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Abstract. Using the idea of local entropy theory, we characterize the sequence entropy
tuple via mean forms of the sensitive tuple in both topological and measure-theoretical
senses. For the measure-theoretical sense, we show that for an ergodic measure-preserving
system, the μ-sequence entropy tuple, the μ-mean sensitive tuple, and the μ-sensitive in
the mean tuple coincide, and give an example to show that the ergodicity condition is
necessary. For the topological sense, we show that for a certain class of minimal systems,
the mean sensitive tuple is the sequence entropy tuple.
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1. Introduction
By a topological dynamical system (t.d.s. for short), we mean a pair (X, T ), where
X is a compact metric space with a metric d and T is a homeomorphism from X to
itself. A point x ∈ X is called a transitive point if Orb(x, T ) = {x, T x, . . .} is dense
in X. A t.d.s. (X, T ) is called minimal if all points in X are transitive points. Denote
by BX all Borel measurable subsets of X. A Borel (probability) measure μ on X is
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called T-invariant if μ(T −1A) = μ(A) for any A ∈ BX. A T-invariant measure μ on X
is called ergodic if B ∈ BX with T −1B = B implies μ(B) = 0 or μ(B) = 1. Denote by
M(X, T ) (respectively Me(X, T )) the collection of all T-invariant measures (respectively
all ergodic measures) on X. For μ ∈ M(X, T ), the support of μ is defined by supp(μ) =
{x ∈ X : μ(U) > 0 for any neighborhood U of x}. Each measure μ ∈ M(X, T ) induces a
measure-preserving system (m.p.s. for short) (X, BX, μ, T ).

It is well known that the entropy can be used to measure the local complexity of the
structure of orbits in a given system. One may naturally ask how to characterize the
entropy in a local way. The related research started from the series of pioneering papers
of Blanchard et al [1–4], in which the notions of entropy pairs and entropy pairs for a
measure were introduced. From then on, entropy pairs have been intensively studied by
many researchers. Huang and Ye [16] extended the notions from pairs to finite tuples, and
showed that if the entropy of a given system is positive, then there are entropy n-tuples for
any n ∈ N in both topological and measurable settings.

The sequence entropy was introduced by Kušhnirenko [22] to establish the relation
between spectrum theory and entropy theory. As in classical local entropy theory, the
sequence entropy can also be localized. In [12, 15], the authors investigated the sequence
entropy pairs, sequence entropy tuples, and sequence entropy tuples for a measure.
Using tools from combinatorics, Kerr and Li [18, 19] studied (sequence) entropy tuples,
(sequence) entropy tuples for a measure, and IT-tuples via independence sets. Huang
and Ye [17] showed that a system has a sequence entropy n-tuple if and only if its
maximal pattern entropy is no less than log n in both topological and measurable
settings. More introductions and applications of the local entropy theory can refer to a
survey [10].

In addition to the entropy, the sensitivity is another candidate to describe the com-
plexity of a system, which was first used by Ruelle [30]. In [31], Xiong introduced
a multi-variant version of the sensitivity, called the n-sensitivity. Motivated by the
local entropy theory, Ye and Zhang [32] introduced the notion of sensitive tuples.
Particularly, they showed that a transitive t.d.s. is n-sensitive if and only if it has a
sensitive n-tuple; and a sequence entropy n-tuple of a minimal t.d.s. is a sensitive n-tuple.
For the converse, Maass and Shao [29] showed that in a minimal t.d.s., if a sensitive
n-tuple is a minimal point of the n-fold product t.d.s., then it is a sequence entropy
n-tuple.

Recently, Li, Tu, and Ye [25] studied the sensitivity in the mean form. Li, Ye, and Yu
[27, 28] further studied the multi-version of mean sensitivity and its local representation,
namely, the mean n-sensitivity and the mean n-sensitive tuple. One naturally wonders if
there is still a characterization of sequence entropy tuples via mean sensitive tuples. By
the results of [6, 8, 18, 27], one can see that a sequence entropy tuple is not always a
mean sensitive tuple even in a minimal t.d.s. Nonetheless, the works of [5, 11, 25] yield
that every minimal mean sensitive t.d.s. (that is, has a mean sensitive pair by [27]) is not
tame (that is, exists an IT pair by [18]). So generally, we conjecture that for any minimal
t.d.s., a mean sensitive n-tuple is an IT n-tuple and so a sequence entropy n-tuple by [18,
Theorem 5.9]. Now we can answer this question under an additional condition. Namely,
the following theorem.
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186 J. Li et al

THEOREM 1.1. Let (X, T ) be a minimal t.d.s. and π : (X, T ) → (Xeq , Teq) be the factor
map to its maximal equicontinuous factor which is almost one to one. Then for 2 ≤ n ∈ N,

MSn(X, T ) ⊂ ITn(X, T ),

where MSn(X, T ) denotes all the mean sensitive n-tuples and ITn(X, T ) denotes all the
IT n-tuples.

In the parallel measure-theoretical setting, Huang, Lu, and Ye [14] studied measurable
sensitivity and its local representation. The notion of μ-mean sensitivity for an invariant
measure μ on a t.d.s. was studied by García-Ramos [7]. Li [23] introduced the notion of
the μ-mean n-sensitivity, and showed that an ergodic m.p.s. is μ-mean n-sensitive if and
only if its maximal pattern entropy is no less than log n. The authors in [27] introduced
the notion of the μ-n-sensitivity in the mean, which was proved to be equivalent to the
μ-mean n-sensitivity in the ergodic case.

Using the idea of localization, the authors [28] introduced the notion of the μ-mean
sensitive tuple and showed that every μ-entropy tuple of an ergodic m.p.s. is a μ-mean
sensitive tuple. A natural question is left open in [28].

Question 1.2. Is there a characterization of μ-sequence entropy tuples via μ-mean
sensitive tuples?

The authors in [24] introduced a weaker notion named the density-sensitive tuple and
showed that every μ-sequence entropy tuple of an ergodic m.p.s. is a μ-density-sensitive
tuple. In this paper, we give a positive answer to this question. Namely, the following
theorem.

THEOREM 1.3. Let (X, T ) be a t.d.s., μ ∈ Me(X, T ) and 2 ≤ n ∈ N. Then the
μ-sequence entropy n-tuple, the μ-mean sensitive n-tuple and the μ-n-sensitive in the
mean tuple coincide.

By the definitions, it is easy to see that a μ-mean sensitive n-tuple must be a
μ-n-sensitive in the mean tuple. Thus, Theorem 1.3 is a direct corollary of the following
two theorems.

THEOREM 1.4. Let (X, T ) be a t.d.s., μ ∈ M(X, T ), and 2 ≤ n ∈ N. Then each
μ-n-sensitive in the mean tuple is a μ-sequence entropy n-tuple.

THEOREM 1.5. Let (X, T ) be a t.d.s., μ ∈ Me(X, T ), and 2 ≤ n ∈ N. Then each
μ-sequence entropy n-tuple is a μ-mean sensitive n-tuple.

In fact, Theorem 1.4 shows a bit more than Theorem 1.3, as for a T-invariant measure
μ which is not ergodic, every μ-n-sensitive in the mean tuple is still a μ-sequence entropy
n-tuple. However, the following result shows that ergodicity of μ in Theorem 1.5 is
necessary.

THEOREM 1.6. For every 2 ≤ n ∈ N, there exist a t.d.s. (X, T ) and μ ∈ M(X, T ) such
that there is a μ-sequence entropy n-tuple but it is not a μ-n-sensitive in the mean tuple.
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It is fair to note that García-Ramos informed us that at the same time, he with
Muñoz-López also reported a completely independent proof of the equivalence of the
sequence entropy pair and the mean sensitive pair in the ergodic case [9]. Their proof relies
on the deep equivalent characterization of measurable sequence entropy pairs developed
by Kerr and Li [19] using the combinatorial notion of independence. Our results provide
more information in the general case, and the proofs work on the classical definition of
sequence entropy pairs introduced in [15]. It is worth noting that the proofs depend on a
new interesting ergodic measure decomposition result (Lemma 4.3), which was applied to
prove the profound Erdös’s conjectures in the number theory by Kra et al [20, 21]. This
decomposition may have more applications because it has the hybrid topological and Borel
structures.

The outline of the paper is the following. In §2, we recall some basic notions that we
will use in the paper. In §3, we prove Theorem 1.4. In §4, we show Theorems 1.5 and 1.6.
In §5, we study the mean sensitive tuple and the sequence entropy in the topological sense
and show Theorem 1.1.

2. Preliminaries
Throughout the paper, denote by N and Z+ the collections of natural numbers {1, 2, . . .}
and non-negative integers {0, 1, 2, . . .}, respectively.

For F ⊂ Z+, denote by #{F } (or simply write #F when it is clear from the context) the
cardinality of F. The upper density D(F) of F is defined by

D(F) = lim sup
n→∞

#{F ∩ [0, n − 1]}
n

.

Similarly, the lower density D(F) of F can be given by

D(F) = lim inf
n→∞

#{F ∩ [0, n − 1]}
n

.

If D(F) = D(F), we say that the density of F exists and is equal to the common value,
which is written as D(F).

Given a t.d.s. (X, T ) and n ∈ N, denote by X(n) the n-fold product of X. Let �n(X) =
{(x, x, . . . , x) ∈ X(n) : x ∈ X} be the diagonal of X(n) and �′

n(X) = {(x1, x2, . . . , xn) ∈
X(n) : xi = xj for some 1 ≤ i 	= j ≤ n}.

If a closed subset Y ⊂ X is T-invariant in the sense of T Y = Y , then the restriction
(Y , T |Y ) (or simply write (Y , T ) when it is clear from the context) is also a t.d.s., which is
called a subsystem of (X, T ).

Let (X, T ) be a t.d.s., x ∈ X, and U , V ⊂ X. Denote by

N(x, U) = {n ∈ Z+ : T nx ∈ U} and N(U , V ) = {n ∈ Z+ : U ∩ T −nV 	= ∅}.
A t.d.s. (X, T ) is called transitive if N(U , V ) 	= ∅ for all non-empty open subsets U , V

of X. It is well known that the set of all transitive points in a transitive t.d.s. forms a dense
Gδ subset of X .

Given two t.d.s. (X, T ) and (Y , S), a map π : X → Y is called a factor map if π is
surjective and continuous such that π ◦ T = S ◦ π , and in which case (Y , S) is referred
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to be a factor of (X, T ). Furthermore, if π is a homeomorphism, we say that (X, T ) is
conjugate to (Y , S).

A t.d.s. (X, T ) is called equicontinuous (respectively mean equicontinuous)
if for any ε > 0, there is δ > 0 such that if x, y ∈ X with d(x, y) < δ, then
maxk∈Z+ d(T kx, T ky) < ε (respectively lim supn→∞(1/n)

∑n−1
k=0 d(T kx, T ky) < ε).

Every t.d.s. (X, T ) is known to have a maximal equicontinuous factor (or a maximal mean
equicontinuous factor [25]). More studies on mean equicontinuous systems can be seen in
the recent survey [26].

In the remainder of this section, we fix a t.d.s. (X, T ) with a measure μ ∈ M(X, T ).
The entropy of a finite measurable partition α = {A1, A2, . . . , Ak} of X is defined by
Hμ(α) = − ∑k

i=1 μ(Ai) log μ(Ai), where 0 log 0 is defined to be 0. Moreover, we define
the sequence entropy of T with respect to α along an increasing sequence S = {si}∞i=1
of Z+ by

hS
μ(T , α) = lim sup

n→∞
1
n
Hμ

( n∨
i=1

T −si α

)
.

The sequence entropy of T along the sequence S is

hS
μ(T ) = sup

α
hS

μ(T , α),

where the supremum takes over all finite measurable partitions. Correspondingly, the
topological sequence entropy of T with respect to S and a finite open cover U is

hS(T , U) = lim sup
n→∞

1
n

log N

( n∨
i=1

T −siU
)

,

where N(
∨n

i=1 T −siU) is the minimum among the cardinalities of all sub-families of∨n
i=1 T −siU covering X. The topological sequence entropy of T with respect to S is

defined by

hS(T ) = sup
U

hS(T , U),

where the supremum takes over all finite open covers.
Let (xi)

n
i=1 ∈ X(n). A finite cover U = {U1, U2, . . . , Uk} of X is said to be an

admissible cover with respect to (xi)
n
i=1 if for each 1 ≤ j ≤ k, there exists 1 ≤ ij ≤ n

such that xij /∈ Uj . Analogously, we define admissible partitions with respect to (xi)
n
i=1.

Definition 2.1. [15, 29] An n-tuple (xi)
n
i=1 ∈ X(n) \ �n(X), n ≥ 2 is called the

following.
• A sequence entropy n-tuple for μ if for any admissible finite Borel measurable partition

α with respect to (xi)
n
i=1, there exists a sequence S = {mi}∞i=1 of Z+ such that

hS
μ(T , α) > 0. Denote by SE

μ
n (X, T ) the set of all sequence entropy n-tuples for μ.

• A sequence entropy n-tuple if for any admissible finite open cover U with respect to
(xi)

n
i=1, there exists a sequence S = {mi}∞i=1 of Z+ such that hS(T , U) > 0. Denote

by SEn(X, T ) the set of all sequence entropy n-tuples.
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We say that f ∈ L2(X, BX, μ) is almost periodic if {f ◦ T n : n ∈ Z+} is precompact
in L2(X, BX, μ). The set of all almost periodic functions is denoted by Hc, and there exists
a T-invariant σ -algebra Kμ ⊂ BX such that Hc = L2(X, Kμ, μ), where Kμ is called the
Kronecker algebra of (X, BX, μ, T ). The product σ -algebra of X(n) is denoted by B(n)

X .
Define the measure λn(μ) on B(n)

X by letting

λn(μ)

( n∏
i=1

Ai

)
=

∫
X

n∏
i=1

E(1Ai
|Kμ) dμ.

Note that SE
μ
n (X, T ) = supp(λn(μ)) \ �n(X) [15, Theorem 3.4].

3. Proof of Theorem 1.4
Definition 3.1. [28] For 2 ≤ n ∈ N and a t.d.s. (X, T ) with μ ∈ M(X, T ), we say that the
n-tuple (x1, x2, . . . , xn) ∈ X(n) \ �n(X) is
(1) a μ-mean n-sensitive tuple if for any open neighborhoods Ui of xi with i =

1, 2, . . . , n, there is δ > 0 such that for any A ∈ BX with μ(A) > 0, there are
y1, y2, . . . , yn ∈ A and a subset F of Z+ with D(F) > δ such that T kyi ∈ Ui for
all i = 1, 2, . . . , n and k ∈ F ;

(2) a μ-n-sensitive in the mean tuple if for any τ > 0, there is δ = δ(τ ) > 0 such that
for any A ∈ BX with μ(A) > 0, there is m ∈ N and ym

1 , ym
2 , . . . , ym

n ∈ A such that

#{0 ≤ k ≤ m − 1 : T kym
i ∈ B(xi , τ), i = 1, 2, . . . , n}

m
> δ.

We denote the set of all μ-mean n-sensitive tuples (respectively μ-n-sensitive
in the mean tuples) by MS

μ
n (X, T ) (respectively SM

μ
n (X, T )). We call an n-tuple

(x1, x2, . . . , xn) ∈ X(n) essential if xi 	= xj for each 1 ≤ i < j ≤ n and at this time,
we write the collection of all essential n-tuples in MS

μ
n (X, T ) (respectively SM

μ
n (X, T ))

as MS
μ,e
n (X, T ) (respectively SM

μ,e
n (X, T )).

Proof of Theorem 1.4. It suffices to prove SM
μ,e
n (X, T ) ⊂ SE

μ,e
n (X, T ). Let

(x1, . . . , xn) ∈ SM
μ,e
n (X, T ). Take α = {A1, . . . , Al} as an admissible partition of

(x1, . . . , xn). Then for each 1 ≤ k ≤ l, there is ik ∈ {1, . . . , n} such that xik /∈ Ak . Put
Ei = {1 ≤ k ≤ l : xi 	∈ Ak} for 1 ≤ i ≤ n. Obviously,

⋃n
i=1 Ei = {1, . . . , l}. Set

B1 =
⋃

k∈E1

Ak , B2 =
⋃

k∈E2\E1

Ak , . . . , Bn =
⋃

k∈En\(⋃n−1
j=1 Ej )

Ak .

Then, β = {B1, . . . , Bn} is also an admissible partition of (x1, . . . , xn) such that xi /∈ Bi

for all 1 ≤ i ≤ n. Without loss of generality, we assume Bi 	= ∅ for 1 ≤ i ≤ n. It suffices
to show that there exists a sequence S = {mi}∞i=1 of Z+ such that hS

μ(T , β) > 0, as α 
 β.
Let

h∗
μ(T , β) = sup{hS

μ(T , β) : S is a sequence of Z+}.
By [15, Lemma 2.2 and Theorem 2.3], we have h∗

μ(T , β) = Hμ(β|Kμ), where Kμ is the
Kronecker algebra of (X, BX, μ, T ). So it suffices to show β � Kμ.
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We prove it by contradiction. Now we assume that β ⊆ Kμ. Then for each
i = 1, . . . , n, 1Bi

is an almost periodic function. By [33, Theorems 4.7 and 5.2], 1Bi

is a μ-equicontinuous in the mean function. That is, for each 1 ≤ i ≤ n and any τ > 0,
there is a compact K ⊂ X with μ(K) > 1 − τ such that for any ε′ > 0, there is δ′ > 0
such that for all m ∈ N, whenever x, y ∈ K with d(x, y) < δ′,

1
m

m−1∑
t=0

|1Bi
(T tx) − 1Bi

(T ty)| < ε′. (3.1)

However, take ε > 0 such that Bε(xi) ∩ Bi = ∅ for i = 1, . . . , n. Since (x1, . . . , xn) ∈
SM

μ,e
n (X, T ), there is δ := δ(ε) > 0 such that for any A ∈ BX with μ(A) > 0, there

are m ∈ N and ym
1 , . . . , ym

n ∈ A such that if we denote Cm = {0 ≤ t ≤ m − 1 : T tym
i ∈

Bε(xi) for all i = 1, 2, . . . , n}, then #Cm ≥ mδ. Since Bε(x1) ∩ B1 = ∅, then Bε(x1) ⊂⋃n
i=2 Bi . This implies that there is i0 ∈ {2, . . . , n} such that

#{t ∈ Cm : T tym
1 ∈ Bi0} ≥ #Cm

n − 1
.

For any t ∈ Cm, we have T tym
i0

∈ Bε(xi0), and then T tym
i0

/∈ Bi0 , as Bε(xi0) ∩ Bi0 = ∅.
This implies that

1
m

m−1∑
t=0

|1Bi0
(T tym

1 ) − 1Bi0
(T tym

i0
)| ≥ #Cm

m(n − 1)
≥ δ

n − 1
. (3.2)

Choose a measurable subset A ⊂ K such that μ(A) > 0 and diam(A) = sup{d(x, y) :
x, y ∈ A} < δ′, and ε′ = δ/2(n − 1). Then by equation (3.1), for any m ∈ N and x, y ∈ A,

1
m

m−1∑
t=0

|1Bi0
(T tx) − 1Bi0

(T ty)| <
δ

2(n − 1)
,

which is a contradiction with equation (3.2). Thus, SM
μ,e
n (X, T ) ⊂ SE

μ,e
n (X, T ).

4. Proof of Theorem 1.5
In §4.1, we first reduce Theorem 1.5 to just prove that it is true for the ergodic m.p.s. with a
continuous factor map to its Kronecker factor, and then we finish the proof of Theorem 1.5
under this assumption. In §4.2, we show the condition that μ is ergodic is necessary.

4.1. Ergodic case. Throughout this section, we will use the following two types of factor
maps between two m.p.s. (X, BX, μ, T ) and (Z, BZ , ν, S).
(1) Measurable factor maps: a measurable map π : X → Z such that μ ◦ π−1 = ν and

π ◦ T = S ◦ π μ-almost everywhere;
(2) Continuous factor maps: a topological factor map π : X → Z such that μ ◦ π−1 = ν.
If a continuous factor map π such that π−1(BZ) = Kμ, π is called a continuous factor
map to its Kronecker factor.

The following result is a weaker version in [20, Proposition 3.20].
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LEMMA 4.1. Let (X, BX, μ, T ) be an ergodic m.p.s. Then there exists an ergodic m.p.s.
(X̃, B̃, μ̃, T̃ ) and a continuous factor map π̃ : X̃ → X such that (X̃, B̃, μ̃, T̃ ) has a
continuous factor map to its Kronecker factor.

The following result shows that we only need to prove SE
μ
n (X, T ) ⊂ MS

μ
n (X, T ) for

all ergodic m.p.s. with a continuous factor map to its Kronecker factor.

LEMMA 4.2. If SE
μ̃
n (X̃, T̃ ) ⊂ MS

μ̃
n (X̃, T̃ ) for all ergodic m.p.s. (X̃, B̃, μ̃, T̃ ) with a

continuous factor map to its Kronecker factor, then SE
μ
n (X, T ) ⊂ MS

μ
n (X, T ) for all

ergodic m.p.s. (X, BX, μ, T ).

Proof. By Lemma 4.1, there exists an ergodic m.p.s. (X̃, B̃, μ̃, T̃ ) and a continuous factor
map π̃ : X̃ → X such that (X̃, B̃, μ̃, T̃ ) has a continuous factor map to its Kronecker
factor. Thus, SE

μ̃
n (X̃, T̃ ) ⊂ MS

μ̃
n (X̃, T̃ ), by the assumption.

For any (x1, . . . , xn) ∈ SE
μ
n (X, T ) \ �′

n(X), by [15, Theorem 3.7], there exists an
n-tuple (x̃1, . . . , x̃n) ∈ SE

μ̃
n (X̃, T̃ ) \ �′

n(X̃) such that π̃(x̃i) = xi . For any open neighbor-
hood U1 × · · · × Un of (x1, . . . , xn) with Ui ∩ Uj = ∅ for i 	= j , then π̃−1(U1) × · · · ×
π̃−1(Un) is an open neighborhood of (x̃1, . . . , x̃n). Since (x̃1, . . . , x̃n) ∈ SE

μ̃
n (X̃, T̃ ) \

�′
n(X̃) ⊂ MS

μ̃
n (X̃, T̃ ) \ �′

n(X̃), there exists δ > 0 such that for any A ∈ BX with
μ̃(π̃−1(A)) = μ(A) > 0, there exist F ⊂ N with D(F) ≥ δ and ỹ1, . . . , ỹn ∈ π̃−1(A)

such that for any m ∈ F ,

(T̃ mỹ1, . . . , T̃ mỹn) ∈ π̃−1(U1) × · · · × π̃−1(Un)

and hence (T mπ̃(ỹ1), . . . , T mπ̃(ỹn)) ∈ U1 × · · · × Un. Note that π̃(ỹi) ∈ A for each
i = 1, 2, . . . , n. Thus we have (x1, . . . , xn) ∈ MS

μ
n (X, T ).

According to the above-mentioned lemma, in the rest of this section, we fix an
ergodic m.p.s. with a continuous factor map π : (X, BX, μ, T ) → (Z, BZ , ν, R) to its
Kronecker factor. Moreover, we fix a measure disintegration z → ηz of μ over π , that is,
μ = ∫

Z
ηz dν(z).

The following lemma plays a crucial role in our proof. In [20, Proposition 3.11], the
authors proved it for n = 2, but general cases are similar in idea. For readability, we move
the complicated proof to Appendix A.

LEMMA 4.3. Let π : (X, BX, μ, T ) → (Z, BZ , ν, R) be a continuous factor map to its
Kronecker factor. Then for each n ∈ N, there exists a continuous map x �→ λn

x from X(n)

to M(X(n)) such that the map x �→ λn
x is an ergodic decomposition of μ(n), where μ(n) is

the n-fold product of μ and

λn
x =

∫
Z

ηz+π(x1) × · · · × ηz+π(xn) dν(z) for x = (x1, x2, . . . , xn).

The following two lemmas can be viewed as generalizations of Lemma 3.3 and
Theorem 3.4 in [15], respectively.

LEMMA 4.4. Let π : (X, BX, μ, T ) → (Z, BZ , ν, R) be a continuous factor map to its
Kronecker factor. Assume that U = {U1, U2, . . . , Un} is a measurable cover of X. Then
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for any measurable partition α finer than U as a cover, there exists an increasing
sequence S ⊂ Z+ with hS

μ(T , α) > 0 if and only if λn
x(U

c
1 × · · · × Uc

n) > 0 for all
x = (x1, . . . , xn) ∈ X(n).

Proof. (⇒) In contrast, we may assume that λn
x(Uc

1 × · · · × Uc
n) = 0 for some

x = (x1, . . . , xn) ∈ X(n). Let Ci = {z ∈ Z : ηz+π(xi )(U
c
i ) > 0} for i = 1, . . . , n. Then

μ(Uc
i \ π−1(Ci)) =

∫
Z

ηz+π(xi )(U
c
i ∩ π−1(Cc

i )) dν(z) = 0.

Put Di = π−1(Ci) ∪ (Uc
i \ π−1(Ci)). Then Di ∈ π−1(BZ) = Kμ and Dc

i ⊂ Ui , where
Kμ is the Kronecker factor of X.

For any s = (s(1), . . . , s(n)) ∈ {0, 1}n, let Ds = ⋂n
i=1 Di(s(i)), where Di(0) = Di

and Di(1) = Dc
i . Set E1 = (

⋂n
i=1 Di) ∩ U1 and Ej = (

⋂n
i=1 Di) ∩ (Uj \ ⋃j−1

i=1 Ui) for
j = 2, . . . , n.

Consider the measurable partition

α = {Ds : s ∈ {0, 1}n \ {(0, . . . , 0)}} ∪ {E1, . . . , En}.

For any s ∈ {0, 1}n \ {(0, . . . , 0)}, we have s(i) = 1 for some i = 1, . . . , n, then Ds ⊂
Dc

i ⊂ Ui . It is straightforward that for all 1 ≤ j ≤ n, Ej ⊂ Uj . Thus, α is finer than U and
by hypothesis, there exists an increasing sequence S of Z+ with hS

μ(T , α) > 0.
However, since λn

x(Uc
1 × · · · × Uc

n) = 0, we deduce ν(
⋂n

i=1 Ci) = 0 and hence
μ(

⋂n
i=1 Di) = 0. Thus, we have E1, . . . , En ∈ Kμ. It is also clear that Ds ∈ Kμ for

all s ∈ {0, 1}n \ {(0, . . . , 0)}, as D1, . . . , Dn ∈ Kμ. Therefore, each element of α is
Kμ-measurable, by [15, Lemma 2.2],

hS
μ(T , α) ≤ Hμ(α|Kμ) = 0,

which is a contradiction.
(⇐) Assume λn

x(U
c
1 × · · · × Uc

n) > 0 for any x ∈ X(n). In particular, we take x =
(x, . . . , x) such that π(x) is the identity element of group Z. Without loss of generality,
we may assume that any finite measurable partition α which is finer than U as a cover
is of the type α = {A1, A2, . . . , An} with Ai ⊂ Ui , for 1 � i � n. Let α be one of such
partitions. We observe that
∫

Z

ηz(A
c
1) . . . ηz(A

c
n) dν(z) ≥

∫
Z

ηz(U
c
1 ) . . . ηz(U

c
n) dν(z) = λn

x(U
c
1 × · · · × Uc

n) > 0.

Therefore, Aj /∈ Kμ for some 1 � j � n. It follows from [15, Theorem 2.3] that there
exists a sequence S ⊂ Z+ such that hS

μ(T , α) = Hμ(α | Kμ) > 0. This finishes the
proof.

LEMMA 4.5. For any x = (x1, . . . , xn) ∈ X(n),

SEμ
n (X, T ) = supp λn

x \ �n(X).
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Proof. On the one hand, let y = (y1, . . . , yn) ∈ SE
μ
n (X, T ). We show that y ∈ supp λn

x \
�n(X). It suffices to prove that for any measurable neighborhood U1 × · · · × Un of y,

λn
x(U1 × U2 × · · · × Un) > 0.

Without loss of generality, we assume that Ui ∩ Uj = ∅ if yi 	= yj . Then U =
{Uc

1 , Uc
2 , . . . , Uc

n} is a finite cover of X. It is clear that any finite measurable partition
α finer than U as a cover is an admissible partition with respect to y. Therefore, there
exists an increasing sequence S ⊂ Z+ with hS

μ(T , α) > 0. By Lemma 4.4, we obtain that

λn
x(U1 × U2 × · · · × Un) > 0,

which implies that y ∈ supp λn
x . Since y /∈ �n(X), y ∈ supp λn

x \ �n(X).
On the other hand, let y = (y1, . . . , yn) ∈ supp λn

x \ �n(X). We show that for any
admissible partition α = {A1, A2, . . . , Ak} with respect to y, there exists an increasing
sequence S ⊂ Z+ such that hS

μ(T , α) > 0. Since α is an admissible partition with
respect to y, there exist closed neighborhoods Ui of yi , 1 � i � n, such that for each
j ∈ {1, 2, . . . , k}, we find ij ∈ {1, 2, . . . , n} with Aj ⊂ Uc

ij
. That is, α is finer than

U = {Uc
1 , Uc

2 , . . . , Uc
n} as a cover. Since

λn
x(U1 × U2 × · · · × Un) > 0,

by Lemma 4.4, there exists an increasing sequence S ⊂ Z+ such that hS
μ(T , α) > 0.

Now we are ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. We only need to prove that SE
μ,e
n (X, T ) ⊂ MS

μ,e
n (X, T ). We

let π : (X, BX, μ, T ) → (Z, BZ , ν, R) be a continuous factor map to its Kronecker
factor. For any y = (y1, . . . , yn) ∈ SE

μ,e
n (X, T ), let U1 × U2 × · · · × Un be an open

neighborhood of y such that Ui ∩ Uj = ∅ for 1 ≤ i 	= j ≤ n. By Lemma 4.5, one has
λn

x(U1 × U2 × · · · × Un) > 0 for any x = (x1, . . . , xn) ∈ X(n). Since the map x �→ λn
x

is continuous, X is compact, and U1, U2, . . . , Un are open sets, it follows that there
exists δ > 0 such that for any x ∈ X(n), λn

x(U1 × U2 × · · · × Un) ≥ δ. As the map x �→ λn
x

is an ergodic decomposition of μ(n), there exists B ⊂ X(n) with μ(n)(B) = 1 such that λn
x

is ergodic on X(n) for any x ∈ B.
For any A ∈ BX with μ(A) > 0, there exists a subset C of X(n) with μ(n)(C) > 0 such

that for any x ∈ C,

λn
x(A

n) > 0.

Take x ∈ B ∩ C, by the Birkhoff pointwise ergodic theorem, for λn
x-almost every (a.e.)

(x′
1, . . . , x′

n) ∈ X(n),

lim
N→∞

1
N

N−1∑
m=0

1U1×U2×···×Un(T
mx′

1, . . . , T mx′
n) = λn

x(U1 × U2 × · · · × Un) ≥ δ.
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Since λn
x(A

n) > 0, there exists (x′′
1 , . . . , x′′

n) ∈ An such that

lim
N→∞

1
N

#{m ∈ [0, N − 1] : (T mx′′
1 , . . . , T mx′′

n) ∈ U1 × U2 × · · · × Un}

= lim
N→∞

1
N

N−1∑
m=0

1U1×U2×···×Un(T
mx′′

1 , . . . , T mx′′
n)

= λn
x(U1 × U2 × · · · × Un) ≥ δ.

Let F = {m ∈ Z+ : (T mx′′
1 , . . . , T mx′′

n) ∈ U1 × U2 × · · · × Un}. Then D(F) ≥ δ and
hence y ∈ MS

μ,e
n (X, T ). This finishes the proof.

4.2. Non-ergodic case
LEMMA 4.6. Let (X, T ) be a t.d.s. For any μ ∈ M(X, T ) with the form μ = ∑m

i=1 λiνi ,
where νi ∈ Me(X, T ),

∑m
i=1 λi = 1, and λi > 0, one has

m⋃
i=1

SEνi
n (X, T ) ⊂ SEμ

n (X, T ) (4.1)

and

m⋂
i=1

SMνi
n (X, T ) = SMμ

n (X, T ). (4.2)

Proof. We first prove equation (4.1). For any x = (x1, . . . , xn) ∈ ⋃m
i=1 SE

νi
n (X, T ), there

exists i ∈ {1, 2, . . . , m} such that x ∈ SE
νi
n (X, T ) and then for any admissible partition α

with respect to x, there exists S = {sj }∞j=1 such that hS
νi

(T , α) > 0. By the definition of
the sequence entropy,

hS
μ(T , α) = lim sup

N→∞

m∑
i=1

λi

1
N

Hνi
(

N−1∨
j=0

T −sj α) ≥ λih
S
νi

(T , α) > 0.

So x ∈ SE
μ
n (X, T ), which finishes the proof of equation (4.1).

Next, we show equation (4.2). For this, we only need to note that for any A ∈ BX,
μ(A) > 0 if and only if νj (A) > 0 for some j ∈ {1, 2, . . . m}.
Proof of Theorem 1.6. We first claim that there is a t.d.s. (X, T ) with μ1, μ2 ∈ Me(X, T )

such that SE
μ1
n (X, T ) 	= SE

μ2
n (X, T ). For example, we recall that the full shift on two

symbols with the measure is defined by the probability vector (1/2, 1/2). It has completely
positive entropy and the measure has the full support. Thus, every non-diagonal n-tuple
is a sequence entropy n-tuple for this measure. In particular, we consider two such full
shifts (X1, T1, μ1) = ({0, 1}Z, σ1, μ1) and (X2, T2, μ2) = ({2, 3}Z, σ2, μ2), and define a
new system (X, T ) as X = X1

⊔
X2, T |Xi

= Ti , i = 1, 2. Then, μ1, μ2 ∈ Me(X, T ) and
SE

μ1
n (X, T ) = X

(n)
1 \ �n(X1) 	= X

(n)
2 \ �n(X2) = SE

μ2
n (X, T ).
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Let μ = 1
2μ1 + 1

2μ2 ∈ M(X, T ). By Lemma 4.6, if SE
μ
n (X, T ) = SM

μ
n (X, T ), then

we have
2⋃

i=1

SEμi
n (X, T ) ⊂ SEμ

n (X, T ) = SMμ
n (X, T ) =

2⋂
i=1

SMμi
n (X, T ).

However, applying Theorem 1.3 to each μi ∈ Me(X, T ), one has

SEμi
n (X, T ) = SMμi

n (X, T ) for i = 1, 2.

So SE
μ1
n (X, T ) = SE

μ2
n (X, T ), which is a contradiction with our assumption.

5. Topological sequence entropy and mean sensitive tuples
This section is devoted to providing some partial evidence for the conjecture that in a
minimal system, every mean sensitive tuple is a topological sequence entropy tuple.

It is known that the topological sequence entropy tuple has lift property [29]. We
can show that under the minimality condition, the mean sensitive tuple also has lift
property. Let us begin with some notions. For 2 ≤ n ∈ N, we say that (x1, x2, . . . , xn) ∈
X(n) \ �n(X) (respectively (x1, x2, . . . , xn) ∈ X(n) \ �′

n(X)) is a mean n-sensitive tuple
(respectively an essential mean n-sensitive tuple) if for any τ > 0, there is δ = δ(τ ) > 0
such that for any non-empty open set U ⊂ X, there exist y1, y2, . . . , yn ∈ U such that
if we denote F = {k ∈ Z+ : T kyi ∈ B(xi , τ), i = 1, 2, . . . , n}, then D(F) > δ. Denote
the set of all mean n-sensitive tuples (respectively essential mean n-sensitive tuples) by
MSn(X, T ) (respectively MSe

n(X, T )).

THEOREM 5.1. Let π : (X, T ) → (Y , S) be a factor map between two t.d.s. Then,
(1) π(n)(MSn(X, T )) ⊂ MSn(Y , S) ∪ �n(Y ) for every n ≥ 2;
(2) π(n)(MSn(X, T ) ∪ �n(X)) = MSn(Y , S) ∪ �n(Y ) for every n ≥ 2, provided that

(X, T ) is minimal.

Proof. Item (1) is easy to be proved by the definition. We only prove item (2).
Supposing that (y1, y2, . . . , yn) ∈ MSn(Y , S), we will show that there exists

(z1, z2, . . . , zn) ∈ MSn(X, T ) such that π(zi) = yi for each i = 1, 2, . . . , n. Fix x ∈ X

and let Um = B(x, 1/m). Since (X, T ) is minimal, int(π(Um)) 	= ∅, where int(π(Um))

is the interior of π(Um). Since (y1, y2, . . . , yn) ∈ MSn(Y , S), there exists δ > 0 and
y1
m, . . . , yn

m ∈ int(π(Um)) such that

D({k ∈ Z+ : Skyi
m ∈ B(yi , 1) for i = 1, . . . , n}) ≥ δ.

Then there exist x1
m, . . . , xn

m ∈ Um with π(xi
m) = yi

m such that for any m ∈ N,

D({k ∈ Z+ : T kxi
m ∈ π−1(B(yi , 1)) for i = 1, . . . , n}) ≥ δ.

Put

A =
n∏

i=1

π−1(B(yi , 1)),

and it is clear that A is a compact subset of X(n).
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We can cover A with finite non-empty open sets of diameter less than 1, that is,
A ⊂ ⋃N1

i=1 Ai
1 and diam(Ai

1) < 1. Then for each m ∈ N, there is 1 ≤ Nm
1 ≤ N1 such that

D({k ∈ Z+ : (T kx1
m, . . . , T kxn

m) ∈ A
Nm

1
1 ∩ A}) ≥ δ/N1.

Without loss of generality, we assume Nm
1 = 1 for all m ∈ N. Namely,

D({k ∈ Z+ : (T kx1
m, . . . , T kxn

m) ∈ A1
1 ∩ A}) ≥ δ/N1 for all m ∈ N.

Repeating the above procedure, for l ≥ 1, we can cover A1
l ∩ A with finite

non-empty open sets of diameter less than 1/(l + 1), that is, A1
l ∩ A ⊂ ⋃Nl+1

i=1 Ai
l+1 and

diam(Ai
l+1) < 1/(l + 1). Then for each m ∈ N, there is 1 ≤ Nm

l+1 ≤ Nl+1 such that

D({k ∈ Z+ : (T kx1
m, . . . , T kxn

m) ∈ A
Nm

l+1
l+1 ∩ A}) ≥ δ

N1N2 · · · Nl+1
.

Without loss of generality, we assume Nm
l+1 = 1 for all m ∈ N. Namely,

D({k ∈ Z+ : (T kx1
m, . . . , T kxn

m) ∈ A1
l+1 ∩ A}) ≥ δ

N1N2 · · · Nl+1
for all m ∈ N.

It is clear that there is a unique point (z1
1, . . . , z1

n) ∈ ⋂∞
l=1 A1

l ∩ A. We claim that

(z1
1, . . . , z1

n) ∈ MSn(X, T ). In fact, for any τ > 0, there is l ∈ N such that A1
l ∩ A ⊂

V1 × · · · × Vn, where Vi = B(z1
i , τ) for i = 1, . . . , n. By the construction, for any

m ∈ N, there are x1
m, . . . , xn

m ∈ Um such that

D({k ∈ Z+ : (T kx1
m, . . . , T kxn

m) ∈ A1
l ∩ A}) ≥ δ

N1N2 · · · Nl

and so

D({k ∈ Z+ : (T kx1
m, . . . , T kxn

m) ∈ V1 × · · · × Vn}) ≥ δ

N1N2 · · · Nl

for all m ∈ N. For any non-empty open set U ⊂ X, since x is a transitive point, there is
s ∈ Z such that T sx ∈ U . We can choose m ∈ Z such that T sUm ⊂ U . This implies that
T sx1

m, . . . , T sxn
m ∈ U and

D({k ∈ Z+ : (T k(T sx1
m), . . . , T k(T sxn

m)) ∈ V1 × · · · × Vn}) ≥ δ

N1N2 · · · Nl

.

So we have (z1
1, . . . , z1

n) ∈ MSn(X, T ).
Similarly, for each p ∈ N, there exists (z

p

1 , . . . , z
p
n ) ∈ MSn(X, T ) ∩ ∏n

i=1
π−1(B(yi , 1/p)). Set z

p
i → zi as p → ∞. Then (z1, . . . , zn) ∈ MSn(X, T ) ∪ �n(X)

and π(zi) = yi .

Denote by A(MS2(X, T )) the smallest closed T × T -invariant equivalence relation
containing MS2(X, T ).

COROLLARY 5.2. Let (X, T ) be a minimal t.d.s. Then X/A(MS2(X, T )) is the maximal
mean equicontinuous factor of (X, T ).
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Proof. Let Y = X/A(MS2(X, T )) and π : (X, T ) → (Y , S) be the corresponding
factor map. We show that (Y , S) is mean equicontinuous. Assume that (Y , S) is not
mean equicontinuous, by [25, Corollary 5.5], (Y , S) is mean sensitive. Then by [27,
Theorem 4.4], MS2(Y , S) 	= ∅. By Theorem 5.1, there exists (x1, x2) ∈ MS2(X, T ) such
that (π(x1), π(x2)) ∈ MS2(Y , S). Then (x1, x2) 	∈ Rπ := {(x, x′) ∈ X × X : π(x) =
π(x′)}, which is a contradiction with Rπ = A(MS2(X, T )).

Let (Z, W) be a mean equicontinuous t.d.s. and θ : (X, T ) → (Z, W) be a factor map.
Since (X, T ) is minimal, so is (Z, W). Then by [25, Corollary 5.5] and [27, Theorem 4.4],
MS2(Z, W) = ∅. By Theorem 5.1, MS2(X, T ) ⊂ Rθ , where Rθ is the corresponding
equivalence relation with respect to θ . This implies that (Z, W) is a factor of (Y , S) and
so (Y , S) is the maximal mean equicontinuous factor of (X, T ).

In the following, we show Theorem 1.1. Let us begin with some preparations.

Definition 5.3. [18] Let (X, T ) be a t.d.s.
• For a tuple (A1, A2, . . . , An) of subsets of X, we say that a set J ⊆ Z+ is an

independence set for A if for every non-empty finite subset I ⊆ J and function
σ : I → {1, 2, . . . , n}, we have

⋂
k∈I T −kAσ(k) 	= ∅.

• For n ≥ 2, we call a tuple x = (x1, . . . , xn) ∈ X(n) an IT-tuple if for any product
neighborhood U1 × U2 × · · · × Un of x in X(n), the tuple (U1, U2, . . . , Un) has an
infinite independence set. We denote the set of IT-tuples of length n by ITn(X, T ).

• For n ≥ 2, we call an IT-tuple x = (x1, . . . , xn) ∈ X(n) an essential IT-tuple if xi 	= xj

for any i 	= j . We denote the set of all essential IT-tuples of length n by ITe
n(X, T ).

PROPOSITION 5.4. [13, Proposition 3.2] Let X be a compact metric topological group
with the left Haar measure μ, and let n ∈ N with n ≥ 2. Suppose that V1, . . . , Vn ⊂ X

are compact subsets satisfying that
(i) int Vi = Vi for i = 1, 2, . . . , n;

(ii) int(Vi) ∩ int(Vj ) = ∅ for all 1 ≤ i 	= j ≤ n;
(iii) μ(

⋂
1≤i≤n Vi) > 0.

Further, assume that T : X → X is a minimal rotation and G ⊂ X is a residual set. Then
there exists an infinite set I ⊂ Z+ such that for all a ∈ {1, 2, . . . , n}I , there exists x ∈ G
with the property that

x ∈
⋂
k∈I

T −kint(Va(k)), i.e. T kx ∈ int(Va(k)) for any k ∈ I . (5.1)

A subset Z ⊂ X is called proper if Z is a compact subset with int(Z) = Z. The
following lemma can help us to complete the proof of Theorem 1.1.

LEMMA 5.5. Let (X, T ) and (Y , S) be two t.d.s., and π : (X, T ) → (Y , S) be a factor
map. Suppose that (X, T ) is minimal. Then the image of proper subsets of X under π is a
proper subset of Y.

Proof. Given a proper subset Z of X, we will show π(Z) is also proper. It is clear that
π(Z) is compact, as π is continuous. Now we prove int(π(Z)) = π(Z).
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It follows from the closeness of π(Z) that int(π(Z)) ⊂ π(Z). However, for any
y ∈ π(Z), take x ∈ π−1(y) ∩ Z. Since π−1(y) ∩ Z = π−1(y) ∩ int(Z), there exists a
sequence {xn}n∈N such that xn ∈ int(Z) for each n ∈ N, and limn→∞ xn = x. Let {rn}n∈N
be a sequence of R satisfying

lim
n→∞ rn = 0 and B(xn, rn) ⊂ int(Z).

By the minimality of (X, T ), we have π is semi-open, and hence int(π(B(xn, rn))) 	= ∅.
Thus, there exists x′

n ∈ B(xn, rn) such that π(x′
n) ∈ int(π(B(xn, rn))) ⊂ int(π(Z)). Since

x′
n ∈ B(xn, rn) and limn→∞ xn = x, one has limn→∞ x′

n = x, and hence limn→∞ π(x′
n) =

π(x) = y. This implies that y ∈ int(π(Z)), which finishes the proof.

Inspired by [13, Proposition 3.7], we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. It suffices to prove MSe
n(X, T ) ⊂ IT e

n (X, T ). Given x =
(x1, . . . , xn) ∈ MSe

n(X, T ), we will show that x ∈ IT e
n (X, T ).

Since the minimal t.d.s. (Xeq , Teq) is the maximal equicontinuous factor of (X, T ), then
Xeq can be viewed as a compact metric group with a Teq -invariant metric deq . Let μ be the
left Haar probability measure of Xeq , which is also the unique Teq -invariant probability
measure of (Xeq , Teq). Let

X1 = {x ∈ X : #{π−1(π(x))} = 1}, Y1 = π(X1).

Then Y1 is a dense Gδ-set as π is almost one to one.
Without loss of generality, assume that ε = 1

4 min1≤i 	=j≤n d(xi , xj ). Let Ui = Bε(xi)

for 1 ≤ i ≤ n. Then Ui is proper for each 1 ≤ i ≤ n. We will show that U1, U2, . . . , Un is
an infinite independent tuple of (X, T ), that is, there is some infinite set I ⊆ Z+ such that

⋂
k∈I

T −kUa(k) 	= ∅ for all a ∈ {1, 2, . . . , n}I .

Let Vi = π(Ui) for 1 ≤ i ≤ n. By Lemma 5.5, Vi is proper for each i ∈ {1, 2, . . . , n}.
We claim that int(Vi) ∩ int(Vj ) = ∅ for all 1 ≤ i 	= j ≤ n. In fact, if there is some 1 ≤
i 	= j ≤ n such that int(Vi) ∩ int(Vj ) 	= ∅, then

int(Vi) ∩ int(Vj ) ∩ Y1 	= ∅,

as Y1 is a dense Gδ-set. Let y ∈ int(Vi) ∩ int(Vj ) ∩ Y1. Then there are xi ∈ Ui and xj ∈ Uj

such that y = π(xi) = π(xj ), which contradicts with y ∈ Y1.
Choose a non-empty open set Wm ⊂ X with diam(π(Wm)) < 1/m for each m ∈ N.

Since x ∈ MSe
n(X, T ), there exist δ > 0 and xm = (xm

1 , xm
2 , . . . , xm

n ) ∈ Wm × · · · × Wm

such that D(N(xm, U1 × U2 × · · · × Un)) ≥ δ. Let ym = (ym
1 , ym

2 , . . . , ym
n ) = π(n)(xm).

Then,

D(N(ym, V1 × V2 × · · · × Vn)) ≥ δ.
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For p ∈ D(N(ym, V1 × V2 × · · · × Vn)), T
p
eqym

i ∈ Vi for each i = 1, 2, . . . , n. As
diam(π(Wm)) < 1/m, deq(ym

1 , ym
i ) < 1/m for 1 ≤ i ≤ n. Note that

deq(T
p
eqym

1 , T
p
eqym

i ) = deq(ym
1 , ym

i ) <
1
m

for 1 ≤ i ≤ n.

Let V m
i = B1/m(Vi) = {y ∈ Xeq : deq(y, Vi) < 1/m}. Then, T

p
eqym

1 ∈ ⋂n
i=1 V m

i and

D(N(ym
1 ,

n⋂
i=1

V m
i )) ≥ δ.

Since (Xeq , Teq) is uniquely ergodic with respect to a measure μ, μ(
⋂n

i=1 V m
i ) ≥ δ.

Letting m → ∞, one has μ(
⋂n

i=1 Vi) ≥ δ > 0.
By Proposition 5.4, there is an infinite I ⊆ Z+ such that for all a ∈ {1, 2, . . . , n}I , there

exists y0 ∈ Y1 with the property that

y0 ∈
⋂
k∈I

T −k
eq int(Va(k)).

Set π−1(y0) = {x0}. Then

x0 ∈
⋂
k∈I

T −kUa(k),

which implies that (x1, x2, . . . , xn) ∈ ITn(X, T ).
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A. Appendix. Proof of Lemma 4.3
In this section, we give the proof of Lemma 4.3.

LEMMA A.1. For an m.p.s. (X, BX, μ, T ) with Kμ its Kronecker factor, n ∈ N and
fi ∈ L∞(X, μ), i = 1, . . . , n, we have

lim
M→∞

1
M

M∑
m=1

n∏
i=1

fi(T
mxi) = lim

M→∞
1
M

M∑
m=1

n∏
i=1

E(fi |Kμ)(T mxi).

Proof. On the one hand, by the Birkhoff ergodic theorem, for x = (x1, . . . , xn) ∈ X(n),
let F(x) = F(x1, . . . , xn) = ∏n

i=1 fi(xi),

lim
M→∞

1
M

M∑
m=1

n∏
i=1

fi(T
mxi) = lim

M→∞
1
M

M∑
m=1

F((T (n))mx) = Eμ(n)

( n∏
i=1

fi |Iμ(n)

)
(x),

where Iμ(n) = {A ∈ B(n)
X : T (n)A = A}.
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On the other hand, following [15, Lemma 4.4], we have (Kμ)
⊗

n = Kμ(n) . Then for
x = (x1, . . . , xn) ∈ X(n),

n∏
i=1

Eμ(fi |Kμ)(xi) = Eμ(n)

( n∏
i=1

fi |(Kμ)
⊗

n

)
(x) = Eμ(n)

( n∏
i=1

fi |Kμ(n)

)
(x).

This implies that

lim
M→∞

1
M

M∑
m=1

n∏
i=1

Eμ(fi |Kμ)(T mxi) = Eμ(n)

( n∏
i=1

Eμ(fi |Kμ)|Iμ(n)

)
(x)

= Eμ(n) (Eμ(n)

( n∏
i=1

fi |Kμ(n)

)
|Iμ(n) )(x)

= Eμ(n)

( n∏
i=1

fi |Iμ(n)

)
(x),

where the last equality follows from the fact that Iμ(n) ⊂ Kμ(n) .

LEMMA A.2. Let (Z, BZ , ν, R) be a minimal rotation on a compact abelian group. Then
for any n ∈ N and φi ∈ L∞(Z, ν), i = 1, . . . , n,

lim
M→∞

1
M

M∑
m=1

n∏
i=1

φi(R
mzi) =

∫
Z

n∏
i=1

φi(zi + z) dν(z) for ν(n)-a.e. (z1, . . . , zn).

Proof. Since (Z, BZ , ν, R) is a minimal rotation on a compact abelian group, there exists
a ∈ Z such that Rmz = z + ma for any z ∈ Z.

Let F(z) = ∏n
i=1 φi(zi + z). Then F(RmeZ) = F(ma), where eZ is the identity

element of Z. Since (Z, R) is minimal equicontinuous, (Z, BZ , ν, R) is uniquely ergodic.
By an approximation argument, we have, for ν(n)-a.e. (z1, . . . , zn),

lim
M→∞

1
M

M∑
m=1

n∏
i=1

φi(R
mzi) = lim

M→∞
1
M

M∑
m=1

n∏
i=1

φi(zi + ma)

= lim
M→∞

1
M

M∑
m=1

F(ma) = lim
M→∞

1
M

M∑
m=1

F(RmeZ)

=
∫

Z

F(z) dν(z) =
∫

Z

n∏
i=1

φi(zi + z)dν(z).

The proof is completed.

Proof of Lemma 4.3. Let z �→ ηz be the disintegration of μ over the continuous factor
map π from (X, BX, μ, T ) to its Kronecker factor (Z, BZ , ν, R). For n ∈ N, define

λn
x =

∫
Z

ηz+π(x1) × · · · × ηz+π(xn) dν(z)

for every x = (x1, . . . , xn) ∈ X(n).
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We first note that for each x ∈ X(n), the measures ηz+π(xi ) are defined for ν-a.e. z ∈ Z

and therefore is well defined. To prove that x �→ λn
x is continuous, first note that uniform

continuity implies

(u1, . . . , un) �→
∫

Z

n∏
i=1

fi(z + ui) dν(z)

from Z(n) to C is continuous whenever fi : Z → C are continuous. An approximation
argument then gives continuity for every fi ∈ L∞(Z, ν). In particular,

x �→
∫

Z

n∏
i=1

E(fi | BZ)(z + π(xi)) dν(z)

from X(n) to C is continuous whenever fi ∈ L∞(X, μ), which in turn implies continuity
of x �→ λn

x .
To prove that x �→ λn

x is an ergodic decomposition, we first calculate
∫

X(n)

∫
Z

n∏
i=1

ηz+π(xi ) dν(z) dμ(n)(x) =
∫

Z

n∏
i=1

∫
X

ηz+π(xi ) dμ(xi) dν(z),

which is equal to μ(n) because all inner integrals are equal to μ. We conclude that

μ(n) =
∫

X(n)

λn
x dμ(n)(x),

which shows x �→ λn
x is a disintegration of μ(n).

We are left with verifying that∫
X(n)

F dλn
x = Eμ(n) (F | Iμ(n) )(x)

for μ(n)-a.e. x ∈ X(n) whenever F : X(n) → C is measurable and bounded. Recall that
Iμ(n) denotes the σ -algebra of T (n)-invariant sets. Fix such an F. It follows from the
pointwise ergodic theorem that

lim
M→∞

1
M

M∑
m=1

F(T mx1, . . . , T mxn) = Eμ(n) (F | Iμ(n) )(x)

for μ(n)-a.e. x ∈ X(n). We therefore wish to prove that
∫

X(n)

F dλn
x = lim

M→∞
1
M

M∑
m=1

F(T mx1, . . . , T mxn)

holds for μ(n)-a.e. x ∈ X(n).
By an approximation argument, it suffices to verify that

∫
X(n)

f1 ⊗ · · · ⊗ fn dλn
x = lim

M→∞
1
M

M∑
m=1

n∏
i=1

fi(T
mxi)

holds for μ(n)-a.e. x ∈ X(n) whenever fi belongs to L∞(X, μ) for i = 1, . . . , n.
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By Lemma A.1,

lim
M→∞

1
M

M∑
m=1

n∏
i=1

fi(T
mxi) = lim

M→∞
1
M

M∑
m=1

n∏
i=1

E(fi | BZ)(T mxi)

for μ(n)-a.e. x ∈ X(n). By Lemma A.2, for every φi in L∞(Z, ν),

lim
M→∞

1
M

M∑
m=1

n∏
i=1

φi(R
mzi) =

∫
Z

n∏
i=1

φi(zi + z) dν(z)

for ν(n)-a.e. z ∈ Z(n). Taking φi = E(fi | BZ) gives

lim
M→∞

1
M

M∑
m=1

n∏
i=1

E(fi | BZ)(T mxi) =
∫

X(n)

f1 ⊗ · · · ⊗ fn dλn
x

for μ(n)-a.e. x ∈ X(n).
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