ON KAEHLER IMMERSIONS

Koichi OGIUE

1. Introduction. Let \tilde{M} be an $(n+p)$-dimensional Kaehler manifold of constant holomorphic sectional curvature \tilde{c}. B. O'Neill [3] proved the following result.

Proposition A. Let M be an n-dimensional complex submunifold immersed in \tilde{M}. If $p<\frac{1}{2} n(n+1)$ and if the holomorphic sectional curvature of M with respect to the induced Kaehler metric is constant, then M is totally geodesic.

He also gave the following example: There is a Kaehler imbedding of an n-dimensional complex projective space of constant holomorphic sectional curvature $\frac{1}{2}$ into an $\left\{n+\frac{1}{2} n(n+1)\right\}$-dimensional complex projective space of constant holomorphic sectional curvature 1. This shows that Proposition A is the best possible.

The purpose of this paper is to prove the following theorems.
Theorem 1. Let M be an n-dimensional complex submanifold immersed in un $(n+p)$-dimensional Kaehler manifold \tilde{M} of constant holomorphic sectional curvature $\tilde{c}(\tilde{c}>0)$. If $p \geqq \frac{1}{2} n(n+1)$ and if the holomorphic sectional curvature of M with respect to the induced Kaehler metric is a constant c, then either $c=\tilde{c}$ (i.e., M is totally geodesic) or $c \leqq \frac{1}{2} \tilde{c}$.

Theorem 2. Let M be an n-dimensional complex submanifold immersed in an $(n+p)$-dimensional Kaehler manifold \tilde{M} of constant holomorphic sectional curvature \tilde{c}. If
(i) $p \geqq \frac{1}{2} n(n+1)$,
(ii) the holomorphic sectional curvature of M with respect to the induced Kaehler metric is a constant c, and
(iii) the second fundamental form of the immersion is parallel, then either $c=\tilde{c}$ (i.e., M is totally geodesic) or $c=\frac{1}{2} \tilde{c}$, the latter case arising only when $\tilde{c}>0$.
2. Preliminaries. Let J (respectively \tilde{J}) be the complex structure of M (respectively \widetilde{M}) and g (respectively \widetilde{g}) be the Kaehler metric of M (respectively \tilde{M}). We denote by ∇ (respectively $\tilde{\nabla}$) the covariant differentiation with respect to g (respectively \tilde{g}). Then the second fundamental form σ of the immersion is given by

$$
\sigma(X, Y)=\tilde{\nabla}_{X} Y-\nabla_{X} Y
$$

[^0]and it satisfies
$$
\sigma(X, J Y)=\sigma(J X, Y)=\widetilde{J} \sigma(X, Y)
$$

Let R be the curvature tensor field of M. Then the equation of Gauss is

$$
\begin{aligned}
g(R(X, Y) Z, W)= & \tilde{g}(\sigma(X, W), \sigma(Y, Z))-\tilde{g}(\sigma(X, Z), \sigma(Y, W)) \\
& +\frac{1}{4} \widetilde{c}\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \\
& +g(J X, W) g(J Y, Z)-g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(J Z, W)\} .
\end{aligned}
$$

Let $\xi_{1}, \ldots, \xi_{p}, \widetilde{J} \xi_{1}, \ldots, \widetilde{J} \xi_{p}$ be local fields of orthonormal vectors normal to M. If we set, for $i=1, \ldots, p$,

$$
\sigma(X, Y)=\sum g\left(A_{i} X, Y\right) \cdot \xi_{i}+\sum g\left(A_{i^{*}} X, Y\right) \cdot \widetilde{J} \xi_{i},
$$

then $A_{1}, \ldots, A_{p}, A_{1^{*}}, \ldots, A_{p^{*}}$ are local fields of symmetric linear transformations. We can easily see that $A_{i^{*}}=J A_{i}$ and $J A_{i}=-A_{i} J$ so that, in particular, $\operatorname{tr} A_{i}=\operatorname{tr} A_{i^{*}}=0$. The equation of Gauss can be written in terms of A_{i} 's as

$$
\begin{aligned}
g(R(X, Y) Z, W)=\sum & \left\{g\left(A_{i} X, W\right) g\left(A_{i} Y, Z\right)-g\left(A_{i} X, Z\right) g\left(A_{i} Y, W\right)\right. \\
+ & \left.g\left(J A_{i} X, W\right) g\left(J A_{i} Y, Z\right)-g\left(J A_{i} X, Z\right) g\left(J A_{i} Y, W\right)\right\} \\
+ & \frac{1}{4} \tilde{c}\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W) \\
& +g(J X, W) g(J Y, Z)-g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(J Z, W)\} .
\end{aligned}
$$

Let S be the Ricci tensor of M. Then we have

$$
\begin{equation*}
S(X, Y)=\frac{1}{2}(n+1) \tilde{c} g(X, Y)-2 g\left(\sum A_{i}{ }^{2} X, Y\right) \tag{1}
\end{equation*}
$$

We can see that the sectional curvature K of M determined by orthonormal vectors X and Y is given by
(2) $K(X, Y)=\frac{1}{4} \tilde{c}\left\{1+3 g(X, J Y)^{2}\right\}+\tilde{g}(\sigma(X, X), \sigma(Y, Y))-\|\sigma(X, Y)\|^{2}$.

In particular, the holomorphic sectional curvature H of M determined by a unit vector X is given by

$$
\begin{equation*}
H(X)=\tilde{c}-2\|\sigma(X, X)\|^{2} \tag{3}
\end{equation*}
$$

Let $\|\sigma\|$ be the length of the second fundamental form σ of the immersion so that $\|\sigma\|^{2}=2 \sum \operatorname{tr} A_{i}{ }^{2}$.

Let ∇^{\prime} be the covariant differentiation with respect to the connection in (tangent bundle of M) \oplus (normal bundle) induced naturally from $\tilde{\nabla}$. Then we have

$$
\left(\nabla_{X}^{\prime} \sigma\right)(Y, Z)=\left(\tilde{\nabla}_{X} \cdot \sigma(Y, Z)\right)^{\perp}-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right)
$$

where \perp denotes the normal component.

We know that the second fundamental form σ satisfies a differential equation, that is,

Lemma 1 [2]. We have

$$
\begin{equation*}
\frac{1}{2} \Delta\|\sigma\|^{2}=\left\|\nabla^{\prime} \sigma\right\|^{2}-8 \operatorname{tr}\left(\sum A_{i}^{2}\right)^{2}-\sum\left(\operatorname{tr} A_{\alpha} A_{\beta}\right)^{2}+\frac{1}{2}(n+2) \tilde{c}\|\sigma\|^{2} \tag{4}
\end{equation*}
$$

where Δ denotes the Laplacian and $\alpha, \beta=1, \ldots, p, 1^{*}, \ldots, p^{*}$.
3. Proof of theorems. First we note that $c \leqq \tilde{c}$.

Since $H=\mathrm{c}$, we have from (1)

$$
\begin{equation*}
\sum A_{i}^{2}=\frac{1}{4}(n+1)(\tilde{c}-c) I \tag{5}
\end{equation*}
$$

where I denotes the identity transformation. From (5) we have

$$
\begin{equation*}
\|\sigma\|^{2}=n(n+1)(\tilde{c}-c) \tag{6}
\end{equation*}
$$

Moreover, from (3) we have

$$
\begin{equation*}
\|\sigma(X, X)\|^{2}=\frac{1}{2}(\tilde{c}-c) \tag{7}
\end{equation*}
$$

for every unit vector X.
On the other hand, $H=c$ implies $K(X, Y)=K(X, J Y)=\frac{1}{4} c$ provided that X, Y and $J Y$ are orthonormal. Therefore from (2) we have

$$
\begin{equation*}
\|\sigma(X, Y)\|^{2}=\frac{1}{4}(\tilde{c}-c) \tag{8}
\end{equation*}
$$

for orthonormal X, Y and $J Y$.
Let $e_{1}, \ldots, e_{n}, J e_{1}, \ldots, J e_{n}$ be local fields of orthonormal vectors on M. Then we have the following

Lemma 2 [3]. The $n(n+1)$ local fields of vectors $\sigma\left(e_{a}, e_{b}\right)$, $\tilde{J}_{\sigma}\left(e_{a}, e_{b}\right)$ $(1 \leqq a \leqq b \leqq n)$ are orthogonal.

This, together with (7) and (8), implies that $\sigma\left(e_{a}, e_{b}\right), \widetilde{J}_{\sigma}\left(e_{a}, e_{b}\right)$ $(1 \leqq a \leqq b \leqq n)$ are linearly independent at each point provided $c \neq \tilde{c}$.

If $c=\tilde{c}$ then M is totally geodesic in \tilde{M}. From now on we may therefore assume that $c \neq \tilde{c}$.

Let $\xi_{1}, \ldots, \xi_{p}, \widetilde{J} \xi_{1}, \ldots, \widetilde{J} \xi_{p}$ be local fields of orthonormal vectors normal to M such that

$$
\begin{aligned}
& \xi_{a}= {\left[\frac{2}{\tilde{c}-c}\right]^{\frac{1}{2}} \sigma\left(e_{a}, e_{a}\right), \text { for } 1 \leqq a \leqq n } \\
& \xi_{r}=\frac{2}{(\tilde{c}-c)^{\frac{1}{2}}} \sigma\left(e_{a}, e_{b}\right), \text { for } 1 \leqq a<b \leqq n \\
& \quad \text { and } r=a+\frac{1}{2}(b-a)(2 n+1+a-b) .
\end{aligned}
$$

Then we can see that the corresponding A_{i} 's are as follows:

and $A_{\alpha}=0$ for $\alpha>\frac{1}{2} n(n+1)$, where $\theta=\left(\frac{1}{2}(\tilde{c}-c)\right)^{\frac{1}{2}}$ and $\psi=\frac{1}{2}(\tilde{c}-c)^{\frac{1}{2}}$. Hence we have

$$
\begin{equation*}
\sum\left(\operatorname{tr} A_{\alpha} A_{\beta}\right)^{2}=2 \sum\left(\operatorname{tr} A_{i}^{2}\right)^{2}=n(n+1)(\tilde{c}-c)^{2} \tag{9}
\end{equation*}
$$

Therefore, from (4), (5), (6) and (9), we have

$$
\left\|\nabla^{\prime} \sigma\right\|^{2}=n(n+1)(n+2)(\tilde{c}-c)\left(\frac{1}{2} \tilde{c}-c\right),
$$

from which our theorems follow immediately.
4. Remark. We consider the special case $n=p=1$. We have the following

Lemma. Let M be a complex curve immersed in a 2-dimensional Kaehler manifold \tilde{M} of constant holomorphic sectional curvature \tilde{c}. If $\sigma \neq 0$ everywhere on M, then

$$
\Delta \log \|\sigma\|^{2}=3\left(\tilde{c}-\|\sigma\|^{2}\right)
$$

For the proof see Corollary 1.7 in [1]. As an immediate consequence of this Lemma, we have the following result which is an improvement of Theorem 2 for the case $n=p=1$.

Proposition. Let M be a complex curve immersed in a 2-dimensional Kaehler manifold \tilde{M} of constant holomorphic sectional curvature \tilde{c}. If the curvature of M with respect to the induced Kaehler metric is a constant c, then either $c=\tilde{c}$ (i.e., M is totally geodesic) or $c=\frac{1}{2} \tilde{c}$, the latter case arising only when $\tilde{c}>0$.

The proof is clear from the fact that $\|\sigma\|^{2}=2(\widetilde{c}-c)$.
Added in proof. A generalization of this proposition is published in J. Math. Soc. Japan 24 (1972), 518-526.

References

1. K. Ogiue, Differential geometry of algebraic manifolds, Differential Geometry, in honor of K. Yano, 355-372 (Kinokuniya, Tokyo, 1972).
2. - Positively curved complex submanifolds immersed in a complex projective space (to appear in J. Differential Geometry).
3. B. O'Neill, Isotropic and Kaehler immersions, Can. J. Math. 17 (1965), 907-915.

Tokyo Metropolitan University, Tokyo, Japan

[^0]: Received November 1, 1971 and in revised form, March 29, 1972. This research was partially supported by the Sakko-kai Foundation.

