Sequence entropy tuples and mean sensitive tuples

JIE LI†, CHUNLIN LIU[®][‡](https://orcid.org/0000-0001-6277-013X), SIMING TU§ and TAO YU¶

† *School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China (e-mail: [jiel0516@mail.ustc.edu.cn\)](mailto:jiel0516@mail.ustc.edu.cn)*

‡ *CAS Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China (e-mail: [lcl666@mail.ustc.edu.cn\)](mailto:lcl666@mail.ustc.edu.cn)* § *School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, P. R. China (e-mail: [tusiming3@mail.sysu.edu.cn\)](mailto:tusiming3@mail.sysu.edu.cn)* ¶ *Department of Mathematics, Shantou University, Shantou 515063, P. R. China*

(e-mail: [ytnuo@mail.ustc.edu.cn\)](mailto:ytnuo@mail.ustc.edu.cn)

(*Received* 6 *December* 2022 *and accepted in revised form* 16 *January* 2023)

Abstract. Using the idea of local entropy theory, we characterize the sequence entropy tuple via mean forms of the sensitive tuple in both topological and measure-theoretical senses. For the measure-theoretical sense, we show that for an ergodic measure-preserving system, the μ -sequence entropy tuple, the μ -mean sensitive tuple, and the μ -sensitive in the mean tuple coincide, and give an example to show that the ergodicity condition is necessary. For the topological sense, we show that for a certain class of minimal systems, the mean sensitive tuple is the sequence entropy tuple.

Key words: sequence entropy tuples, mean sensitive tuples, sensitive in the mean tuples 2020 Mathematics Subject Classification: 37A35, 37B05 (Primary)

1. *Introduction*

By a *topological dynamical system* (*t.d.s.* for short), we mean a pair (X, T) , where *X* is a compact metric space with a metric *d* and *T* is a homeomorphism from *X* to itself. A point $x \in X$ is called a *transitive point* if $Orb(x, T) = \{x, Tx, ...\}$ is dense in *X*. A t.d.s. *(X*, *T)* is called *minimal* if all points in *X* are transitive points. Denote by B_X all Borel measurable subsets of *X*. A Borel (probability) measure μ on *X* is

called *T*-*invariant* if $\mu(T^{-1}A) = \mu(A)$ for any $A \in \mathcal{B}_X$. A *T*-invariant measure μ on *X* is called *ergodic* if $B \in \mathcal{B}_X$ with $T^{-1}B = B$ implies $\mu(B) = 0$ or $\mu(B) = 1$. Denote by $M(X, T)$ (respectively $M^{e}(X, T)$) the collection of all *T*-invariant measures (respectively all ergodic measures) on *X*. For $\mu \in M(X, T)$, the *support* of μ is defined by supp (μ) = ${x \in X : \mu(U) > 0$ for any neighborhood *U* of *x*. Each measure $\mu \in M(X, T)$ induces a *measure-preserving system (m.p.s.* for short) $(X, \mathcal{B}_X, \mu, T)$.

It is well known that the entropy can be used to measure the local complexity of the structure of orbits in a given system. One may naturally ask how to characterize the entropy in a local way. The related research started from the series of pioneering papers of Blanchard *et al* [[1](#page-18-0)–[4](#page-18-1)], in which the notions of entropy pairs and entropy pairs for a measure were introduced. From then on, entropy pairs have been intensively studied by many researchers. Huang and Ye [[16](#page-18-2)] extended the notions from pairs to finite tuples, and showed that if the entropy of a given system is positive, then there are entropy *n*-tuples for any $n \in \mathbb{N}$ in both topological and measurable settings.

The sequence entropy was introduced by Kušhnirenko [[22](#page-19-0)] to establish the relation between spectrum theory and entropy theory. As in classical local entropy theory, the sequence entropy can also be localized. In [[12](#page-18-3), [15](#page-18-4)], the authors investigated the sequence entropy pairs, sequence entropy tuples, and sequence entropy tuples for a measure. Using tools from combinatorics, Kerr and Li [[18](#page-18-5), [19](#page-18-6)] studied (sequence) entropy tuples, (sequence) entropy tuples for a measure, and IT-tuples via independence sets. Huang and Ye [[17](#page-18-7)] showed that a system has a sequence entropy *n*-tuple if and only if its maximal pattern entropy is no less than $\log n$ in both topological and measurable settings. More introductions and applications of the local entropy theory can refer to a survey $[10]$ $[10]$ $[10]$.

In addition to the entropy, the sensitivity is another candidate to describe the complexity of a system, which was first used by Ruelle [[30](#page-19-1)]. In [[31](#page-19-2)], Xiong introduced a multi-variant version of the sensitivity, called the *n*-sensitivity. Motivated by the local entropy theory, Ye and Zhang [[32](#page-19-3)] introduced the notion of sensitive tuples. Particularly, they showed that a transitive t.d.s. is *n*-sensitive if and only if it has a sensitive *n*-tuple; and a sequence entropy *n*-tuple of a minimal t.d.s. is a sensitive *n*-tuple. For the converse, Maass and Shao [[29](#page-19-4)] showed that in a minimal t.d.s., if a sensitive *n*-tuple is a minimal point of the *n*-fold product t.d.s., then it is a sequence entropy *n*-tuple.

Recently, Li, Tu, and Ye [[25](#page-19-5)] studied the sensitivity in the mean form. Li, Ye, and Yu [[27](#page-19-6), [28](#page-19-7)] further studied the multi-version of mean sensitivity and its local representation, namely, the mean *n*-sensitivity and the mean *n*-sensitive tuple. One naturally wonders if there is still a characterization of sequence entropy tuples via mean sensitive tuples. By the results of $[6, 8, 18, 27]$ $[6, 8, 18, 27]$ $[6, 8, 18, 27]$ $[6, 8, 18, 27]$ $[6, 8, 18, 27]$ $[6, 8, 18, 27]$ $[6, 8, 18, 27]$ $[6, 8, 18, 27]$ $[6, 8, 18, 27]$, one can see that a sequence entropy tuple is not always a mean sensitive tuple even in a minimal t.d.s. Nonetheless, the works of [[5](#page-18-11), [11](#page-18-12), [25](#page-19-5)] yield that every minimal mean sensitive t.d.s. (that is, has a mean sensitive pair by [[27](#page-19-6)]) is not tame (that is, exists an IT pair by [[18](#page-18-5)]). So generally, we conjecture that for any minimal t.d.s., a mean sensitive *n*-tuple is an IT *n*-tuple and so a sequence entropy *n*-tuple by $[18]$ $[18]$ $[18]$, Theorem 5.9]. Now we can answer this question under an additional condition. Namely, the following theorem.

THEOREM 1.1. Let (X, T) be a minimal t.d.s. and $\pi : (X, T) \rightarrow (X_{ea}, T_{ea})$ be the factor *map to its maximal equicontinuous factor which is almost one to one. Then for* $2 \le n \in \mathbb{N}$,

$$
MS_n(X, T) \subset IT_n(X, T),
$$

where $MS_n(X, T)$ *denotes all the mean sensitive n-tuples and* $IT_n(X, T)$ *denotes all the IT n-tuples.*

In the parallel measure-theoretical setting, Huang, Lu, and Ye [[14](#page-18-13)] studied measurable sensitivity and its local representation. The notion of μ -mean sensitivity for an invariant measure μ on a t.d.s. was studied by García-Ramos [[7](#page-18-14)]. Li [[23](#page-19-8)] introduced the notion of the μ -mean *n*-sensitivity, and showed that an ergodic m.p.s. is μ -mean *n*-sensitive if and only if its maximal pattern entropy is no less than log *n*. The authors in [[27](#page-19-6)] introduced the notion of the μ -*n*-sensitivity in the mean, which was proved to be equivalent to the μ -mean *n*-sensitivity in the ergodic case.

Using the idea of localization, the authors $[28]$ $[28]$ $[28]$ introduced the notion of the μ -mean sensitive tuple and showed that every μ -entropy tuple of an ergodic m.p.s. is a μ -mean sensitive tuple. A natural question is left open in [[28](#page-19-7)].

Question 1.2. Is there a characterization of μ -sequence entropy tuples via μ -mean sensitive tuples?

The authors in [[24](#page-19-9)] introduced a weaker notion named the density-sensitive tuple and showed that every μ -sequence entropy tuple of an ergodic m.p.s. is a μ -density-sensitive tuple. In this paper, we give a positive answer to this question. Namely, the following theorem.

THEOREM 1.3. Let (X, T) be a t.d.s., $\mu \in M^e(X, T)$ and $2 \le n \in \mathbb{N}$. Then the *μ-sequence entropy n-tuple, the μ-mean sensitive n-tuple and the μ-n-sensitive in the mean tuple coincide.*

By the definitions, it is easy to see that a μ -mean sensitive *n*-tuple must be a μ -*n*-sensitive in the mean tuple. Thus, Theorem [1.3](#page-2-0) is a direct corollary of the following two theorems.

THEOREM 1.4. Let (X, T) be a t.d.s., $\mu \in M(X, T)$, and $2 \le n \in \mathbb{N}$. Then each *μ-n-sensitive in the mean tuple is a μ-sequence entropy n-tuple.*

THEOREM 1.5. Let (X, T) be a t.d.s., $\mu \in M^e(X, T)$, and $2 \le n \in \mathbb{N}$. Then each *μ-sequence entropy n-tuple is a μ-mean sensitive n-tuple.*

In fact, Theorem [1.4](#page-2-1) shows a bit more than Theorem [1.3,](#page-2-0) as for a *T*-invariant measure *μ* which is not ergodic, every *μ*-*n*-sensitive in the mean tuple is still a *μ*-sequence entropy *n*-tuple. However, the following result shows that ergodicity of μ in Theorem [1.5](#page-2-2) is necessary.

THEOREM 1.6. *For every* $2 \le n \in \mathbb{N}$, *there exist a t.d.s.* (X, T) *and* $\mu \in M(X, T)$ *such that there is a μ-sequence entropy n-tuple but it is not a μ-n-sensitive in the mean tuple.*

It is fair to note that García-Ramos informed us that at the same time, he with Muñoz-López also reported a completely independent proof of the equivalence of the sequence entropy pair and the mean sensitive pair in the ergodic case [[9](#page-18-15)]. Their proof relies on the deep equivalent characterization of measurable sequence entropy pairs developed by Kerr and Li [[19](#page-18-6)] using the combinatorial notion of independence. Our results provide more information in the general case, and the proofs work on the classical definition of sequence entropy pairs introduced in [[15](#page-18-4)]. It is worth noting that the proofs depend on a new interesting ergodic measure decomposition result (Lemma [4.3\)](#page-7-0), which was applied to prove the profound Erdös's conjectures in the number theory by Kra *et al* [[20](#page-19-10), [21](#page-19-11)]. This decomposition may have more applications because it has the hybrid topological and Borel structures.

The outline of the paper is the following. In $\S2$, we recall some basic notions that we will use in the paper. In [§3,](#page-5-0) we prove Theorem [1.4.](#page-2-1) In [§4,](#page-6-0) we show Theorems [1.5](#page-2-2) and [1.6.](#page-2-3) In [§5,](#page-11-0) we study the mean sensitive tuple and the sequence entropy in the topological sense and show Theorem [1.1.](#page-2-4)

2. *Preliminaries*

Throughout the paper, denote by $\mathbb N$ and $\mathbb Z_+$ the collections of natural numbers $\{1, 2, \ldots\}$ and non-negative integers {0, 1, 2, *...*}, respectively.

For $F \subset \mathbb{Z}_+$, denote by $\# \{F\}$ (or simply write $\# F$ when it is clear from the context) the cardinality of *F*. The *upper density* $\overline{D}(F)$ of *F* is defined by

$$
\overline{D}(F) = \limsup_{n \to \infty} \frac{\# \{ F \cap [0, n-1] \}}{n}.
$$

Similarly, the *lower density* $D(F)$ of *F* can be given by

$$
\underline{D}(F) = \liminf_{n \to \infty} \frac{\# \{ F \cap [0, n-1] \}}{n}.
$$

If $\overline{D}(F) = D(F)$, we say that the *density* of *F* exists and is equal to the common value, which is written as $D(F)$.

Given a t.d.s. (X, T) and $n \in \mathbb{N}$, denote by $X^{(n)}$ the *n*-fold product of X. Let $\Delta_n(X)$ = *{*(*x*, *x*, *...*, *x*) ∈ *X*^{(*n*}) : *x* ∈ *X*} be the diagonal of *X*^(*n*) and $\Delta'_n(X) = \{(x_1, x_2, ..., x_n) \in$ $X^{(n)}$: $x_i = x_j$ for some $1 \le i \ne j \le n$.

If a closed subset *Y* ⊂ *X* is *T*-invariant in the sense of $TY = Y$, then the restriction $(Y, T|Y)$ (or simply write (Y, T) when it is clear from the context) is also a t.d.s., which is called a *subsystem* of *(X*, *T)*.

Let (X, T) be a t.d.s., $x \in X$, and $U, V \subset X$. Denote by

$$
N(x, U) = \{ n \in \mathbb{Z}_+ : T^n x \in U \}
$$
 and
$$
N(U, V) = \{ n \in \mathbb{Z}_+ : U \cap T^{-n} V \neq \emptyset \}.
$$

A t.d.s. (X, T) is called *transitive* if $N(U, V) \neq \emptyset$ for all non-empty open subsets U, V of *X*. It is well known that the set of all transitive points in a transitive t.d.s. forms a dense G_δ subset of *X*.

Given two t.d.s. (X, T) and (Y, S) , a map $\pi: X \to Y$ is called a *factor map* if π is surjective and continuous such that $\pi \circ T = S \circ \pi$, and in which case (Y, S) is referred to be a *factor* of (X, T) . Furthermore, if π is a homeomorphism, we say that (X, T) is *conjugate* to *(Y* , *S)*.

A t.d.s. *(X*, *T)* is called *equicontinuous* (respectively *mean equicontinuous*) if for any $\epsilon > 0$, there is $\delta > 0$ such that if $x, y \in X$ with $d(x, y) < \delta$, then $\max_{k \in \mathbb{Z}_+} d(T^k x, T^k y) < \epsilon$ (respectively lim $\sup_{n \to \infty} (1/n) \sum_{k=0}^{n-1} d(T^k x, T^k y) < \epsilon$). Every t.d.s. *(X*, *T)* is known to have a maximal equicontinuous factor (or a maximal mean equicontinuous factor $[25]$ $[25]$ $[25]$). More studies on mean equicontinuous systems can be seen in the recent survey [[26](#page-19-12)].

In the remainder of this section, we fix a t.d.s. (X, T) with a measure $\mu \in M(X, T)$. The *entropy of a finite measurable partition* $\alpha = \{A_1, A_2, \ldots, A_k\}$ *of X* is defined by $H_{\mu}(\alpha) = -\sum_{i=1}^{k} \mu(A_i) \log \mu(A_i)$, where 0 log 0 is defined to be 0. Moreover, we define the *sequence entropy of* T with respect to α *along an increasing sequence* $S = \{s_i\}_{i=1}^{\infty}$ *of* \mathbb{Z}_+ by

$$
h_{\mu}^{S}(T,\alpha) = \limsup_{n \to \infty} \frac{1}{n} H_{\mu} \bigg(\bigvee_{i=1}^{n} T^{-s_{i}} \alpha \bigg).
$$

The *sequence entropy of T along the sequence S* is

$$
h_{\mu}^{S}(T) = \sup_{\alpha} h_{\mu}^{S}(T, \alpha),
$$

where the supremum takes over all finite measurable partitions. Correspondingly, the *topological sequence entropy of T with respect to S and a finite open cover U* is

$$
h^{S}(T, \mathcal{U}) = \limsup_{n \to \infty} \frac{1}{n} \log N\bigg(\bigvee_{i=1}^{n} T^{-s_i} \mathcal{U}\bigg),
$$

where $N(\bigvee_{i=1}^{n} T^{-s_i}U)$ is the minimum among the cardinalities of all sub-families of $\bigvee_{i=1}^{n} T^{-s_i} U$ covering *X*. The *topological sequence entropy of T with respect to S* is defined by

$$
h^{S}(T) = \sup_{\mathcal{U}} h^{S}(T, \mathcal{U}),
$$

where the supremum takes over all finite open covers.

Let $(x_i)_{i=1}^n \in X^{(n)}$. A finite cover $\mathcal{U} = \{U_1, U_2, \dots, U_k\}$ of *X* is said to be an *admissible cover* with respect to $(x_i)_{i=1}^n$ if for each $1 \le j \le k$, there exists $1 \le i_j \le n$ such that $x_{i_j} \notin \overline{U_j}$. Analogously, we define admissible partitions with respect to $(x_i)_{i=1}^n$.

Definition 2.1. [[15](#page-18-4), [29](#page-19-4)] An *n*-tuple $(x_i)_{i=1}^n \in X^{(n)} \setminus \Delta_n(X)$, $n \ge 2$ is called the following.

- A sequence entropy *n*-tuple for μ if for any admissible finite Borel measurable partition α with respect to $(x_i)_{i=1}^n$, there exists a sequence $S = \{m_i\}_{i=1}^\infty$ of \mathbb{Z}_+ such that $h_n^S(T, \alpha) > 0$. Denote by $SE_n^{\mu}(X, T)$ the set of all sequence entropy *n*-tuples for μ .
- A sequence entropy *n*-tuple if for any admissible finite open cover U with respect to $(x_i)_{i=1}^n$, there exists a sequence $S = \{m_i\}_{i=1}^\infty$ of \mathbb{Z}_+ such that $h^S(T, \mathcal{U}) > 0$. Denote by $SE_n(X, T)$ the set of all sequence entropy *n*-tuples.

We say that $f \in L^2(X, \mathcal{B}_X, \mu)$ is *almost periodic* if $\{f \circ T^n : n \in \mathbb{Z}_+\}$ is precompact in $L^2(X, \mathcal{B}_X, \mu)$. The set of all almost periodic functions is denoted by H_c , and there exists a *T*-invariant σ -algebra $\mathcal{K}_{\mu} \subset \mathcal{B}_X$ such that $H_c = L^2(X, \mathcal{K}_{\mu}, \mu)$, where \mathcal{K}_{μ} is called the Kronecker algebra of $(X, \mathcal{B}_X, \mu, T)$. The product σ -algebra of $X^{(n)}$ is denoted by $\mathcal{B}_X^{(n)}$. Define the measure $\lambda_n(\mu)$ on $\mathcal{B}_X^{(n)}$ by letting

$$
\lambda_n(\mu)\bigg(\prod_{i=1}^n A_i\bigg) = \int_X \prod_{i=1}^n \mathbb{E}(1_{A_i}|\mathcal{K}_\mu) d\mu.
$$

Note that $SE_n^{\mu}(X, T) = \text{supp}(\lambda_n(\mu)) \setminus \Delta_n(X)$ [[15](#page-18-4), Theorem 3.4].

3. *Proof of Theorem [1.4](#page-2-1)*

Definition 3.1. [[28](#page-19-7)] For $2 \le n \in \mathbb{N}$ and a t.d.s. (X, T) with $\mu \in M(X, T)$, we say that the n -tuple $(x_1, x_2, \ldots, x_n) \in X^{(n)} \setminus \Delta_n(X)$ is

- (1) a μ *-mean n-sensitive tuple* if for any open neighborhoods U_i of x_i with $i =$ 1, 2, ..., *n*, there is $\delta > 0$ such that for any $A \in \mathcal{B}_X$ with $\mu(A) > 0$, there are *y*₁, *y*₂, ..., *y_n* \in *A* and a subset *F* of \mathbb{Z}_+ with $\overline{D}(F) > \delta$ such that $T^k y_i \in U_i$ for all $i = 1, 2, \ldots, n$ and $k \in F$;
- (2) a μ -*n-sensitive in the mean tuple* if for any $\tau > 0$, there is $\delta = \delta(\tau) > 0$ such that for any $A \in \mathcal{B}_X$ with $\mu(A) > 0$, there is $m \in \mathbb{N}$ and $y_1^m, y_2^m, \ldots, y_n^m \in A$ such that

$$
\frac{\# \{0 \leq k \leq m-1 : T^k y_i^m \in B(x_i, \tau), i = 1, 2, \dots, n\}}{m} > \delta.
$$

We denote the set of all μ -mean *n*-sensitive tuples (respectively μ -*n*-sensitive in the mean tuples) by $MS_n^{\mu}(X, T)$ (respectively $SM_n^{\mu}(X, T)$). We call an *n*-tuple $(x_1, x_2, \ldots, x_n) \in X^{(n)}$ *essential* if $x_i \neq x_j$ for each $1 \leq i < j \leq n$ and at this time, we write the collection of all essential *n*-tuples in $MS_n^{\mu}(X, T)$ (respectively $SM_n^{\mu}(X, T)$) as $MS_n^{\mu,e}(X,T)$ (respectively $SM_n^{\mu,e}(X,T)$).

Proof of Theorem [1.4.](#page-2-1) It suffices to prove $SM_n^{\mu,e}(X,T) \subset SE_n^{\mu,e}(X,T)$. Let $(x_1, \ldots, x_n) \in SM_h^{\mu,e}(X, T)$. Take $\alpha = \{A_1, \ldots, A_l\}$ as an admissible partition of *(x*₁, *...*, *x_n*). Then for each 1 ≤ *k* ≤ *l*, there is i_k ∈ {1, *...*, *n*} such that $x_{i_k} \notin \overline{A_k}$. Put $E_i = \{1 \le k \le l : x_i \notin \overline{A_k}\}$ for $1 \le i \le n$. Obviously, $\bigcup_{i=1}^n E_i = \{1, \ldots, l\}$. Set

$$
B_1=\bigcup_{k\in E_1}A_k, B_2=\bigcup_{k\in E_2\setminus E_1}A_k,\ldots, B_n=\bigcup_{k\in E_n\setminus\left(\bigcup_{j=1}^{n-1}E_j\right)}A_k.
$$

Then, $\beta = \{B_1, \ldots, B_n\}$ is also an admissible partition of (x_1, \ldots, x_n) such that $x_i \notin \overline{B_i}$ for all $1 \le i \le n$. Without loss of generality, we assume $B_i \neq \emptyset$ for $1 \le i \le n$. It suffices to show that there exists a sequence $S = \{m_i\}_{i=1}^{\infty}$ of \mathbb{Z}_+ such that $h_{\mu}^S(T, \beta) > 0$, as $\alpha > \beta$. Let

$$
h^*_{\mu}(T, \beta) = \sup \{ h^S_{\mu}(T, \beta) : S \text{ is a sequence of } \mathbb{Z}_+ \}.
$$

By [[15](#page-18-4), Lemma 2.2 and Theorem 2.3], we have $h^*_{\mu}(T, \beta) = H_{\mu}(\beta | \mathcal{K}_{\mu})$, where \mathcal{K}_{μ} is the Kronecker algebra of $(X, \mathcal{B}_X, \mu, T)$. So it suffices to show $\beta \nsubseteq \mathcal{K}_\mu$.

190 *J. Li et al*

We prove it by contradiction. Now we assume that $\beta \subseteq \mathcal{K}_u$. Then for each $i = 1, \ldots, n$, 1_{B_i} is an almost periodic function. By [[33](#page-19-13), Theorems 4.7 and 5.2], 1_{B_i} is a *μ*-equicontinuous in the mean function. That is, for each $1 \le i \le n$ and any $\tau > 0$, there is a compact $K \subset X$ with $\mu(K) > 1 - \tau$ such that for any $\epsilon' > 0$, there is $\delta' > 0$ such that for all $m \in \mathbb{N}$, whenever $x, y \in K$ with $d(x, y) < \delta'$,

$$
\frac{1}{m}\sum_{t=0}^{m-1}|1_{B_i}(T^tx) - 1_{B_i}(T^ty)| < \epsilon'.\tag{3.1}
$$

.

However, take $\epsilon > 0$ such that $B_{\epsilon}(x_i) \cap B_i = \emptyset$ for $i = 1, \ldots, n$. Since $(x_1, \ldots, x_n) \in$ *SM*^{μ},^{*e*} (*X*, *T*), there is $\delta := \delta(\epsilon) > 0$ such that for any $A \in \mathcal{B}_X$ with $\mu(A) > 0$, there are $m \in \mathbb{N}$ and $y_1^m, \ldots, y_n^m \in A$ such that if we denote $C_m = \{0 \le t \le m - 1 : T^t y_i^m \in A\}$ $B_{\epsilon}(x_i)$ for all $i = 1, 2, \ldots, n$, then $\#C_m \geq m\delta$. Since $B_{\epsilon}(x_1) \cap B_1 = \emptyset$, then $B_{\epsilon}(x_1) \subset$ $\bigcup_{i=2}^{n} B_i$. This implies that there is *i*₀ ∈ {2, *...*, *n*} such that

$$
\# \{ t \in C_m : T^t y_1^m \in B_{i_0} \} \ge \frac{\# C_m}{n-1}
$$

For any $t \in C_m$, we have $T^t y_{i_0}^m \in B_{\epsilon}(x_{i_0})$, and then $T^t y_{i_0}^m \notin B_{i_0}$, as $B_{\epsilon}(x_{i_0}) \cap B_{i_0} = \emptyset$. This implies that

$$
\frac{1}{m}\sum_{t=0}^{m-1}|1_{B_{i_0}}(T^t y_1^m) - 1_{B_{i_0}}(T^t y_{i_0}^m)| \ge \frac{\#C_m}{m(n-1)} \ge \frac{\delta}{n-1}.
$$
 (3.2)

Choose a measurable subset $A \subset K$ such that $\mu(A) > 0$ and diam $(A) = \sup\{d(x, y) :$ $x, y \in A$ *< δ'*, and $\epsilon' = \delta/2(n-1)$. Then by equation [\(3.1\)](#page-6-1), for any $m \in \mathbb{N}$ and $x, y \in A$,

$$
\frac{1}{m}\sum_{t=0}^{m-1}|1_{B_{i_0}}(T^tx)-1_{B_{i_0}}(T^ty)|<\frac{\delta}{2(n-1)},
$$

which is a contradiction with equation [\(3.2\)](#page-6-2). Thus, $SM_n^{\mu,e}(X,T) \subset SE_n^{\mu,e}(X,T)$. \Box

4. *Proof of Theorem [1.5](#page-2-2)*

In [§4.1,](#page-6-3) we first reduce Theorem [1.5](#page-2-2) to just prove that it is true for the ergodic m.p.s. with a continuous factor map to its Kronecker factor, and then we finish the proof of Theorem [1.5](#page-2-2) under this assumption. In [§4.2,](#page-10-0) we show the condition that μ is ergodic is necessary.

4.1. *Ergodic case.* Throughout this section, we will use the following two types of factor maps between two m.p.s. $(X, \mathcal{B}_X, \mu, T)$ and $(Z, \mathcal{B}_Z, \nu, S)$.

(1) *Measurable factor maps:* a measurable map $\pi : X \to Z$ such that $\mu \circ \pi^{-1} = \nu$ and $\pi \circ T = S \circ \pi \mu$ -almost everywhere;

(2) *Continuous factor maps:* a topological factor map $\pi : X \to Z$ such that $\mu \circ \pi^{-1} = \nu$. If a continuous factor map π such that $\pi^{-1}(\mathcal{B}_Z) = \mathcal{K}_u$, π is called a continuous factor map to its Kronecker factor.

The following result is a weaker version in [[20](#page-19-10), Proposition 3.20].

LEMMA 4.1. Let $(X, \mathcal{B}_X, \mu, T)$ be an ergodic m.p.s. Then there exists an ergodic m.p.s. $(\tilde{X}, \tilde{B}, \tilde{\mu}, \tilde{T})$ *and a continuous factor map* $\tilde{\pi}: \tilde{X} \to X$ *such that* $(\tilde{X}, \tilde{B}, \tilde{\mu}, \tilde{T})$ *has a continuous factor map to its Kronecker factor.*

The following result shows that we only need to prove $SE^{\mu}_n(X, T) \subset MS^{\mu}_n(X, T)$ for all ergodic m.p.s. with a continuous factor map to its Kronecker factor.

LEMMA 4.2. If $SE^{\tilde{\mu}}_n(\tilde{X}, \tilde{T}) \subset MS^{\tilde{\mu}}_n(\tilde{X}, \tilde{T})$ for all ergodic m.p.s. $(\tilde{X}, \tilde{B}, \tilde{\mu}, \tilde{T})$ with a *continuous factor map to its Kronecker factor, then* $SE_{n}^{\mu}(X, T) \subset MS_{n}^{\mu}(X, T)$ *for all ergodic m.p.s. (X*, *^BX*, *^μ*, *T).*

Proof. By Lemma [4.1,](#page-7-1) there exists an ergodic m.p.s. $(\tilde{X}, \tilde{B}, \tilde{\mu}, \tilde{T})$ and a continuous factor map $\tilde{\pi}$: $\tilde{X} \to X$ such that $(\tilde{X}, \tilde{B}, \tilde{\mu}, \tilde{T})$ has a continuous factor map to its Kronecker factor. Thus, $SE^{\tilde{\mu}}_n(\tilde{X}, \tilde{T}) \subset MS^{\tilde{\mu}}_n(\tilde{X}, \tilde{T})$, by the assumption.

For any $(x_1, \ldots, x_n) \in SE_n^{\mu}(X, T) \setminus \Delta'_n(X)$, by [[15](#page-18-4), Theorem 3.7], there exists an *n*-tuple $(\tilde{x_1}, \ldots, \tilde{x_n}) \in SE_n^{\tilde{\mu}}(\tilde{X}, \tilde{T}) \setminus \Delta'_n(\tilde{X})$ such that $\tilde{\pi}(\tilde{x_i}) = x_i$. For any open neighborhood $U_1 \times \cdots \times U_n$ of (x_1, \ldots, x_n) with $U_i \cap U_j = \emptyset$ for $i \neq j$, then $\tilde{\pi}^{-1}(U_1) \times \cdots \times U_n$ $\tilde{\pi}^{-1}(U_n)$ is an open neighborhood of $(\tilde{x_1}, \ldots, \tilde{x_n})$. Since $(\tilde{x_1}, \ldots, \tilde{x_n}) \in SE_n^{\tilde{\mu}}(\tilde{X}, \tilde{T})$ $\Delta'_n(\tilde{X}) \subset MS_n^{\tilde{\mu}}(\tilde{X}, \tilde{T}) \setminus \Delta'_n(\tilde{X})$, there exists $\delta > 0$ such that for any $A \in \mathcal{B}_X$ with $\tilde{\mu}(\tilde{\pi}^{-1}(A)) = \mu(A) > 0$, there exist $F \subset \mathbb{N}$ with $\overline{D}(F) \ge \delta$ and $\tilde{y}_1, \ldots, \tilde{y}_n \in \tilde{\pi}^{-1}(A)$ such that for any $m \in F$,

$$
(\tilde{T}^m \tilde{y}_1, \ldots, \tilde{T}^m \tilde{y}_n) \in \tilde{\pi}^{-1}(U_1) \times \cdots \times \tilde{\pi}^{-1}(U_n)
$$

and hence $(T^m \tilde{\pi}(\tilde{y}_1), \ldots, T^m \tilde{\pi}(\tilde{y}_n)) \in U_1 \times \cdots \times U_n$. Note that $\tilde{\pi}(\tilde{y}_i) \in A$ for each $i = 1, 2, ..., n$. Thus we have $(x_1, ..., x_n) \in MS_n^{\mu}(X, T)$. \Box

According to the above-mentioned lemma, in the rest of this section, we fix an ergodic m.p.s. with a continuous factor map π : $(X, \mathcal{B}_X, \mu, T) \rightarrow (Z, \mathcal{B}_Z, \nu, R)$ to its Kronecker factor. Moreover, we fix a measure disintegration $z \to \eta_z$ of μ over π , that is, $\mu = \int_Z \eta_z d\nu(z)$.

The following lemma plays a crucial role in our proof. In [[20](#page-19-10), Proposition 3.11], the authors proved it for $n = 2$, but general cases are similar in idea. For readability, we move the complicated proof to Appendix A.

LEMMA 4.3. Let π : $(X, \mathcal{B}_X, \mu, T) \rightarrow (Z, \mathcal{B}_Z, \nu, R)$ be a continuous factor map to its *Kronecker factor. Then for each* $n \in \mathbb{N}$, there exists a continuous map $x \mapsto \lambda_x^n$ from $X^{(n)}$ *to* $M(X^{(n)})$ *such that the map* $x \mapsto \lambda_x^n$ *is an ergodic decomposition of* $\mu^{(n)}$ *, where* $\mu^{(n)}$ *is the n-fold product of μ and*

$$
\lambda_x^n = \int_Z \eta_{z+\pi(x_1)} \times \cdots \times \eta_{z+\pi(x_n)} d\nu(z) \quad \text{for } x = (x_1, x_2, \ldots, x_n).
$$

The following two lemmas can be viewed as generalizations of Lemma 3.3 and Theorem 3.4 in [[15](#page-18-4)], respectively.

LEMMA 4.4. Let π : $(X, \mathcal{B}_X, \mu, T) \rightarrow (Z, \mathcal{B}_Z, \nu, R)$ be a continuous factor map to its *Kronecker factor. Assume that* $U = \{U_1, U_2, \ldots, U_n\}$ *is a measurable cover of X. Then*

for any measurable partition ^α finer than ^U as a cover, there exists an increasing sequence $S \subset \mathbb{Z}_+$ *with* $h^S_\mu(T, \alpha) > 0$ *if and only if* $\lambda^n_x(U^c_1 \times \cdots \times U^c_n) > 0$ *for all* $x = (x_1, \ldots, x_n) \in X^{(n)}$.

Proof. (\Rightarrow) In contrast, we may assume that $\lambda_x^n(U_1^c \times \cdots \times U_n^c) = 0$ for some $\mathbf{x} = (x_1, \ldots, x_n) \in X^{(n)}$. Let $C_i = \{z \in Z : \eta_{z+\pi(x_i)}(U_i^c) > 0\}$ for $i = 1, \ldots, n$. Then

$$
\mu(U_i^c \setminus \pi^{-1}(C_i)) = \int_Z \eta_{z+\pi(x_i)}(U_i^c \cap \pi^{-1}(C_i^c)) d\nu(z) = 0.
$$

Put $D_i = \pi^{-1}(C_i) \cup (U_i^c \setminus \pi^{-1}(C_i))$. Then $D_i \in \pi^{-1}(\mathcal{B}_Z) = \mathcal{K}_\mu$ and $D_i^c \subset U_i$, where K_u is the Kronecker factor of *X*.

For any $\mathbf{s} = (s(1), \ldots, s(n)) \in \{0, 1\}^n$, let $D_{\mathbf{s}} = \bigcap_{i=1}^n D_i(s(i))$, where $D_i(0) = D_i$ and $D_i(1) = D_i^c$. Set $E_1 = (\bigcap_{i=1}^n D_i) \cap U_1$ and $E_j = (\bigcap_{i=1}^n D_i) \cap (U_j \setminus \bigcup_{i=1}^{j-1} U_i)$ for $j = 2, \ldots, n$.

Consider the measurable partition

$$
\alpha = \{D_{\mathbf{s}} : \mathbf{s} \in \{0,1\}^n \setminus \{(0,\ldots,0)\}\} \cup \{E_1,\ldots,E_n\}.
$$

For any $s \in \{0, 1\}^n \setminus \{(0, \ldots, 0)\}\)$, we have $s(i) = 1$ for some $i = 1, \ldots, n$, then $D_s \subset$ $D_i^c \subset U_i$. It is straightforward that for all $1 \le j \le n$, $E_j \subset U_j$. Thus, α is finer than U and by hypothesis, there exists an increasing sequence *S* of \mathbb{Z}_+ with $h^S_\mu(T, \alpha) > 0$.

However, since $\lambda_{\mathbf{x}}^n (U_1^c \times \cdots \times U_n^c) = 0$, we deduce $\nu(\bigcap_{i=1}^n C_i) = 0$ and hence $\mu(\bigcap_{i=1}^n D_i) = 0$. Thus, we have $E_1, \ldots, E_n \in \mathcal{K}_{\mu}$. It is also clear that $D_s \in \mathcal{K}_{\mu}$ for all $s \in \{0, 1\}^n \setminus \{(0, \ldots, 0)\}\)$, as $D_1, \ldots, D_n \in \mathcal{K}_\mu$. Therefore, each element of α is K_μ -measurable, by [[15](#page-18-4), Lemma 2.2],

$$
h^S_\mu(T,\alpha)\leq H_\mu(\alpha|\mathcal{K}_\mu)=0,
$$

which is a contradiction.

 $\left(\leftarrow$ Assume λ^n _x(*U*^{*c*}₁ × · · · × *U*^{*c*}_{*n*}) > 0 for any **x** ∈ *X*^{(*n*}). In particular, we take **x** = (x, \ldots, x) such that $\pi(x)$ is the identity element of group *Z*. Without loss of generality, we may assume that any finite measurable partition α which is finer than $\mathcal U$ as a cover is of the type $\alpha = \{A_1, A_2, \ldots, A_n\}$ with $A_i \subset U_i$, for $1 \leq i \leq n$. Let α be one of such partitions. We observe that

$$
\int_Z \eta_z(A_1^c)\ldots\eta_z(A_n^c)\,d\nu(z)\geq \int_Z \eta_z(U_1^c)\ldots\eta_z(U_n^c)\,d\nu(z)=\lambda_{\mathbf{x}}^n(U_1^c\times\cdots\times U_n^c)>0.
$$

Therefore, $A_j \notin \mathcal{K}_{\mu}$ for some $1 \leq j \leq n$. It follows from [[15](#page-18-4), Theorem 2.3] that there exists a sequence $S \subset \mathbb{Z}_+$ such that $h^S_\mu(T, \alpha) = H_\mu(\alpha \mid \mathcal{K}_\mu) > 0$. This finishes the proof. \Box

LEMMA 4.5. *For any ,*

$$
SE_n^{\mu}(X, T) = \text{supp }\lambda_x^n \setminus \Delta_n(X).
$$

Proof. On the one hand, let $y = (y_1, \ldots, y_n) \in SE_n^{\mu}(X, T)$. We show that $y \in \text{supp } \lambda_x^n \setminus \lambda_y^n$ $\Delta_n(X)$. It suffices to prove that for any measurable neighborhood $U_1 \times \cdots \times U_n$ of y,

$$
\lambda_{\mathbf{x}}^n(U_1 \times U_2 \times \cdots \times U_n) > 0.
$$

Without loss of generality, we assume that $U_i \cap U_j = \emptyset$ if $y_i \neq y_j$. Then $\mathcal{U} =$ $\{U_1^c, U_2^c, \ldots, U_n^c\}$ is a finite cover of *X*. It is clear that any finite measurable partition *α* finer than *U* as a cover is an admissible partition with respect to **y**. Therefore, there exists an increasing sequence $S \subset \mathbb{Z}_+$ with $h_u^S(T, \alpha) > 0$. By Lemma [4.4,](#page-7-2) we obtain that

$$
\lambda_{\mathbf{X}}^n(U_1 \times U_2 \times \cdots \times U_n) > 0,
$$

which implies that $y \in \text{supp }\lambda_x^n$. Since $y \notin \Delta_n(X)$, $y \in \text{supp }\lambda_x^n \setminus \Delta_n(X)$.

On the other hand, let $y = (y_1, \ldots, y_n) \in \text{supp } \lambda_x^n \setminus \Delta_n(X)$. We show that for any admissible partition $\alpha = \{A_1, A_2, \ldots, A_k\}$ with respect to y, there exists an increasing sequence $S \subset \mathbb{Z}_+$ such that $h^S_\mu(T, \alpha) > 0$. Since α is an admissible partition with respect to y, there exist closed neighborhoods U_i of y_i , $1 \leq i \leq n$, such that for each $j \in \{1, 2, \ldots, k\}$, we find $i_j \in \{1, 2, \ldots, n\}$ with $A_j \subset U_{i_j}^c$. That is, α is finer than $\mathcal{U} = \{U_1^c, U_2^c, \dots, U_n^c\}$ as a cover. Since

$$
\lambda_{\mathbf{X}}^n(U_1 \times U_2 \times \cdots \times U_n) > 0,
$$

by Lemma [4.4,](#page-7-2) there exists an increasing sequence $S \subset \mathbb{Z}_+$ such that $h^S_\mu(T, \alpha) > 0$. \Box

Now we are ready to give the proof of Theorem [1.5.](#page-2-2)

Proof of Theorem [1.5.](#page-2-2) We only need to prove that $SE_n^{\mu,e}(X,T) \subset MS_n^{\mu,e}(X,T)$. We let π : $(X, B_X, \mu, T) \rightarrow (Z, B_Z, \nu, R)$ be a continuous factor map to its Kronecker factor. For any $y = (y_1, \ldots, y_n) \in SE_n^{\mu,e}(X, T)$, let $U_1 \times U_2 \times \cdots \times U_n$ be an open neighborhood of y such that $U_i \cap U_j = \emptyset$ for $1 \le i \ne j \le n$. By Lemma [4.5,](#page-8-0) one has $\lambda_x^n(U_1 \times U_2 \times \cdots \times U_n) > 0$ for any $\mathbf{x} = (x_1, \ldots, x_n) \in X^{(n)}$. Since the map $\mathbf{x} \mapsto \lambda_x^n$ is continuous, *X* is compact, and U_1, U_2, \ldots, U_n are open sets, it follows that there exists $\delta > 0$ such that for any $\mathbf{x} \in X^{(n)}$, $\lambda_{\mathbf{x}}^n(U_1 \times U_2 \times \cdots \times U_n) \geq \delta$. As the map $\mathbf{x} \mapsto \lambda_{\mathbf{x}}^n$ is an ergodic decomposition of $\mu^{(n)}$, there exists $B \subset X^{(n)}$ with $\mu^{(n)}(B) = 1$ such that λ_x^n is ergodic on $X^{(n)}$ for any $x \in B$.

For any $A \in \mathcal{B}_X$ with $\mu(A) > 0$, there exists a subset *C* of $X^{(n)}$ with $\mu^{(n)}(C) > 0$ such that for any $\mathbf{x} \in C$,

$$
\lambda_{\mathbf{X}}^n(A^n) > 0.
$$

Take $\mathbf{x} \in B \cap C$, by the Birkhoff pointwise ergodic theorem, for $\lambda^n_{\mathbf{x}}$ -almost every (a.e.) $(x'_1, \ldots, x'_n) \in X^{(n)},$

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{m=0}^{N-1}1_{U_1\times U_2\times\cdots\times U_n}(T^mx'_1,\ldots,T^mx'_n)=\lambda_{\mathbf{x}}^n(U_1\times U_2\times\cdots\times U_n)\geq \delta.
$$

Since $\lambda_{\mathbf{x}}^n(A^n) > 0$, there exists $(x_1'', \ldots, x_n'') \in A^n$ such that

$$
\lim_{N \to \infty} \frac{1}{N} \# \{ m \in [0, N - 1] : (T^m x_1'', \dots, T^m x_n'') \in U_1 \times U_2 \times \dots \times U_n \}
$$
\n
$$
= \lim_{N \to \infty} \frac{1}{N} \sum_{m=0}^{N-1} 1_{U_1 \times U_2 \times \dots \times U_n} (T^m x_1'', \dots, T^m x_n'')
$$
\n
$$
= \lambda_x^n (U_1 \times U_2 \times \dots \times U_n) \ge \delta.
$$

Let $F = \{m \in \mathbb{Z}_+ : (T^m x_1'', \ldots, T^m x_n'') \in U_1 \times U_2 \times \cdots \times U_n\}$. Then $D(F) \ge \delta$ and hence $y \in MS_n^{\mu,e}(X,T)$. This finishes the proof. \Box

4.2. *Non-ergodic case*

LEMMA 4.6. *Let* (X, T) *be a t.d.s. For any* $\mu \in M(X, T)$ *with the form* $\mu = \sum_{i=1}^{m} \lambda_i v_i$ *, where* $v_i \in M^e(X, T)$, $\sum_{i=1}^m \lambda_i = 1$, and $\lambda_i > 0$, one has

$$
\bigcup_{i=1}^{m} SE_n^{\nu_i}(X, T) \subset SE_n^{\mu}(X, T)
$$
\n(4.1)

and

$$
\bigcap_{i=1}^{m} SM_n^{\nu_i}(X, T) = SM_n^{\mu}(X, T). \tag{4.2}
$$

Proof. We first prove equation [\(4.1\)](#page-10-1). For any $\mathbf{x} = (x_1, \ldots, x_n) \in \bigcup_{i=1}^m SE_n^{\nu_i}(X, T)$, there exists $i \in \{1, 2, \ldots, m\}$ such that $\mathbf{x} \in SE_n^{\nu_i}(X, T)$ and then for any admissible partition α with respect to **x**, there exists $S = \{s_j\}_{j=1}^{\infty}$ such that $h_{\nu_i}^S(T, \alpha) > 0$. By the definition of the sequence entropy,

$$
h^S_{\mu}(T,\alpha)=\limsup_{N\to\infty}\sum_{i=1}^m\lambda_i\frac{1}{N}H_{\nu_i}(\bigvee_{j=0}^{N-1}T^{-s_j}\alpha)\geq\lambda_ih^S_{\nu_i}(T,\alpha)>0.
$$

So $\mathbf{x} \in SE_n^{\mu}(X, T)$, which finishes the proof of equation [\(4.1\)](#page-10-1).

Next, we show equation [\(4.2\)](#page-10-2). For this, we only need to note that for any $A \in B_X$,
 A) > 0 if and only if $v_i(A)$ > 0 for some $i \in \{1, 2, ..., m\}$. $\mu(A) > 0$ if and only if $\nu_i(A) > 0$ for some $j \in \{1, 2, ..., m\}$.

Proof of Theorem [1.6.](#page-2-3) We first claim that there is a t.d.s. (X, T) with $\mu_1, \mu_2 \in M^e(X, T)$ such that $SE_n^{\mu_1}(X, T) \neq SE_n^{\mu_2}(X, T)$. For example, we recall that the full shift on two symbols with the measure is defined by the probability vector *(*1*/*2, 1*/*2*)*. It has completely positive entropy and the measure has the full support. Thus, every non-diagonal *n*-tuple is a sequence entropy *n*-tuple for this measure. In particular, we consider two such full shifts $(X_1, T_1, \mu_1) = (\{0, 1\}^{\mathbb{Z}}, \sigma_1, \mu_1)$ and $(X_2, T_2, \mu_2) = (\{2, 3\}^{\mathbb{Z}}, \sigma_2, \mu_2)$, and define a new system (X, T) as $X = X_1 \bigsqcup X_2, T|_{X_i} = T_i, i = 1, 2$. Then, $\mu_1, \mu_2 \in M^e(X, T)$ and $SE_n^{\mu_1}(X, T) = X_1^{(n)} \setminus \Delta_n(X_1) \neq X_2^{(n)} \setminus \Delta_n(X_2) = SE_n^{\mu_2}(X, T).$

Let $\mu = \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2 \in M(X, T)$. By Lemma [4.6,](#page-10-3) if $SE^{\mu}_n(X, T) = SM^{\mu}_n(X, T)$, then we have

$$
\bigcup_{i=1}^{2} SE_{n}^{\mu_{i}}(X, T) \subset SE_{n}^{\mu}(X, T) = SM_{n}^{\mu}(X, T) = \bigcap_{i=1}^{2} SM_{n}^{\mu_{i}}(X, T).
$$

However, applying Theorem [1.3](#page-2-0) to each $\mu_i \in M^e(X, T)$, one has

$$
SE_n^{\mu_i}(X, T) = SM_n^{\mu_i}(X, T) \text{ for } i = 1, 2.
$$

So $SE_n^{\mu_1}(X, T) = SE_n^{\mu_2}(X, T)$, which is a contradiction with our assumption.

5. *Topological sequence entropy and mean sensitive tuples*

This section is devoted to providing some partial evidence for the conjecture that in a minimal system, every mean sensitive tuple is a topological sequence entropy tuple.

It is known that the topological sequence entropy tuple has lift property [[29](#page-19-4)]. We can show that under the minimality condition, the mean sensitive tuple also has lift property. Let us begin with some notions. For $2 \le n \in \mathbb{N}$, we say that $(x_1, x_2, \ldots, x_n) \in$ $X^{(n)} \setminus \Delta_n(X)$ (respectively $(x_1, x_2, \ldots, x_n) \in X^{(n)} \setminus \Delta'_n(X)$) is a *mean n-sensitive tuple* (respectively an *essential mean n-sensitive tuple*) if for any $\tau > 0$, there is $\delta = \delta(\tau) > 0$ such that for any non-empty open set $U \subset X$, there exist $y_1, y_2, \ldots, y_n \in U$ such that if we denote $F = \{k \in \mathbb{Z}_+ : T^k y_i \in B(x_i, \tau), i = 1, 2, \ldots, n\}$, then $\overline{D}(F) > \delta$. Denote the set of all mean *n*-sensitive tuples (respectively essential mean *n*-sensitive tuples) by $MS_n(X, T)$ (respectively $MS_n^e(X, T)$).

THEOREM 5.1. *Let* π : $(X, T) \rightarrow (Y, S)$ *be a factor map between two t.d.s. Then,*

- (1) $\pi^{(n)}(MS_n(X, T)) \subset MS_n(Y, S) \cup \Delta_n(Y)$ for every $n > 2$;
- (2) $\pi^{(n)}(MS_n(X,T) \cup \Delta_n(X)) = MS_n(Y,S) \cup \Delta_n(Y)$ for every $n \geq 2$, provided that (X, T) *is minimal.*

Proof. Item (1) is easy to be proved by the definition. We only prove item (2).

Supposing that $(y_1, y_2, \ldots, y_n) \in MS_n(Y, S)$, we will show that there exists $(z_1, z_2, \ldots, z_n) \in MS_n(X, T)$ such that $\pi(z_i) = y_i$ for each $i = 1, 2, \ldots, n$. Fix $x \in X$ and let $U_m = B(x, 1/m)$. Since (X, T) is minimal, $int(\pi(U_m)) \neq \emptyset$, where $int(\pi(U_m))$ is the interior of $\pi(U_m)$. Since $(y_1, y_2, \ldots, y_n) \in MS_n(Y, S)$, there exists $\delta > 0$ and $y_m^1, \ldots, y_m^n \in \text{int}(\pi(U_m))$ such that

$$
\overline{D}(\{k \in \mathbb{Z}_+ : S^k y_m^i \in \overline{B(y_i, 1)} \text{ for } i = 1, \dots, n\}) \ge \delta.
$$

Then there exist $x_m^1, \ldots, x_m^n \in U_m$ with $\pi(x_m^i) = y_m^i$ such that for any $m \in \mathbb{N}$,

$$
\overline{D}(\lbrace k \in \mathbb{Z}_+ : T^k x_m^i \in \pi^{-1}(\overline{B(y_i, 1)}) \text{ for } i = 1, \ldots, n \rbrace) \ge \delta.
$$

Put

$$
A = \prod_{i=1}^{n} \pi^{-1}(\overline{B(y_i, 1)}),
$$

and it is clear that *A* is a compact subset of $X^{(n)}$.

 \Box

We can cover *A* with finite non-empty open sets of diameter less than 1, that is, $A \subset \bigcup_{i=1}^{N_1} A_1^i$ and diam (A_1^i) < 1. Then for each $m \in \mathbb{N}$, there is $1 \leq N_1^m \leq N_1$ such that

$$
\overline{D}(\lbrace k \in \mathbb{Z}_+ : (T^k x_m^1, \ldots, T^k x_m^n) \in \overline{A_1^{N_1^m}} \cap A \rbrace) \geq \delta/N_1.
$$

Without loss of generality, we assume $N_1^m = 1$ for all $m \in \mathbb{N}$. Namely,

$$
\overline{D}(\{k \in \mathbb{Z}_+ : (T^k x_m^1, \dots, T^k x_m^n) \in \overline{A_1^1} \cap A\}) \ge \delta/N_1 \quad \text{for all } m \in \mathbb{N}.
$$

Repeating the above procedure, for $l \geq 1$, we can cover $A_l^1 \cap A$ with finite non-empty open sets of diameter less than $1/(l + 1)$, that is, $\overline{A_l^1} \cap A \subset \bigcup_{i=1}^{N_{l+1}} A_{l+1}^i$ and $\dim(A_{l+1}^i)$ < 1/(l + 1). Then for each $m \in \mathbb{N}$, there is $1 \leq N_{l+1}^m \leq N_{l+1}$ such that

$$
\overline{D}(\{k \in \mathbb{Z}_{+}: (T^{k}x_{m}^{1}, \ldots, T^{k}x_{m}^{n}) \in \overline{A_{l+1}^{N_{l+1}^{m}}} \cap A\}) \geq \frac{\delta}{N_{1}N_{2} \cdots N_{l+1}}.
$$

Without loss of generality, we assume $N_{l+1}^m = 1$ for all $m \in \mathbb{N}$. Namely,

$$
\overline{D}(\lbrace k \in \mathbb{Z}_+ : (T^k x_m^1, \dots, T^k x_m^n) \in \overline{A_{l+1}^1} \cap A \rbrace) \ge \frac{\delta}{N_1 N_2 \cdots N_{l+1}} \quad \text{for all } m \in \mathbb{N}.
$$

It is clear that there is a unique point $(z_1^1, \ldots, z_n^1) \in \bigcap_{l=1}^{\infty} \overline{A_l^1} \cap A$. We claim that $(z_1^1, \ldots, z_n^1) \in MS_n(X, T)$. In fact, for any $\tau > 0$, there is $l \in \mathbb{N}$ such that $A_l^1 \cap A \subset$ $V_1 \times \cdots \times V_n$, where $V_i = B(z_i^1, \tau)$ for $i = 1, \ldots, n$. By the construction, for any $m \in \mathbb{N}$, there are $x_m^1, \ldots, x_m^n \in U_m$ such that

$$
\overline{D}(\lbrace k \in \mathbb{Z}_+ : (T^k x_m^1, \dots, T^k x_m^n) \in \overline{A_l^1} \cap A \rbrace) \ge \frac{\delta}{N_1 N_2 \cdots N_l}
$$

and so

$$
\overline{D}(\lbrace k \in \mathbb{Z}_+ : (T^k x_m^1, \ldots, T^k x_m^n) \in V_1 \times \cdots \times V_n \rbrace) \ge \frac{\delta}{N_1 N_2 \cdots N_l}
$$

for all $m \in \mathbb{N}$. For any non-empty open set $U \subset X$, since x is a transitive point, there is *s* ∈ $\mathbb Z$ such that $T^s x \in U$. We can choose $m \in \mathbb Z$ such that $T^s U_m \subset U$. This implies that $T^s x_m^1, \ldots, T^s x_m^n \in U$ and

$$
\overline{D}(\lbrace k \in \mathbb{Z}_+ : (T^k(T^s x_m^1), \ldots, T^k(T^s x_m^n)) \in V_1 \times \cdots \times V_n \rbrace) \geq \frac{\delta}{N_1 N_2 \cdots N_l}.
$$

So we have $(z_1^1, \ldots, z_n^1) \in MS_n(X, T)$.

Similarly, for each $p \in \mathbb{N}$, there exists $(z_1^p, \ldots, z_n^p) \in MS_n(X, T) \cap \prod_{i=1}^n$ $\pi^{-1}(\overline{B(y_i, 1/p)})$. Set $z_i^p \to z_i$ as $p \to \infty$. Then $(z_1, \ldots, z_n) \in MS_n(X, T) \cup \Delta_n(X)$ and $\pi(z_i) = y_i$. \Box

Denote by $A(MS_2(X, T))$ the smallest closed $T \times T$ -invariant equivalence relation containing $MS_2(X, T)$.

COROLLARY 5.2. Let (X, T) be a minimal t.d.s. Then $X/A(MS_2(X, T))$ is the maximal *mean equicontinuous factor of (X*, *T).*

Proof. Let $Y = X/A(MS_2(X, T))$ and $\pi : (X, T) \rightarrow (Y, S)$ be the corresponding factor map. We show that (Y, S) is mean equicontinuous. Assume that (Y, S) is not mean equicontinuous, by [[25](#page-19-5), Corollary 5.5], *(Y* , *S)* is mean sensitive. Then by [[27](#page-19-6), Theorem 4.4], $MS_2(Y, S) \neq \emptyset$. By Theorem [5.1,](#page-11-1) there exists $(x_1, x_2) \in MS_2(X, T)$ such that $(π(x₁), π(x₂)) ∈ MS₂(Y, S)$. Then $(x₁, x₂) ∉ R_π := {(x, x') ∈ X × X : π(x) =$ $\pi(x')$ }, which is a contradiction with $R_{\pi} = \mathcal{A}(MS_2(X, T))$.

Let (Z, W) be a mean equicontinuous t.d.s. and $\theta : (X, T) \to (Z, W)$ be a factor map. Since (X, T) is minimal, so is (Z, W) . Then by $[25, Corollary 5.5]$ $[25, Corollary 5.5]$ $[25, Corollary 5.5]$ and $[27, Theorem 4.4]$ $[27, Theorem 4.4]$ $[27, Theorem 4.4]$, $MS_2(Z, W) = \emptyset$. By Theorem [5.1,](#page-11-1) $MS_2(X, T) \subset R_\theta$, where R_θ is the corresponding equivalence relation with respect to *θ*. This implies that *(Z*, *W)* is a factor of *(Y* , *S)* and so *(Y* , *S)* is the maximal mean equicontinuous factor of *(X*, *T)*. \Box

In the following, we show Theorem [1.1.](#page-2-4) Let us begin with some preparations.

Definition 5.3. [[18](#page-18-5)] Let *(X*, *T)* be a t.d.s.

- For a tuple (A_1, A_2, \ldots, A_n) of subsets of *X*, we say that a set $J \subseteq \mathbb{Z}_+$ is an *independence set* for *A* if for every non-empty finite subset $I \subseteq J$ and function $\sigma: I \to \{1, 2, \ldots, n\}$, we have $\bigcap_{k \in I} T^{-k} A_{\sigma(k)} \neq \emptyset$.
- For $n \ge 2$, we call a tuple $\mathbf{x} = (x_1, \ldots, x_n) \in X^{(n)}$ an *IT-tuple* if for any product neighborhood $U_1 \times U_2 \times \cdots \times U_n$ of **x** in $X^{(n)}$, the tuple (U_1, U_2, \ldots, U_n) has an infinite independence set. We denote the set of IT-tuples of length *n* by $IT_n(X, T)$.
- *For n* \geq 2, we call an IT-tuple $\mathbf{x} = (x_1, \ldots, x_n) \in X^{(n)}$ an essential *IT-tuple* if $x_i \neq x_j$ for any $i \neq j$. We denote the set of all essential IT-tuples of length *n* by $\text{IT}_n^e(X, T)$.

PROPOSITION 5.4. [[13](#page-18-16), Proposition 3.2] *Let X be a compact metric topological group with the left Haar measure* μ *, and let* $n \in \mathbb{N}$ *with* $n \geq 2$ *. Suppose that* $V_1, \ldots, V_n \subset X$ *are compact subsets satisfying that*

- (i) $\overline{\text{int } V_i} = V_i \text{ for } i = 1, 2, ..., n;$
- (ii) $int(V_i) \cap int(V_j) = \emptyset$ *for all* $1 \leq i \neq j \leq n$;
- (iii) $\mu(\bigcap_{1 \le i \le n} V_i) > 0.$

Further, assume that $T : X \to X$ *is a minimal rotation and* $G \subset X$ *is a residual set. Then there exists an infinite set* $I \subset \mathbb{Z}_+$ *such that for all* $a \in \{1, 2, \ldots, n\}^I$, there exists $x \in \mathcal{G}$ *with the property that*

$$
x \in \bigcap_{k \in I} T^{-k} \text{int}(V_{a(k)}), \quad \text{i.e. } T^k x \in \text{int}(V_{a(k)}) \quad \text{for any } k \in I. \tag{5.1}
$$

A subset *Z* ⊂ *X* is called *proper* if *Z* is a compact subset with $\overline{int(Z)} = Z$. The following lemma can help us to complete the proof of Theorem [1.1.](#page-2-4)

LEMMA 5.5. *Let* (X, T) *and* (Y, S) *be two t.d.s., and* π : $(X, T) \rightarrow (Y, S)$ *be a factor map.* Suppose that (X, T) is minimal. Then the image of proper subsets of X under π *is a proper subset of Y.*

Proof. Given a proper subset *Z* of *X*, we will show $\pi(Z)$ is also proper. It is clear that $\pi(Z)$ is compact, as π is continuous. Now we prove $\overline{\text{int}(\pi(Z))} = \pi(Z)$.

It follows from the closeness of $\pi(Z)$ that $\overline{\text{int}(\pi(Z))} \subset \pi(Z)$. However, for any *y* ∈ *π*(*Z*), take $x \in \pi^{-1}(y) \cap Z$. Since $\pi^{-1}(y) \cap Z = \pi^{-1}(y) \cap \overline{\text{int}(Z)}$, there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $x_n \in \text{int}(Z)$ for each $n \in \mathbb{N}$, and $\lim_{n\to\infty} x_n = x$. Let $\{r_n\}_{n\in\mathbb{N}}$ be a sequence of $\mathbb R$ satisfying

$$
\lim_{n \to \infty} r_n = 0 \quad \text{and} \quad B(x_n, r_n) \subset \text{int}(Z).
$$

By the minimality of (X, T) , we have π is semi-open, and hence $int(\pi(B(x_n, r_n))) \neq \emptyset$. Thus, there exists $x'_n \in B(x_n, r_n)$ such that $\pi(x'_n) \in \text{int}(\pi(B(x_n, r_n))) \subset \text{int}(\pi(Z))$. Since $x'_n \in B(x_n, r_n)$ and $\lim_{n \to \infty} x_n = x$, one has $\lim_{n \to \infty} x'_n = x$, and hence $\lim_{n \to \infty} \pi(x'_n) =$ $\pi(x) = y$. This implies that $y \in \text{int}(\pi(Z))$, which finishes the proof. \Box

Inspired by [[13](#page-18-16), Proposition 3.7], we can give the proof of Theorem [1.1.](#page-2-4)

Proof of Theorem [1.1.](#page-2-4) It suffices to prove $MS_n^e(X, T) \subset IT_n^e(X, T)$. Given $\mathbf{x} =$ $(x_1, \ldots, x_n) \in MS_n^e(X, T)$, we will show that $\mathbf{x} \in IT_n^e(X, T)$.

Since the minimal t.d.s. (X_{eq}, T_{eq}) is the maximal equicontinuous factor of (X, T) , then X_{ea} can be viewed as a compact metric group with a T_{ea} -invariant metric d_{ea} . Let μ be the left Haar probability measure of X_{eq} , which is also the unique T_{eq} -invariant probability measure of (X_{eq}, T_{eq}) . Let

$$
X_1 = \{x \in X : #\{\pi^{-1}(\pi(x))\} = 1\}, \quad Y_1 = \pi(X_1).
$$

Then Y_1 is a dense G_δ -set as π is almost one to one.

Without loss of generality, assume that $\epsilon = \frac{1}{4} \min_{1 \le i \ne j \le n} d(x_i, x_j)$. Let $U_i = \overline{B_{\epsilon}(x_i)}$ for $1 \leq i \leq n$. Then U_i is proper for each $1 \leq i \leq n$. We will show that U_1, U_2, \ldots, U_n is an infinite independent tuple of (X, T) , that is, there is some infinite set $I \subseteq \mathbb{Z}_+$ such that

$$
\bigcap_{k\in I} T^{-k}U_{a(k)} \neq \emptyset \quad \text{for all } a \in \{1, 2, \dots, n\}^I.
$$

Let $V_i = \pi(U_i)$ for $1 \le i \le n$. By Lemma [5.5,](#page-13-0) V_i is proper for each $i \in \{1, 2, \ldots, n\}$. We claim that $int(V_i) \cap int(V_j) = \emptyset$ for all $1 \le i \ne j \le n$. In fact, if there is some $1 \le j \le n$ $i \neq j \leq n$ such that int $(V_i) \cap \text{int}(V_j) \neq \emptyset$, then

$$
int(V_i) \cap int(V_j) \cap Y_1 \neq \emptyset,
$$

as *Y*₁ is a dense *G*_{δ}-set. Let $y \in \text{int}(V_i) \cap \text{int}(V_j) \cap Y_1$. Then there are $x_i \in U_i$ and $x_j \in U_j$ such that $y = \pi(x_i) = \pi(x_i)$, which contradicts with $y \in Y_1$.

Choose a non-empty open set $W_m \subset X$ with $\text{diam}(\pi(W_m)) < 1/m$ for each $m \in \mathbb{N}$. Since $\mathbf{x} \in M\mathcal{S}_n^e(X, T)$, there exist $\delta > 0$ and $\mathbf{x}^m = (x_1^m, x_2^m, \dots, x_n^m) \in W_m \times \dots \times W_m$ $\text{such that } \overline{D}(N(\mathbf{x}^m, U_1 \times U_2 \times \cdots \times U_n)) \geq \delta. \text{ Let } \mathbf{y}^m = (y_1^m, y_2^m, \ldots, y_n^m) = \pi^{(n)}(\mathbf{x}^m).$ Then,

$$
\overline{D}(N(\mathbf{y}^m, V_1 \times V_2 \times \cdots \times V_n)) \geq \delta.
$$

For $p \in \overline{D}(N(\mathbf{y}^m, V_1 \times V_2 \times \cdots \times V_n))$, $T_{eq}^p y_i^m \in V_i$ for each $i = 1, 2, \ldots, n$. As $diam(\pi(W_m)) < 1/m, d_{eq}(y_1^m, y_i^m) < 1/m$ for $1 \le i \le n$. Note that

$$
d_{eq}(T_{eq}^p y_1^m, T_{eq}^p y_i^m) = d_{eq}(y_1^m, y_i^m) < \frac{1}{m}
$$
 for $1 \le i \le n$.

Let $V_i^m = B_{1/m}(V_i) = \{y \in X_{eq} : d_{eq}(y, V_i) < 1/m\}$. Then, $T_{eq}^p y_1^m \in \bigcap_{i=1}^n V_i^m$ and

$$
\overline{D}(N(y_1^m, \bigcap_{i=1}^n V_i^m)) \ge \delta.
$$

Since (X_{eq}, T_{eq}) is uniquely ergodic with respect to a measure μ , $\mu(\bigcap_{i=1}^{n} V_i^m) \ge \delta$. Letting $m \to \infty$, one has $\mu(\bigcap_{i=1}^{n} V_i) \ge \delta > 0$.

By Proposition [5.4,](#page-13-1) there is an infinite $I \subseteq \mathbb{Z}_+$ such that for all $a \in \{1, 2, \ldots, n\}^I$, there exists $y_0 \in Y_1$ with the property that

$$
y_0 \in \bigcap_{k \in I} T_{eq}^{-k} \text{int}(V_{a(k)}).
$$

Set $\pi^{-1}(y_0) = \{x_0\}$. Then

$$
x_0 \in \bigcap_{k \in I} T^{-k} U_{a(k)},
$$

which implies that $(x_1, x_2, \ldots, x_n) \in IT_n(X, T)$.

Acknowledgments. We thank the referee for a very careful reading and many useful comments, which helped us to improve the paper. Research of J.L. is supported by NNSF of China (Grant No. 12031019); C.L. is partially supported by NNSF of China (Grant No. 12090012); S.T. is supported by NNSF of China (Grants No. 11801584 and No. 12171175); and T.Y. is supported by NNSF of China (Grant No. 12001354) and STU Scientific Research Foundation for Talents (Grant No. NTF19047).

A. *Appendix. Proof of Lemma [4.3](#page-7-0)*

In this section, we give the proof of Lemma [4.3.](#page-7-0)

LEMMA A.1. *For an m.p.s.* $(X, \mathcal{B}_X, \mu, T)$ *with* \mathcal{K}_{μ} *its Kronecker factor,* $n \in \mathbb{N}$ *and* $f_i \in L^{\infty}(X, \mu), i = 1, \ldots, n$ *, we have*

$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} f_i(T^m x_i) = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} \mathbb{E}(f_i | \mathcal{K}_{\mu})(T^m x_i).
$$

Proof. On the one hand, by the Birkhoff ergodic theorem, for $\mathbf{x} = (x_1, \dots, x_n) \in X^{(n)}$, let $F(\mathbf{x}) = F(x_1, ..., x_n) = \prod_{i=1}^n f_i(x_i)$,

$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} f_i(T^m x_i) = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} F((T^{(n)})^m \mathbf{x}) = \mathbb{E}_{\mu^{(n)}} \bigg(\prod_{i=1}^{n} f_i | I_{\mu^{(n)}} \bigg) (\mathbf{x}),
$$

where $I_{\mu^{(n)}} = \{A \in \mathcal{B}_X^{(n)} : T^{(n)}A = A\}.$

 \Box

200 *J. Li et al*

On the other hand, following [[15](#page-18-4), Lemma 4.4], we have $(K_{\mu})^{\bigotimes n} = K_{\mu^{(n)}}$. Then for $X = (x_1, \ldots, x_n) \in X^{(n)}$,

$$
\prod_{i=1}^n \mathbb{E}_{\mu}(f_i|\mathcal{K}_{\mu})(x_i) = \mathbb{E}_{\mu^{(n)}}\bigg(\prod_{i=1}^n f_i|(\mathcal{K}_{\mu})^{\bigotimes n}\bigg)(\mathbf{x}) = \mathbb{E}_{\mu^{(n)}}\bigg(\prod_{i=1}^n f_i|\mathcal{K}_{\mu^{(n)}}\bigg)(\mathbf{x}).
$$

This implies that

$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} \mathbb{E}_{\mu}(f_i | \mathcal{K}_{\mu})(T^m x_i) = \mathbb{E}_{\mu^{(n)}} \bigg(\prod_{i=1}^{n} \mathbb{E}_{\mu}(f_i | \mathcal{K}_{\mu}) | I_{\mu^{(n)}} \bigg) (\mathbf{x})
$$

\n
$$
= \mathbb{E}_{\mu^{(n)}} \bigg(\prod_{i=1}^{n} f_i | \mathcal{K}_{\mu^{(n)}} \bigg) | I_{\mu^{(n)}} (\mathbf{x})
$$

\n
$$
= \mathbb{E}_{\mu^{(n)}} \bigg(\prod_{i=1}^{n} f_i | I_{\mu^{(n)}} \bigg) (\mathbf{x}),
$$

where the last equality follows from the fact that $I_{\mu^{(n)}} \subset \mathcal{K}_{\mu^{(n)}}$.

LEMMA A.2. *Let (Z*, *^BZ*, *^ν*, *R) be a minimal rotation on a compact abelian group. Then for any* $n \in \mathbb{N}$ *and* $\phi_i \in L^\infty(\mathbb{Z}, \nu)$, $i = 1, \ldots, n$,

$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} \phi_i(R^m z_i) = \int_Z \prod_{i=1}^{n} \phi_i(z_i + z) d\nu(z) \text{ for } \nu^{(n)} \text{-}a.e. (z_1, \ldots, z_n).
$$

Proof. Since $(Z, \mathcal{B}_Z, \nu, R)$ is a minimal rotation on a compact abelian group, there exists $a \in Z$ such that $R^m z = z + ma$ for any $z \in Z$.

Let $F(z) = \prod_{i=1}^{n} \phi_i(z_i + z)$. Then $F(R^m e_Z) = F(ma)$, where e_Z is the identity element of *Z*. Since (Z, R) is minimal equicontinuous, (Z, B_Z, v, R) is uniquely ergodic. By an approximation argument, we have, for $v^{(n)}$ -a.e. (z_1, \ldots, z_n) ,

$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} \phi_i(R^m z_i) = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} \phi_i(z_i + ma)
$$

=
$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} F(ma) = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} F(R^m e_Z)
$$

=
$$
\int_Z F(z) \, dv(z) = \int_Z \prod_{i=1}^{n} \phi_i(z_i + z) \, dv(z).
$$

The proof is completed.

Proof of Lemma [4.3.](#page-7-0) Let $z \mapsto \eta_z$ be the disintegration of μ over the continuous factor map π from $(X, \mathcal{B}_X, \mu, T)$ to its Kronecker factor $(Z, \mathcal{B}_Z, \nu, R)$. For $n \in \mathbb{N}$, define

$$
\lambda_{\mathbf{x}}^{n} = \int_{Z} \eta_{z+\pi(x_{1})} \times \cdots \times \eta_{z+\pi(x_{n})} d\nu(z)
$$

for every $x = (x_1, ..., x_n) \in X^{(n)}$.

 \Box

 \Box

We first note that for each $\mathbf{x} \in X^{(n)}$, the measures $\eta_{z+\pi(x_i)}$ are defined for *v*-a.e. $z \in Z$ and therefore is well defined. To prove that $x \mapsto \lambda_x^n$ is continuous, first note that uniform continuity implies

$$
(u_1,\ldots,u_n)\mapsto \int_Z \prod_{i=1}^n f_i(z+u_i)\,dv(z)
$$

from $Z^{(n)}$ to $\mathbb C$ is continuous whenever $f_i: Z \to \mathbb C$ are continuous. An approximation argument then gives continuity for every $f_i \in L^{\infty}(Z, \nu)$. In particular,

$$
\mathbf{x} \mapsto \int_Z \prod_{i=1}^n \mathbb{E}(f_i \mid \mathcal{B}_Z)(z + \pi(x_i)) \, d\nu(z)
$$

from $X^{(n)}$ to $\mathbb C$ is continuous whenever $f_i \in L^\infty(X, \mu)$, which in turn implies continuity of $\mathbf{x} \mapsto \lambda^n_{\mathbf{x}}$.

To prove that $\mathbf{x} \mapsto \lambda_{\mathbf{x}}^n$ is an ergodic decomposition, we first calculate

$$
\int_{X^{(n)}} \int_Z \prod_{i=1}^n \eta_{z+\pi(x_i)} d\nu(z) d\mu^{(n)}(\mathbf{x}) = \int_Z \prod_{i=1}^n \int_X \eta_{z+\pi(x_i)} d\mu(x_i) d\nu(z),
$$

which is equal to $\mu^{(n)}$ because all inner integrals are equal to μ . We conclude that

$$
\mu^{(n)} = \int_{X^{(n)}} \lambda_{\mathbf{x}}^n d\mu^{(n)}(\mathbf{x}),
$$

which shows $\mathbf{x} \mapsto \lambda_{\mathbf{x}}^n$ is a disintegration of $\mu^{(n)}$.

We are left with verifying that

$$
\int_{X^{(n)}} F \, d\lambda_{\mathbf{x}}^n = \mathbb{E}_{\mu^{(n)}} (F \mid I_{\mu^{(n)}}) (\mathbf{x})
$$

for $\mu^{(n)}$ -a.e. $\mathbf{x} \in X^{(n)}$ whenever $F: X^{(n)} \to \mathbb{C}$ is measurable and bounded. Recall that *I_{μ(n)}* denotes the *σ*-algebra of $T^{(n)}$ -invariant sets. Fix such an *F*. It follows from the pointwise ergodic theorem that

$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} F(T^{m} x_{1}, \dots, T^{m} x_{n}) = \mathbb{E}_{\mu^{(n)}}(F \mid I_{\mu^{(n)}})(\mathbf{x})
$$

for $\mu^{(n)}$ -a.e. $\mathbf{x} \in X^{(n)}$. We therefore wish to prove that

$$
\int_{X^{(n)}} F d\lambda_x^n = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^M F(T^m x_1, \dots, T^m x_n)
$$

holds for $\mu^{(n)}$ -a.e. $\mathbf{x} \in X^{(n)}$.

By an approximation argument, it suffices to verify that

$$
\int_{X^{(n)}} f_1 \otimes \cdots \otimes f_n d\lambda_x^n = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^M \prod_{i=1}^n f_i(T^m x_i)
$$

holds for $\mu^{(n)}$ -a.e. $\mathbf{x} \in X^{(n)}$ whenever f_i belongs to $L^{\infty}(X, \mu)$ for $i = 1, \ldots, n$.

By Lemma [A.1,](#page-15-0)

$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} f_i(T^m x_i) = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} \mathbb{E}(f_i \mid \mathcal{B}_Z)(T^m x_i)
$$

for $\mu^{(n)}$ -a.e. $\mathbf{x} \in X^{(n)}$. By Lemma [A.2,](#page-16-0) for every ϕ_i in $L^{\infty}(Z, \nu)$,

$$
\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \prod_{i=1}^{n} \phi_i(R^m z_i) = \int_{Z} \prod_{i=1}^{n} \phi_i(z_i + z) d\nu(z)
$$

for $v^{(n)}$ -a.e. $z \in Z^{(n)}$. Taking $\phi_i = \mathbb{E}(f_i \mid \mathcal{B}_z)$ gives

$$
\lim_{M\to\infty}\frac{1}{M}\sum_{m=1}^M\prod_{i=1}^n\mathbb{E}(f_i\mid\mathcal{B}_Z)(T^mx_i)=\int_{X^{(n)}}f_1\otimes\cdots\otimes f_n\,d\lambda_x^m
$$

 \Box

for $\mu^{(n)}$ -a.e. $\mathbf{x} \in X^{(n)}$.

REFERENCES

- [1] F. Blanchard. Fully positive topological entropy and topological mixing. Symbolic dynamics and its applications. *Contemp. Math.* 135 (1992), 95–105.
- [2] F. Blanchard. A disjointness theorem involving topological entropy. *Bull. Soc. Math. France* 121 (1993), 465–478.
- [3] F. Blanchard, E. Glasner and B. Host. A variation on the variational principle and applications to entropy pairs. *Ergod. Th. & Dynam. Sys.* 17 (1997), 29–43.
- [4] F. Blanchard, B. Host, A. Maass, S. Martinez and D. Rudolph. Entropy pairs for a measure. *Ergod. Th. & Dynam. Sys.* 15 (1995), 621–632.
- [5] T. Downarowicz and E. Glasner. Isomorphic extensions and applications. *Topol. Methods Nonlinear Anal.* 48(1) (2016), 321–338.
- [6] G. Fuhrmann, E. Glasner, T. Jäger and C. Oertel. Irregular model sets and tame dynamics. *Trans. Amer. Math. Soc.* 374 (2021), 3703–3734.
- [7] F. García-Ramos. Weak forms of topological and measure theoretical equicontinuity: relationships with discrete spectrum and sequence entropy. *Ergod. Th. & Dynam. Sys.* 37 (2017), 1211–1237.
- [8] F. García-Ramos, T. Jäger and X. Ye. Mean equicontinuity, almost automorphy and regularity. *Israel J. Math.* 243 (2021), 155–183.
- [9] F. García-Ramos and V. Muñoz-López. Measure-theoretic sequence entropy pairs and mean sensivity. *Preprint*, 2022, [arXiv2210.15004.](https://arxiv.org/abs/2210.15004)
- [10] E. Glasner and X. Ye. Local entropy theory. *Ergod. Th. & Dynam. Sys.* 29 (2009), 321–356.
- [11] W. Huang. Tame systems and scrambled pairs under an abelian group action. *Ergod. Th. & Dynam. Sys.* 26(5) (2006), 1549–1567.
- [12] W. Huang, S. Li, S. Shao and X. Ye. Null systems and sequence entropy pairs. *Ergod. Th. & Dynam. Sys.* 23(5) (2003), 1505–1523.
- [13] W. Huang, Z. Lian, S. Shao and X. Ye. Minimal systems with finitely many ergodic measures. *J. Funct. Anal.* 280 (2021), 109000.
- [14] W. Huang, P. Lu and X. Ye. Measure-theoretical sensitivity and equicontinuity. *Israel J. Math.* 183 (2011), 233–283.
- [15] W. Huang, A. Maass and X. Ye. Sequence entropy pairs and complexity pairs for a measure. *Ann. Inst. Fourier (Grenoble)* 54 (2004), 1005–1028.
- [16] W. Huang and X. Ye. A local variational relation and applications. *Israel J. Math.* 151 (2006), 237–279.
- [17] W. Huang and X. Ye. Combinatorial lemmas and applications to dynamics. *Adv. Math.* 220 (2009), 1689–1716.
- [18] D. Kerr and H. Li. Independence in topological and C*-dynamics. *Math. Ann.* 338 (2007), 869–926.
- [19] D. Kerr and H. Li. Combinatorial independence in measurable dynamics. *J. Funct. Anal.* 256 (2009), 1341–1386.

- [20] B. Kra, J. Moreira, F. Richter and D. Robertson. Infinite sumsets in sets with positive density. *Preprint*, 2022, [arXiv:2206.0178.](https://arxiv.org/abs/2206.0178)
- [21] B. Kra, J. Moreira, F. Richter and D. Robertson. A proof of Erdös's B+B+t conjecture. *Preprint*, 2022, [arXiv:2206.12377.](https://arxiv.org/abs/2206.12377)
- [22] A. G. Kušhnirenko. Metric invariants of entropy type. *Uspekhi Mat. Nauk* 22(137(5)) (1967), 57–65 (in Russian).
- [23] J. Li. Measure-theoretic sensitivity via finite partitions. *Nonlinearity* 29 (2016), 2133–2144.
- [24] J. Li and S. Tu. Density-equicontinuity and density-sensitivity. *Acta Math. Sin. (Engl. Ser.)* 37(2) (2021), 345–361.
- [25] J. Li, S. Tu and X. Ye. Mean equicontinuity and mean sensitivity. *Ergod. Th. & Dynam. Sys.* 35 (2015), 2587–2612.
- [26] J. Li, X. Ye and T. Yu. Mean equicontinuity, complexity and applications. *Discrete Contin. Dyn. Syst.* 41(1) (2021), 359–393.
- [27] J. Li, X. Ye and T. Yu. Equicontinuity and sensitivity in mean forms. *J. Dynam. Differential Equations* 34 (2022), 133–154.
- [28] J. Li and T. Yu. On mean sensitive tuples. *J. Differential Equations* 297 (2021), 175–200.
- [29] A. Maass and S. Shao. Structure of bounded topological-sequence-entropy minimal systems. *J. Lond. Math. Soc.* 76 (2007), 702–718.
- [30] D. Ruelle. Dynamical systems with turbulent behavior. *Mathematical Problems in Theoretical Physics (Proc. Int. Conf., Rome, June 6–15, 1977) (Lecture Notes in Physics, 80).* Eds. G. Dell'Antonio, S. Doplicher and G. Jona-Lasinio. Springer, Berlin, 1978, pp. 341–360.
- [31] J. Xiong. Chaos in a topologically transitive system. *Sci. China Ser. A* 48 (2005), 929–939.
- [32] X. Ye and R. Zhang. On sensitive sets in topological dynamics. *Nonlinearity* 21 (2008), 1601–1620.
- [33] T. Yu. Measure-theoretic mean equicontinuity and bounded complexity. *J. Differential Equations* 267 (2019), 6152–6170.