrable distribution on M. The leaves are Cartan hypersurfaces $C^6_{\mathbb{C}} \cong SU(3)/T_2$, which are half-dimensional Kähler submanifolds of M^{12} . This defines a Kähler fibration $M \to S^6 \cong G_2/SU(3)$ with fiber $C^6_{\mathbb{C}}$.

We note that $\pi_1(M) = 1 = \pi_1(M_{\pm})$ in these arguments. On M_+ , the space D_6 collapses, and it is easy to see that $\mathfrak{a} \oplus \operatorname{span}\{X_6, T_6\} = \mathfrak{u}(2)$. Thus, M_+ is diffeomorphic to $G_2/U(2) = \mathbb{Q}^5$, the complex quadric. Moreover, (26) implies that the focal submanifold M_+ has a fibration $M_+ \to S^6$ with fiber $\mathbb{C}P^2 \cong SU(3)/S(U(2) \times U(1))$, which is tangent to $df_6(D_2 \oplus D_4)$. The total space $M_+ \cong \mathbb{Q}^5$ is diffeomorphic to the twistor space of $S^6 = G_2/SU(3)$ given by Bryant [B1].

Similarly, on M_- , the space D_1 collapses, and $\mathfrak{a} \oplus \operatorname{span}\{X_1, T_1\} = \mathfrak{u}(2)$ shows that $M_- = G_2/U(2) = \mathbb{Q}^5$; however, M_+ and M_- are not congruent as is seen from (22) and (23).* In fact, since D_4 is invariant along L_1 ($\Lambda_{\underline{14}}^{\alpha} = 0$), the image of the curvature surface L_4 under the focal map f_1 defines a totally geodesic $S^2 = \mathbb{C}P^1$ fibration on M_- . Here, total geodesity follows since $df_1(D_4)$ belongs to the kernel of all the shape operators (see (23)). It is easy to see that $\operatorname{span}\{H, X_1, T_1\}$ and $\operatorname{span}\{H^{\perp}, X_4, T_4\}$ are isomorphic to $\mathfrak{so}(3)$, where

$$H = G_{24} + G_{56} - 2G_{37}, \qquad H^{\perp} = G_{24} - G_{56},$$

and hence that the space $\mathfrak{a} \oplus \operatorname{span}\{X_1, T_1, X_4, T_4\}$ is isomorphic to $\mathfrak{so}(4)$. Therefore, the base manifold of this $\mathbb{C}P^1$ fibration is given by $G_2/SO(4)$, the quaternionic Kähler manifold. This implies that M_- is diffeomorphic to the twistor space of $G_2/SO(4)$ given in [B2].

On the other hand, since $\mathfrak{g}_3 \oplus \mathfrak{g}_4 \oplus \mathfrak{g}_6 = \operatorname{span}\{X_1, \ldots, X_6\}$ generates another $\mathfrak{so}(4)$ (see [M1, p. 183]), we have a half-dimensional submanifold at each point of M given by this SO(4) suborbit N^6 . In fact, the tangent space of N^6 is spanned by

$$T_i = \frac{d}{dt}\Big|_{t=0} (\operatorname{Ad} \exp t X_i) \tilde{H}, \quad i = 1, \dots, 6.$$

From Remark 3.1, we see that N^6 is a Lagrangian submanifold of M^{12} . At each point of M^{12} , the tangent space of N^6 is expressed as $\{e_{\bar{1}}, e_{\bar{2}}, \ldots, e_{\bar{6}}\}$; however, the direction of $e_{\bar{i}}$ can be replaced by a suitable combination of e_i and $e_{\bar{i}}$ in each D_i . In fact, SO(4) is embedded in G_2 in a 2-parameter family, such as

$$\sin \varphi X_1 - \cos \varphi T_1, \qquad \sin \psi X_2 - \cos \psi T_2,$$
(27)
$$\cos(\varphi - \psi) X_3 - \sin(\varphi - \psi) T_3, \qquad \sin(2\psi - 3\varphi) X_4 - \cos(2\psi - 3\varphi) T_4,$$

*Here N_{+}^{5} is not congruent to N_{-}^{5} in S^{7} (see [M1, Proposition 2.5]).

$$\sin(\psi - 2\varphi)X_5 - \cos(\psi - 2\varphi)T_5, \qquad \cos(3\varphi - \psi)X_6 - \sin(3\varphi - \psi)T_6.$$

By using Table 1, we can see that the Lie bracket closes in this space, which generates $\mathfrak{so}(4)$ for any fixed φ and ψ . The tangent space of the corresponding SO(4) orbit is the 6-dimensional subspace of TM spanned by

$$\cos\varphi e_1 + \sin\varphi e_{\bar{1}}, \qquad \cos\psi e_2 + \sin\psi e_{\bar{2}},$$
(28)
$$\sin(\varphi - \psi)e_3 + \cos(\varphi - \psi)e_{\bar{3}}, \qquad \cos(2\psi - 3\varphi)e_4 + \sin(2\psi - 3\varphi)e_{\bar{4}},$$

$$\cos(\psi - 2\varphi)e_5 + \sin(\psi - 2\varphi)e_{\bar{5}}, \qquad \sin(3\varphi - \psi)e_6 + \cos(3\varphi - \psi)e_{\bar{6}}.$$

This reflects the fact that the isotropy subgroup T^2 of $M = G_2/T^2$ at $o = T^2$ acts on $T_o M$ as an isometry. Thus, at $o = T^2 \in M$ (and hence at each point of M), there exists a 2-parameter family of the SO(4) orbits which are Lagrangian.

Note that the distribution \mathcal{R} given in (26) and the tangent space of each SO(4) orbit (e.g., spanned by $e_{\bar{1}}, \ldots, e_{\bar{6}}$) are *not* transversal; that is, they do not span TM. Now we have almost shown Theorems 1.1 and 1.2, which we restate in a refined way.

MAIN THEOREM. On every G_2 orbit M_t , $t \in (-1,1)$, and M_{\pm} , which sweep out S^{13} , there exists a Kähler fibration:

- (i) $M_t \cong G_2/T^2 \to S^6 = G_2/SU(3)$ with fiber $C_{\mathbb{C}}^6 = SU(3)/T^2$ tangent to $D_2 \oplus D_4 \oplus D_6$;
- (ii) $M_+ \cong \mathbb{Q}^5 \to S^6 = G_2/SU(3)$ with fiber $\mathbb{C}P^2 = SU(3)/S(U(2) \times U(1))$ tangent to $df_6(D_2 \oplus D_4)$, where f_6 is the focal map, and which is diffeomorphic to the twistor fibration of S^6 ;
- (iii) $M_{-} \cong \mathbb{Q}^{5} \to G_{2}/SO(4)$ with fiber $\mathbb{C}P^{1} = SU(2)/S(U(1) \times U(1))$ tangent to $df_{1}(D_{4})$, where f_{1} is the focal map, and which is diffeomorphic to the twistor fibration of the quaternionic Kähler manifold $G_{2}/SO(4)$.

Note that M_+ is not congruent to M_- in S^{13} .

Moreover, at each point of M_t , there exists a 2-parameter family of Lagrangian submanifolds transferred from an SO(4) suborbit N^6 , which is tangent to span $\{e_{\bar{i}}, 1 \leq i \leq 6\}$, a set of suitably chosen $e_{\bar{i}} \in D_i$. Here, $C_{\mathbb{C}}^6$ and N^6 are not transversal. Such N^6 collapses into $N_{\pm}^5 \cong \mathbb{R}P^2 \times S^3$ on M_{\pm} , where N_+ is tangent to span $\{df_6(e_i), 1 \leq i \leq 5\}$ and where N_- is tangent to span $\{df_1(e_i), 2 \leq i \leq 6\}$. In particular, these are minimal Lagrangian submanifolds on M_{\pm} and on M_0 , where the latter is the minimal principal orbit. However, they never define Lagrangian fibrations on M_t or on M_{\pm} .

Proof. Here N^6 collapses into N_{\pm}^5 as D_6 and D_1 collapse on M_{\pm} , respectively. We denote by N_0 the minimal principal SO(4) orbit lying in M_0 . Because N_0 and N_{\pm} are minimal in some totally geodesic 7-sphere of S^{13} , these are minimal in S^{13} , and hence minimal in M_{\pm} and in M_0 , respectively.

Nonexistence of a Lagrangian fibration follows because the topology of N^6 or N^5_+ is not that of a torus.

Since there are 2-parameter isometric deformations of N_{\pm}^5 in M_{\pm} , and N_0^6 in M_0 , we obtain the following.

COROLLARY 4.1. The nullity of the Lagrangian minimal submanifold N_{\pm}^5 in M_{\pm} , and N_0^6 in M_0 , respectively, is not less than 2.

References

- [A] U. Abresch, Isoparametric hypersurfaces with four and six distinct principal curvatures, Math. Ann. 264 (1983), 283–302.
- [B1] R. Bryant, Submanifolds and special structures on the octonions, J. Differential Geom. 17 (1982), 185–232.
- [B2] ——, Lie groups and twistor spaces, Duke Math. J. 52 (1985), 223–261.
- [C] E. Cartan, Familles de surfaces isoparamétriques dan les espaces à courbure constante, Ann. of Math. (2) 17 (1938), 177–191.
- [CCJ] T. E. Cecil, Q.-S. Chi, and G. R. Jensen, Isoparametric hypersurfaces with four principal curvatures, Ann. of Math. (2) 166 (2007), 1–76.
- [DN] J. Dorfmeister and E. Neher, *Isoparametric hypersurfaces, case* g = 6, m = 1, Comm. Algebra **13** (1985), 2299–2368.
- [FKM] D. Ferus, H. Karcher, and H. F. Münzner, Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981), 479–502.
- [HL] W. Y. Hsiang and H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971), 1–38.
- S. Immervoll, The classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres, Ann. of Math. (2) 168 (2008), 1011–1024.
- [MO] H. Ma and Y. Ohnita, Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces, preprint, 2010.
- [M1] R. Miyaoka, The linear isotropy group of G₂/SO(4), the Hopf fibering and isoparametric hypersurfaces, Osaka J. Math. 30 (1993), 179–202.
- [M2] _____, Isoparametric geometry and related fields, Adv. Stud. Pure Math. 51 (2008), 305–326.
- [M3] _____, The Dorfmeister-Neher theorem on isoparametric hypersurfaces, Osaka J. Math. 46 (2009), 1–21.
- [M4] , Isoparametric hypersurfaces with (g,m) = (6,2), preprint, 2009.
- [Mü] H. F. Münzner, Isoparametrische Hyperflächen in Sphären I, Math. Ann. 251 (1980), 57–71; II, 256 (1981), 215–232.
- [OT] H. Ozeki and M. Takeuchi, On some types of isoparametric hypersurfaces in spheres, II, Tohoku Math. J. (2) 28 (1976), 7–55.

- [TT] R. Takagi and T. Takahashi, "On the principal curvatures of homogeneous hypersurfaces in a sphere" in *Differential Geometry (in Honor of K. Yano)*, Kinokuniya, Tokyo, 1972, 469–481.
- [Th] G. Thorbergsson, "A survey on isoparametric hypersurfaces and their generalizations" in *Handbook of Differential Geometry*, I, North-Holland, Amsterdam, 2000, 963–995.
- [Y] S.-T. Yau, "Open problems in geometry" in S. S. Chern—A Great Geometer of the Twentieth Century, International Press, Hong Kong, 1992, 275–319.

Mathematical Institute Graduate School of Sciences Tohoku University Aoba-ku, Sendai 980-8578 Japan

r-miyaok@math.tohoku.ac.jp