SOME CHARACTERIZATIONS OF π-REGULAR RINGS WITH NO INFINITE TRIVIAL SUBRING

by YASUYUKI HIRANO
(Received 4th September 1988)
Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday

Abstract

It is shown that a ring R is a π-regular ring with no infinite trivial subring if and only if R is a subdirect sum of a strongly regular ring and a finite ring. Some other characterizations of such a ring are given. Similar result is proved for a periodic ring. As a corollary, it is shown that every δ-ring is a subdirect sum of a finite ring and a commutative ring. This was conjectured by Putcha and Yaqub.

1980 Mathematics subject classification (1985 Revision): 16A30.

In [7] Laffey proved that if R is an infinite periodic ring which is orthogonally finite and with all trivial subrings finite, then R has a commutative ideal I such that R / I is finite. Recently Armendariz [1] showed that such a ring is described as follows: $R=F \oplus S$, where F is a finite ring and S is a finite direct sum of periodic fields. He also gave an analogue result for strongly π-regular rings. More recently, in [6] we removed the assumption of orthogonal finiteness, and proved that a π-regular ring (resp. periodic ring) R with no infinite trivial subring has a strongly regular ideal (resp. commutative ideal) M such that R / M is finite. In this paper, we will show that a ring R is a π-regular ring (resp. periodic ring) with no infinite trivial subring if and only if R is a subdirect sum of a strongly regular ring (resp. J-ring) and a finite ring. We will also provide several characterizations of π-regular rings (resp. periodic rings) with no infinite trivial subring. As a result, we will solve the open problem of Putcha and Yaqub in [8] affirmatively.
The Jacobson radical of a ring R will be denoted by $J(R)$, and the prime radical by $P(R)$. The ring of integers will be denoted by \mathbf{Z}.

A ring R is called π-regular if for each x in R there exists a positive integer n (depending on x) and an element y of R such that $x^{n}=x^{n} y x^{n}$. A π-regular ring R for which the n in the above can be taken to be 1 for all x is called von Neumann regular. A strongly regular ring is a von Neumann regular ring with no nonzero nilpotent element. By a trivial subring of a ring R we mean a subring S of R with $S^{2}=0$.

Theorem 1. The following conditions are equivalent for a ring R.
(1) R is a π-regular ring with no infinite trivial subring.
(2) R has a strongly regular ideal M such that R / M is a finite ring.
(3) R is a subdirect sum of a strongly regular ring and a finite ring.
(4) R has a finite ideal I such that R / I is strongly regular.
(5) $P(R)$ is finite and $R / P(R)$ is the direct sum of a strongly regular ring and a finite ring.
(6) R is a π-regular ring with only finitely many nilpotent elements.
(7) There exists a finite subset S of R such that for each $x \in R$, there is $a \in R$ such that $a x=x a$ and $x-x^{2} a \in S$.

Proof. (1) \Rightarrow (2). This was proved in [6].
(2) $\Rightarrow(3)$. Take an ideal I of R which is maximal with respect to the property that $I \cap M=0$. We claim that R / I has no nonzero nilpotent element. Let a be an element of R such that $a^{2} \in I$ and let $m \in M$. Then we see $(a m a)^{2} \in M \cap I=0$. Since $a m a \in M$ and since M has no nonzero nilpotent element, we get $a m a=0$. Then we obtain $m a=0$, because $m a \in M$ and $(m a)^{2}=0$. Thus we get $M a=0$. Similarly we obtain $a M=0$. Now let $A=M \cap(R a+a R+\mathbf{Z} a+I)$. Then we see that $A^{2} \subset M(R a+a R+\mathbf{Z} a+I) \subset M \cap I=0$. Since $A \subset M$, we get $A=0$. By the choice of I, we conclude that $a \in I$. This proves that R / I has no nonzero nilpotent element. Let b be an arbitrary element of R. Since R / M is a finite ring, it is π-regular, and so there exists a positive integer n and $x \in R$ such that $b^{n}-b^{n} x b^{n} \in M$. Since M is strongly regular, there exists $y \in M$ such that $b^{n}-b^{n} x b^{n}=$ $\left(b^{n}-b^{n} x b^{n}\right) y\left(b^{n}-b^{n} x b^{n}\right)$. Then it holds that $b^{n}=b^{n} z b^{n}$, where $z=x+y-x b^{n} y-y b^{n} x+$ $x b^{n} y b^{n} x$. Therefore R, and hence R / I, is π-regular. As shown above, R / I has no nonzero nilpotent element, and hence R / I is strongly regular. Thus R is a subdirect sum of the strongly regular ring R / I and the finite ring R / M.
(3) $\Rightarrow(4)$. By hypothesis, there exist ideals I and M with $I \cap M=0$ such that R / I is strongly regular and R / M is finite. Then I can be embedded in the finite ring R / M, and so I is finite.
$(4) \Rightarrow(5)$. Since every element of $P(R)$ is nilpotent and since R / I has no nonzero nilpotent element, we get $P(R) \subset I$. Hence $P(R)$ is finite. Let $R^{\prime}=R / P(R)$, and $I^{\prime}=I / P(R)$. We claim that I^{\prime} is a semisimple ring. Suppose, to the contrary, that $J\left(I^{\prime}\right) \neq 0$. Since I^{\prime} is a finite ring, $J\left(I^{\prime}\right)$ is nilpotent. Hence $I^{\prime} J\left(I^{\prime}\right)$ is a nilpotent left ideal of R^{\prime}. Since $P\left(R^{\prime}\right)=0$, we get $I^{\prime} J\left(I^{\prime}\right)=0$. Thus $\left(R^{\prime} J\left(I^{\prime}\right)\right)^{2}=R^{\prime} J\left(I^{\prime}\right) R^{\prime} J\left(I^{\prime}\right) \subset I^{\prime} J\left(I^{\prime}\right)=0$, and hence $J\left(I^{\prime}\right)=0$. Thus the finite semisimple ring I^{\prime} has an identity e (see e.g. [5, Corollary 2, p. 30]). Since I^{\prime} is an ideal of R^{\prime}, we can easily see that e is a central idempotent of R^{\prime}. Hence we have the decomposition $R^{\prime}=I^{\prime} \oplus S$, where $S=\left\{r-r e \mid r \in R^{\prime}\right\}$. Since S is isomorphic to $R / I, S$ is strongly regular.
$(5) \Rightarrow(6)$. By hypothesis R has a finite ideal $I(\supset P(R))$ such that R / I is strongly regular. Since R / I has no nilpotent element, all nilpotent elements of R are contained in the finite ideal I. Hence those forms a finite set. To prove the π-regularity of R, take an arbitrary prime ideal of R. Then, by hypothesis, R / P is either a division ring or a finite simple ring. Obviously R is of bounded index. Therefore, by Corollary 2.2 of [4], we conclude that R is π-regular.
$(6) \Rightarrow(7)$. Since R is of bounded index, R is strongly π-regular by Theorem 5 of [2]. Let S be the set of all nilpotent elements of R and let x be any element of R. By Theorem 3 and Lemma 4 of [2] there exists $a \in R$ such that $x a=a x$ and $x-x^{2} a \in S$.
$(7) \Rightarrow(1)$. It is easy to see that all trivial subrings of R are contained in S. Hence R has no infinite trivial subring. To prove the π-regularity of R, take an arbitrary element x of R. By hypothesis there exists $a_{1} \in R$ such that $a_{1} x=x a_{1}$ and $x-x^{2} a_{1} \in S$. Let us set $b_{1}=x-x^{2} a_{1}$. Inductively, if $b_{n-1} \in S$ is defined, then we obtain $a_{n} \in R$ such that $a_{n} b_{n-1}^{2}=b_{n-1}^{2} a_{n}$ and $b_{n-1}^{2}-b_{n-1}^{4} a_{n} \in S$, and then we define $b_{n}=b_{n-1}^{2}-b_{n-1}^{4} a_{n}$. Since S is finite, there are positive integers $k<m$ such that $b_{k}=b_{m}$. Then we get $y, z \in R$ such that $x^{2^{k-1}}=x^{2^{k-1}+1} y=z x^{2^{k-1}+1}$. If we set $n=s^{k-1}, a=y^{n}$, and $b=z^{n}$, then we have $x^{n}=x^{2 n} a=b x^{2 n}$. Hence we obtain $x^{2 n}=x^{2 n} a b x^{2 n}$. This proves that R is π-regular.

Since the condition (7) of Theorem 1 is inherited by every homomorphic image of R, we have the following:

Corollary 1. If R is a π-regular ring with no infinite trivial subring, then so is every homomorphic image of R.

The following example shows that, in the condition (3) of Theorem 1, "subdirect sum" can not be replaced by "direct sum",

Example. Let K be a finite field, I an infinite set, and let K^{I} denote the direct product of the I-copies of K. Take a maximal ideal M of K^{I} containing the direct sum $K^{(I)}$ of the I-copies of K. Let n be the order of K. Then the field K^{I} / M satisfies the identity $X^{n}-X=0$. Hence we conclude that K^{I} / M is isomorphic to the field K. Let R be the additive abelian group $K^{I} \oplus\left(K^{I} / M\right)$ and define multiplication in R by (a, r) $(b, s)=(a b, a s+r b)$. Then R is a ring satisfying the equivalent conditions of Theorem 1 . In fact, $\left(K^{I} / M\right)^{*}=\left\{(0, r) \mid r \in K^{I} / M\right\}$ is a finite ideal of R, and $R /\left(K^{I} / M\right)^{*}\left(\simeq K^{I}\right)$ is strongly regular, and hence R satisfies the condition (4) of Theorem 1. It is easy to see that R cannot be represented as the direct sum of a strongly regular ring and a finite ring.

A ring R is said to be periodic if for each $x \in R$, there exist distinct positive integers m, n for which $x^{m}=x^{n}$. A ring R is called a J-ring if for each $x \in R$, there exists an integer $n>1$ such that $x=x^{n}$. We can easily see that a ring R is a J-ring if and only if R is a periodic ring with no nonzero nilpotent element. Finally, following [8], a ring R is called a δ-ring if R has a finite subset S such that for each $x \in R$, there exists a polynomial $f(X) \in Z[X]$ such that $x-x^{2} f(x) \in S$.

Theorem 2. The following conditions are equivalent for a ring R.
(1) R is a periodic ring with no infinite trivial subring.
(2) R has a J-ideal M such that R / M is a finite ring.
(3) R is a subdirect sum of a J-ring and a finite ring.
(4) R has a finite ideal I such that R / I is a J-ring.
(5) $P(R)$ is finite and $R / P(R)$ is the direct sum of a strongly regular ring and a finite semisimple ring.
(6) R is a periodic ring with only finitely many nilpotent elements.
(7) R is a δ-ring.

In preparation for the proof of Theorem 2, we state two lemmas the first of which is Proposition 2 of [3].

Lemma 1 ([3]). Let R be a ring. Suppose that for each $x \in R$, there exists a positive integer n and a polynomial $p(X) \in \mathbf{Z}[X]$ for which $x^{n}=x^{n+1} p(x)$. Then R is periodic.

Lemma 2. Let I be an ideal of a ring R. Then R is periodic if and only if both I and R / I are periodic.

Proof. It suffices to prove the "if" part. Let x be an arbitrary element of R. Since R / I is periodic, there exist positive integers $n<m$ such that $x^{n}-x^{m} \in I$. Since I is periodic, there exist positive integers $k<h$ such that $\left(x^{n}-x^{m}\right)^{k}=\left(x^{n}-x^{m}\right)^{h}$. This equation can be rewritten in the form $x^{n k}=x^{n k+1} p(x)$ for some $p(X) \in \mathbf{Z}[X]$. Hence, by Lemma $1, R$ is periodic.

Now we can prove Theorem 2. The proof proceeds parallel to the proof of Theorem 1.

Proof of Theorem 2. $(1) \Rightarrow(2)$. This was shown in the proof of Corollary 1 of $[6]$.
$(2) \Rightarrow(3)$. As shown in the proof of $(2) \Rightarrow(3)$ of Theorem 1 , there exists an ideal I of R with $I \cap M=0$ such that R / I has no nonzero nilpotent element. By virtue of Lemma 2 , we can easily see that R / I is a J-ring. Therefore R is a subdirect sum of the J-ring R / I and the finite ring R / M.
$(3) \Rightarrow(4)$ and $(4) \Rightarrow(5)$ can be shown by the similar way as in the corresponding parts of the proof of Theorem 1.
$(5) \Rightarrow(6)$. Using Lemma 2 , we can prove that R is periodic. By the same argument as in the proof of $(5) \Rightarrow(6)$ of Theorem 1 , we also see that R has only finitely many nilpotent elements.
(6) $\Rightarrow(7)$. Let N be the set of all nilpotent elements of R and let x be an arbitrary element of R. Since R is periodic, there exist positive integers m and n such that $x^{m}=x^{m+n}$. Then we have that $x-x^{n+1} \in N$. By hypothesis, N is finite, and hence R is a δ-ring.
(7) $\Rightarrow(1)$. It was proved in Lemma 2 of [8] that R satisfies the hypothesis of Lemma 1. Hence R is periodic. Since every subring of a δ-ring is a δ-ring, R has no infinite trivial subring by Theorem 1 of [8].

The following corollary is the answer to the question of Putcha and Yaqub [8, p. 20].

Corollary 2. Every δ-ring is a subdirect sum of a finite ring and a commutative ring.

Proof. A well known theorem of Jacobson says that every J-ring is commutative (see [5, Theorem 3.1.2]). Hence our assertion follows from the equivalence of the conditions (3) and (7) of Theorem 2.

REFERENCES

1. E. P. Armendariz, On infinite periodic rings, Math. Scand. 59 (1986), 5-8.
2. G. Azumaya, Strongly π-regular rings, J. Fac. Sci. Hokkaido Univ. 13 (1954), 34-39.
3. M. Chacron, On a theorem of Herstein, Canad. J. Math. 21 (1969), 1348-1353.
4. J. W. Fisher and R. L. Snider, On the von Neumann regularity of rings with regular prime factor rings, Pacific J. Math. 54 (1974), 135-144.
5. I. N. Herstein, Noncommutative Rings (Carus Monogr. No. 15, Amer. Math. Ass., New York, 1968).
6. Y. Hirano, On π-regular rings with no infinite trivial subring, Math. Scand., to appear.
7. T. J. Laffey, Commutative subrings of periodic rings, Math. Scand. 39 (1976), 161-166.
8. M. S. Putcha and A. Yaque, A finiteness conditions for rings, Math. Japon. 22 (1977), 13-20.

Department of Mathematics
Okayama University
Okayama 700
Japan

