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ON KAEHLER IMMERSIONS 

KOICHI OGIUE 

1. I n t r o d u c t i o n . Let M be an (n + p) -dimensional Kaehler manifold of 
cons tant holomorphic sectional curva ture c. B. O'Neill [3] proved the following 
result. 

PROPOSITION A. Let M be an n-dimensional complex submanifold immersed 
in M. If p < \n{n + 1) and if the holomorphic sectional curvature of M with 
respect to the induced Kaehler metric is constant, then M is totally geodesic. 

He also gave the following example: There is a Kaehler imbedding of an 
w-dimensional complex projective space of cons tant holomorphic sectional 
curva ture \ into an {n + \n(ji + 1)}-dimensional complex projective space 
of cons tant holomorphic sectional curva ture 1. Th is shows t h a t Proposit ion A 
is the best possible. 

T h e purpose of this paper is to prove the following theorems. 

T H E O R E M 1. Let M be an n-dimensional complex submanifold immersed in an 
(n + p)-dimensional Kaehler manifold M of constant holomorphic sectional 
curvature c (c > 0 ) . If p ^ \n(n + 1) and if the holomorphic sectional curva
ture of M with respect to the induced Kaehler metric is a constant c, then either 
c = c (i.e., M is totally geodesic) or c ^ \Z. 

T H E O R E M 2. Let M be an n-dimensional complex submanifold immersed in an 
in + p)-dimensional Kaehler manifold M of constant holomorphic sectional 
curvature c. If 

(i) P ^ hn(n+ 1), 
(ii) the holomorphic sectional curvature of M with respect to the induced 

Kaehler metric is a constant c, and 
(iii) the second fundamental form of the immersion is parallel, then either 

c — c (i.e., M is totally geodesic) or c = \Z, the latter case arising only when 
c > 0. 

2. P r e l i m i n a r i e s . Le t J (respectively J) be the complex s t ruc ture of M 
(respectively M) and g (respectively g) be the Kaehler metr ic of M (respec
tively M). W e denote by V (respectively V) the covar iant differentiation with 
respect to g (respectively g). T h e n the second fundamental form a of the 
immersion is given by 

a{X, Y) = VXY- VXY 
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and it satisfies 

a(X,JY) = cr(JX, Y) = J<r(X, Y). 

Let R be the curvature tensor field of M. Then the equation of Gauss is 

g(R(X, Y)Z, W) = g(a(X, W), a(Y, Z)) - g{a{X, Z), a(Y, W)) 

+ \c{g(X, W)g(Y, Z) - g(X, Z)g{Y, W) 

+ g(JX, W)g(JY, Z) - g(JX, Z)g{JY, W) 

+ 2g(X,JY)g(JZ,W)}. 

Let £1, . . . , £j,, /£i, . . . , J£P be local fields of orthonormal vectors normal to 
M. If we set, for i = 1, . . . , p, 

*(X, Y) = T,g(A X, Y)-tt+Zg(AoX, Y) • j£t, 

then A i, . . . , Av, A±*, . . . , Ap* are local fields of symmetric linear trans
formations. We can easily see that At* = JA{ and J A t = —A J so that, in 
particular, tr A t = tr A t* = 0. The equation of Gauss can be written in terms 
of A i's as 

g(R(X, Y)Z, W) = Z kUX, W)g(AiY, Z) - g(AX, Z)g{AiY, W) 

+ g (JA X, W)g (JAtY,Z)-g (JA X, Z)g {JA tY,W)} 

+ \c{g{X, W)g{Y, Z) - g{X, Z)g(Y, W) 

+ g(JX, W)g(JY, Z) - g(JX, Z)g(JY, W) 

+ 2g(X,JY)g(JZ,W)}. 
Let 5 be the Ricci tensor of M. Then we have 

(1) S(X, Y) = \{n + l)cg{X, Y) - 2g(ZAt*X, Y). 

We can see that the sectional curvature K of M determined by orthonormal 
vectors X and Y is given by 

(2) K(X, Y) = \c{l + 3g(X, JY)*} + ~g{a{X, X), a(Y, F)) - \\<r(X, Y)\\K 

In particular, the holomorphic sectional curvature H of M determined by a 
unit vector X is given by 

(3) H{X)=c-2\\c{X,X)\\\ 

Let ||o-|| be the length of the second fundamental form a of the immersion so 
that |M|2 = 2 £ t r ^ , 2 . 

Let V be the covariant differentiation with respect to the connection in 
(tangent bundle of M) © (normal bundle) induced naturally from V. Then 
we have 

(Vx'a)(Y,Z) = (Vx-*(Y,Z)y-<r(VxY,Z) -a(Y,VxZ), 

where JL denotes the normal component. 
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We know that the second fundamental form a satisfies a differential equation, 
that is, 

LEMMA 1 [2]. We have 

(4) iA |H | 2 = | | W | | 2 - 8 t r ( L ^ i 2 ) 2 - £ (tr AaA^Y + \{n + 2)c\\a\\\ 

where A denotes the Laplacian and a, (3 = 1, . . . , p, 1*, . . . , p*. 

3. Proof of theorems. First we note that c S c. 
Since H = c, we have from (1) 

(5) ZAi = l(n+l){c-c)I, 

where / denotes the identity transformation. From (5) we have 

(6) IMI2 = n(n+ l)(c - c). 

Moreover, from (3) we have 

(7) \\<T(X,X)\\* = W-C) 

for every unit vector X. 
On the other hand, H = c implies K(X, Y) = K{X,JY) = \c provided 

that X, Y and J Y are orthonormal. Therefore from (2) we have 

(8) \\a(X,Y)\\* = l(c-c) 

for orthonormal X, Y and J Y. 
Let ei, . . . , en, Jei, . . . , Jen be local fields of orthonormal vectors on M. 

Then we have the following 

LEMMA 2 [3]. The n(n + 1) local fields of vectors <r(ea, eb), J<j(ea, eb) 
(1 ^ a ^ b ^ n) are orthogonal. 

This, together with (7) and (8), implies that <r(eai eb), J<r(ea, eb) 
(1 ^ a ^ b ^ n) are linearly independent at each point provided c ^ c. 

If c = c then M is totally geodesic in M. From now on we may therefore 
assume that c 9^ c. 

Let £i, . . . , £p, J£i, . . . , J£p be local fields of orthonormal vectors normal 
to M such that 

Za = 
c — c 

a(eai ea), for 1 S a ^ n 

2 
$r = (c - c)

h a^ai e**' i o r l = a < b = n 

and r = a + i(ft — a)(2n + 1 + a - 6). 
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Then we can see that the corresponding A t's are as follows: 
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Ô ° i 

0*»«0-iH 
: o Q 
o : 
- ^ o - - - o | 

and Aa = 0 for a > \n(n + 1), where 6 = (\(c - c))* and ^ = ±(c - c)*. 
Hence we have 

(9) L ( t r . 4 ^ ) 2 = 2 L ( t r ^ , 2 ) 2 = n(» + l)(c - c)2. 

Therefore, from (4), (5), (6) and (9), we have 

| | W | | 2 = n(n + 1)(» + 2)(c - c)(j2f - c), 

from which our theorems follow immediately. 
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4. Remark. We consider the special case n — p = 1. We have the following 

LEMMA. Let M be a complex curve immersed in a 2-dimensional Kaehler 
manifold M of constant holomorphic sectional curvature c. If a F^ 0 everywhere 
on M, then 

A log ||<r||* = 3 ( c - I k l l 2 ) -

For the proof see Corollary 1.7 in [1]. As an immediate consequence of this 
Lemma, we have the following result which is an improvement of Theorem 2 
for the case n = p = 1. 

PROPOSITION. Let M be a complex curve immersed in a 2-dimensional Kaehler 
manifold M of constant holomorphic sectional curvature c. If the curvature of M 
with respect to the induced Kaehler metric is a constant c, then either c = c (i.e., 
M is totally geodesic) or c = \Z, the latter case arising only when c > 0. 

The proof is clear from the fact that ||o-||2 = 2(c — c). 

Added in proof. A generalization of this proposition is published in J. Math. 
Soc. Japan U (1972), 518-526. 

REFERENCES 

1. K. Ogiue, Differential geometry of algebraic manifolds, Differential Geometry, in honor of 
K. Yano, 355-372 (Kinokuniya, Tokyo, 1972). 

2. Positively curved complex submanifolds immersed in a complex projective space (to 
appear in J. Differential Geometry). 

3. B. O'Neill, Isotropic and Kaehler immersions, Can. J. Math. 17 (1965), 907-915. 

Tokyo Metropolitan University, 
Tokyo, Japan 

https://doi.org/10.4153/CJM-1972-126-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-126-0

