A GENERALIZATION OF AN INEQUALITY OF BHATTACHARYA AND LEONETTI

RITVA HURRI-SYRJÄNEN

Abstract. We show that bounded John domains and bounded starshaped domains with respect to a point satisfy the following inequality

$$
\int_{D} F\left(b \frac{\left|u(x)-u_{D}\right|}{\operatorname{dia}(D)}\right) d x \leq K \int_{D} F(|\nabla u(x)|) d x
$$

where $F:[0, \infty) \rightarrow[0, \infty)$ is a continuous, convex function with $F(0)=0$, and u is a function from an appropriate Sobolev class. Constants b and K do depend at most on D. If $F(x)=x^{p}, 1 \leq p<\infty$, this inequality reduces to the ordinary Poincaré inequality.

1. Introduction. Tilak Bhattacharya and Francesco Leonetti introduced the following version of the Poincare inequality

$$
\begin{equation*}
\int_{D} F\left(b \frac{\left|u(x)-u_{D}\right|}{\operatorname{dia}(D)}\right) d x \leq K \int_{D} F(|\nabla u(x)|) d x . \tag{1.1}
\end{equation*}
$$

Here, $F:[0, \infty) \rightarrow[0, \infty)$ is a convex, continuous function with $F(0)=0, D$ is a bounded domain in R^{n}, u is a function from an appropriate Sobolev class, and u_{D} stands for the integral average of u over D. Constants $b \in(0,1]$ and $K>0$ depend at most on D. A domain D is an F-Poincaré domain, write $D \in \mathcal{P}(F)$, whenever there are constants $b=b(D)$ and $K=K(D)$ such that (1.1) holds for all $u \in W_{1}^{1}(D)$ and $F(|\nabla u|) \in L^{1}(D)$.

Bhattacharya and Leonetti proved that inequality (1.1) with $b=1$ holds for convex domains, [1, Lemma 1], and with additional assumptions of F for an annulus, [1, Theorem 2]. In this paper we show that John domains and starshaped domains are F-Poincaré domains. Further we consider a modification of (1.1) in Section 6.

If $F(x)=x^{p}, 1 \leq p<\infty$, inequality (1.1) reduces to the ordinary Poincaré inequality

$$
\int_{D}\left|u(x)-u_{D}\right|^{p} d x \leq \kappa_{p}(D)^{p} \int_{D}|\nabla u(x)|^{p} d x,
$$

whenever $u \in W_{p}^{1}(D)$. It is customary to write $D \in \mathcal{P}(p)$ and $\kappa_{p}(D)=K^{1 / p} \operatorname{dia}(D) b^{-1}$ and to say D is a p-Poincaré domain. Starshaped domains as well as John domains are p-Poincaré domains for all $p, 1 \leq p<\infty$, [4, Theorem 3.1], [3, Theorems 3.1 and 8.5].

We restate the result of Bhattacharya and Leonetti here.

Theorem 1.2 [1, Lemma 1]. Let D be a convex, bounded subset of $R^{n}, n \geq 1$. Let $F:[0, \infty) \rightarrow[0, \infty)$ be a continuous, convex function with $F(0)=0$. If $u \in W_{1}^{1}(D)$ such that $F(|\nabla u|) \in L^{1}(D)$, then (1.1) holds with $b=1$ and $K=\left(\frac{\omega_{n} \mathrm{dia}(D)^{n}}{|D|}\right)^{1-1 / n}$.

A generalization of Theorem 1.2 is that John domains and starshaped domains are F-Poincaré domains, Theorems 4.1 and 5.1.
2. Notation and definitions. Throughout this paper we let D and G be bounded domains of euclidean n-space $R^{n}, n \geq 2$.

If $x \in R^{n}$ and $r>0$, then $B^{n}(x, r)=\left\{y \in R^{n}| | x-y \mid<r\right\}$ is an open ball in R^{n} and the sphere $S^{n-1}(x, r)$ is its boundary. We use the abbreviations $B^{n}(r)=B^{n}(0, r)$ and $S^{n-1}(r)=S^{n-1}(0, r)$.

The euclidean distance between sets A and B is written as $d(A, B)$, and $d(x, \partial A)$ denotes the distance from $x \in A$ to the boundary of A. We let $\operatorname{dia}(A)$ denote the diameter of A. We write $t Q$ for the cube with the same center as Q and dilated by a factor $t>1$.

The average of a function u is $u_{A}=\frac{1}{|A|} \int_{A} u(x) d x=f_{A} u(x) d x$ if $|A|>0$; here $|A|$ stands for the n-dimensional Lebesgue measure of A. We write $\left|B^{n}(1)\right|=\omega_{n}$.

The L^{p}-norm of u in A is $\|u\|_{L^{p}(A)}=\left(\int_{A}|u(y)|^{p} d y\right)^{1 / p}$. The Sobolev space $W_{p}^{1}(G)$, $1 \leq p<\infty$, is the space of functions $u \in L^{p}(G)$ whose first distributional partial derivatives belong to $L^{p}(G)$. In $W_{p}^{1}(G)$ we use the norm $\|u\|_{W_{p}^{1}(G)}=\|u\|_{L^{p}(G)}+\|\nabla u\|_{L^{p}(G)}$; here $\nabla u=\left(\partial_{1} u, \ldots, \partial_{n} u\right)$ is the gradient of u.

We let $c(*, \ldots, *)$ denote a constant which depends only on the quantities appearing in the parentheses.

A domain D is called an (α, β)-John domain, $0<\alpha \leq \beta<\infty$, if there is $x_{0} \in D$ such that each $x \in D$ can be joined to x_{0} by a rectifiable curve $\gamma:[0, \ell] \rightarrow D$ parametrized by arc length with $\ell \leq \beta$ and

$$
d(\gamma(t), \partial D) \geq \frac{\alpha}{\ell} t, \quad t \in[0, \ell] .
$$

Convex domains, Lipschitz domains, and bounded uniform domains are John domains. John domains form a proper subclass of domains satisfying a quasihyperbolic boundary condition. We refer to [2] for detailed discussion of these concepts.

A bounded domain in R^{n} is called starshaped with respectto a point $x_{0} \in D$, if each ray starting from x_{0} intersects ∂D exactly at one point. A starshaped domain is not necessarily a John domain: a simple example is

$$
D=\left\{\left(x_{1}, x_{2}\right) \in B^{2}((1,0), 1):\left|x_{2}\right|<x_{1}^{2}\right\} .
$$

The following chains and decompositions of a domain are essential to our sufficient condition in Theorem 3.1.
2.1. Chains. Sets $D_{i}, i=0,1, \ldots, k$, in R^{n} form a chain, abbreviated $C\left(D_{k}\right)=$ $\left(D_{0}, D_{1}, \ldots, D_{k}\right)$, if $D_{i} \cap D_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$.
2.2. Decompositions. Let \mathcal{W} be a family of domains $D \in \mathcal{P}(F)$ with $0<b_{0} \leq$ $b(D)$ and $K(D) \leq c_{0}<\infty$ such that $D \in \mathcal{P}(1)$ with $\kappa_{1}(D) \leq c_{1}<\infty$. We call \mathcal{W} an F-Poincaré decomposition of G, if there are constants c_{2}, c_{3}, and N with the following properties:
(i) $G=\bigcup_{D \in \mathcal{W}} D$,
(ii) $\Sigma_{D \in \mathcal{W}} \chi_{D}(x) \leq N \chi_{G}(x)$ for all $x \in R^{n}$, and
(iii) there is a domain $D_{0} \in \mathcal{W}$ such that for each $D \in \mathcal{W}$ there is a chain $C(D)=$ ($D_{0}, D_{1}, \ldots, D_{k}$) of domains in \mathcal{W} with

$$
\begin{equation*}
\max \left\{\left|D_{i}\right|,\left|D_{i+1}\right|\right\} \leq c_{2}\left|D_{i} \cap D_{i+1}\right| \tag{2.3}
\end{equation*}
$$

for $i=0,1, \ldots, k-1 ; D=D_{k} ;$ and

$$
\begin{equation*}
\sum_{A \in \mathcal{C}(D)} \kappa_{1}(A) \leq c_{3} b_{0}^{-1} c_{2}^{-1} \operatorname{dia}(G) \tag{2.4}
\end{equation*}
$$

For each $D \in \mathcal{W}$ we fix a chain $C(D)$ satisfying (2.3) and (2.4) and call this chain the F-Poincaré chain from D_{0} to D. For a fixed set $A \in \mathcal{W}$ we write

$$
A(\mathcal{W})=\{D \in \mathcal{W} \mid A \in \mathcal{C}(D)\}
$$

If D in R^{n} is an (α, β)-John domain and W is a Whitney decomposition of D into Whitney cubes $Q,[6, \mathrm{VI}]$, then $\left\{\right.$ int $\left.\left.\frac{9}{8} Q \right\rvert\, Q \in W\right\}$ forms an F-Poincaré decomposition of D, see the proof for Theorem 4.1.
3. A sufficient condition for a domain to be an F-Poincaré domain. Our main result is the following theorem which gives a sufficient condition for a domain to be an F-Poincaré domain.

Theorem 3.1. Let $G \subset R^{n}$ be a bounded domain and let \mathcal{W} be an F-Poincaré decomposition of G. Suppose that there are constants $b_{1}<\infty$ and $\varepsilon \in[0,1]$ such that

$$
\begin{equation*}
\sum_{D \in A(\mathcal{W})}|D| \leq b_{1} \kappa_{1}(A)^{-\varepsilon}|A| \tag{3.2}
\end{equation*}
$$

for all $A \in \mathcal{W}$. Then $G \in \mathcal{P}(F)$.
PROOF FOR Theorem 3.1. Since F is an increasing, convex, continuous function,

$$
F\left(\left|u(x)-u_{G}\right|\right) \leq \frac{1}{2}\left(F(2|u(x)-c|)+F\left(2\left|c-u_{G}\right|\right)\right)
$$

where by Jensen's inequality

$$
F\left(2\left|u_{G}-c\right|\right) \leq F\left(2 f_{G}|u(y)-c| d y\right) \leq f_{G} F(2|u(y)-c|) d y
$$

here, $c \in R$. Hence

$$
\begin{equation*}
\int_{G} F\left(\left|u(x)-u_{G}\right|\right) d x \leq \int_{G} F(2|u(x)-c|) d x \tag{3.3}
\end{equation*}
$$

for each $c \in R$. Thus we need to estimate $F(2|u(y)-c|)$ for some constant $c \in R$.
We apply a similar argument as in [3, Theorem 4.4]. Since \mathcal{W} is an F-Poincare decomposition of G, there is a domain $D_{0} \in \mathcal{W}$ such that for each $D \in \mathcal{W}$ we can fix a chain satisfying (2.3) and (2.4). We will estimate

$$
\begin{align*}
F\left(\frac{b_{0}}{4 c_{3} \operatorname{dia}(G)}\left|u(x)-u_{D_{0}}\right|\right) \leq & \frac{1}{2}\left(F\left(\frac{b_{0}}{2 c_{3} \operatorname{dia}(G)}\left|u(x)-u_{D}\right|\right)\right. \tag{3.4}\\
& \left.+F\left(\frac{b_{0}}{2 c_{3} \operatorname{dia}(G)}\left|u_{D}-u_{D_{0}}\right|\right)\right)
\end{align*}
$$

Recall $D \in \mathscr{P}(F)$ with $K(D) \leq c_{0}<\infty$ and especially $D \in \mathscr{P}(1)$ with $\kappa_{1}(D) \leq c_{1}<\infty$. Inequality (2.3) and the fact $D_{j} \in \mathscr{P}(1)$ yield

$$
\begin{aligned}
\left|u_{D_{k}}-u_{D_{0}}\right| & \leq \sum_{j=0}^{k-1}\left|u_{D_{j}}-u_{D_{j+1}}\right| \\
& =\sum_{j=0}^{k-1} f_{D_{j} \cap D_{j+1}}\left|u_{D_{j}}-u_{D_{j+1}}\right| d x \\
& \leq 2 c_{2} \sum_{j=0}^{k} f_{D_{j}}\left|u_{D_{j}}-u(x)\right| d x \\
& \leq 2 c_{2} \sum_{j=0}^{k} \kappa_{1}\left(D_{j}\right) f_{D_{j}}|\nabla u(x)| d x .
\end{aligned}
$$

Thus using (2.4), convexity, and Jensen's inequality we obtain

$$
\begin{align*}
F\left(\frac{b_{0} c_{2}}{2 c_{3} \operatorname{dia}(G)}\left|u_{D}-u_{D_{0}}\right|\right) & \leq F\left(\frac{b_{0} c_{2}}{c_{3} \operatorname{dia}(G)} \sum_{A \in \mathcal{C}(D)} \kappa_{1}(A) f_{A}|\nabla u(y)| d y\right) \\
& \leq F\left(\sum_{A \in \mathcal{C}(D)} \frac{\kappa_{1}(A)}{\sum_{B \in \mathcal{C}(D)} \kappa_{1}(B)} f_{A}|\nabla u(y)| d y\right) \\
& \leq \sum_{A \in \mathcal{C}(D)} \frac{\kappa_{1}(A)}{\sum_{B \in \mathcal{C}(D)} \kappa_{1}(B)} F\left(f_{A}|\nabla u(y)| d y\right) \tag{3.5}\\
& \leq \sum_{A \in \mathcal{C}(D)} \frac{\kappa_{1}(A)}{\kappa_{1}\left(D_{0}\right)} f_{A} F(|\nabla u(y)|) d y .
\end{align*}
$$

Inequalities (3.3)-(3.5) imply

$$
\begin{align*}
& \int_{G} F\left(\frac{b_{0}}{8 c_{3} \operatorname{dia}(G)}\left|u(x)-u_{G}\right|\right) d x \\
& \leq \frac{1}{2} \sum_{D \in \mathcal{W}} \int_{D} F\left(\frac{b(D)}{2 c_{3} \operatorname{dia}(D)}\left|u(x)-u_{D}\right|\right) d x \tag{3.6}\\
&+\frac{1}{2} \sum_{D \in \mathcal{W}}|D| \sum_{A \in \mathcal{C}(D)} \frac{\kappa_{1}(A)}{\kappa_{1}\left(D_{0}\right)} f_{A} F(|\nabla u(y)|) d y .
\end{align*}
$$

We may assume that $1 \leq c_{3}$. Since $D \in \mathscr{P}(F)$, inequality (1.1) yields

$$
\begin{align*}
\sum_{D \in \mathcal{W}} \int_{D} F\left(\frac{b(D)}{c_{3} \operatorname{dia}(D)}\left|u(x)-u_{D}\right|\right) d x & \leq c_{0} \sum_{D \in \mathcal{W}} \int_{D} F(|\nabla u(x)|) d x \tag{3.7}\\
& \leq N c_{0} \int_{G} F(|\nabla u(x)|) d x .
\end{align*}
$$

Rearranging the double sum in (3.6), and using (3.2) and the inequality $\kappa_{1}(A) \leq c_{1}$ we obtain

$$
\begin{align*}
& \sum_{D \in \mathcal{W}} \sum_{A \in \mathcal{C}(D)}|D| \kappa_{1}(A) f_{A} F(|\nabla u(y)|) d y \\
&=\sum_{A \in \mathcal{W}} \sum_{D \in A(\mathcal{W})}|D| \kappa_{1}(A) f_{A} F(|\nabla u(y)|) d y \tag{3.8}\\
& \leq b_{1} \sum_{A \in \mathcal{W}} \kappa_{1}(A)^{1-\varepsilon} \int_{A} F(|\nabla u(y)|) d y \\
& \leq b_{1} c_{1}^{1-\varepsilon} N \int_{G} F(|\nabla u(x)|) d x .
\end{align*}
$$

Substituting (3.7) and (3.8) into (3.6) implies the desired inequality

$$
\int_{G} F\left(\frac{b_{0}}{8 c_{3} \operatorname{dia}(G)}\left|u(x)-u_{G}\right|\right) d x \leq c\left(b_{1}, c_{0}, c_{1}, \varepsilon, N\right) \int_{G} F(|\nabla u(x)|) d x
$$

and Theorem 3.1 is proved.
4. John domains. Applying Theorem 3.1 and its proof to a John domain yields

Theorem 4.1. An (α, β)-John domain D in R^{n} is an F-Poincaré domain with $b=$ $c(n) \frac{\alpha}{\beta}$ and $K=c(n)\left(\frac{\beta}{\alpha}\right)^{n+1}$.

Proof. Let \mathcal{W} be a Whitney decomposition of D into cubes Q. Theorem 1.2 yields that $K(Q)=c(n):=c_{0}$ and $\kappa_{1}(Q)=c(n) \operatorname{dia}(Q):=c_{1}$. Fix $Q_{0} \in \mathcal{W}$ with $x_{0} \in Q_{0}$. The John property in a domain means that for each $Q \in \mathcal{W}$ there is a chain $C\left(\right.$ int $\left.\frac{9}{8} Q\right)$ of cubes int $\frac{9}{8} Q_{j} Q_{j} \in \mathcal{W}, j=0,1, \ldots, k, Q=Q_{k}$, such that

$$
\sum_{j=i}^{k} \operatorname{dia}\left(Q_{j}\right) \leq c(n) \frac{\beta}{\alpha} \operatorname{dia}\left(Q_{i}\right) \leq c(n) \frac{\beta}{\alpha} \operatorname{dia}(D)
$$

for all $i=0,1, \ldots, k$, see [3, proofs for Proposition 6.1 and Lemma 8.3]. Hence there are constants $c_{2}=c_{2}(n)$ and $c_{3}=c_{3}(n) \frac{\beta}{\alpha}$ such that (2.3) and (2.4) are true.

The above result combined to the fact that there are not too many Whitney cubes of the same size in a John domain yields that for all $A \in \mathcal{W}^{\prime}=\left\{\right.$ int $\left.\left.\frac{9}{8} Q \right\rvert\, Q \in \mathcal{W}\right\}$

$$
\begin{aligned}
\sum_{\operatorname{int} \frac{9}{8} Q \in A\left(\mathcal{W}^{\prime}\right)}|Q| & \leq \sum_{j=1}^{\infty} \sum_{Q_{j} \in S}\left|Q_{j}\right| \\
& \leq \sum_{j=1}^{\infty} c(n)\left(\frac{\beta}{\alpha}\right)^{n}\left(\frac{\alpha}{c(n) \beta}\right)^{\delta} 2^{-j \delta}|A| \\
& \leq c(n)\left(\frac{\beta}{\alpha}\right)^{n}|A|,
\end{aligned}
$$

where $S=\left\{\operatorname{int} \frac{9}{8} Q: \frac{\alpha \operatorname{dia}(A)}{2 / \beta c(n)} \leq \operatorname{dia}\left(\frac{9}{8} Q\right) \leq 2 \frac{\alpha \operatorname{dia}(A)}{2 i \beta c(n)}\right\}$ and $\delta=\delta\left(n, \frac{\alpha}{\beta}\right)$, see [3, Lemma 8.4]. Now $\left\{\left.\operatorname{int} \frac{9}{8} Q \right\rvert\, Q \in \mathscr{W}\right\}$ is an F-Poincaré decomposition of D and (3.2) is satisfied, when $\varepsilon=0$. Thus $D \in \mathcal{P}(F)$ by Theorem 3.1.

The proof for the Theorem 3.1 gives that $b=c(n) \frac{\alpha}{\beta}$ and

$$
K=c(n)\left(1+\left(\frac{\beta}{\alpha}\right)^{n} \frac{\operatorname{dia}(D)}{\operatorname{dia}\left(Q_{0}\right)}\right) \leq\left(\frac{\beta}{\alpha}\right)^{n+1}
$$

since $\alpha \leq \operatorname{dia}\left(Q_{0}\right) \leq \operatorname{dia}(D) \leq \beta$.

5. Starshaped domains.

THEOREM 5.1. If D in R^{n} is a domain which is starshaped with respect to a point x_{0}, then $D \in \mathcal{P}(F)$. Here, $b=\frac{1}{18}$ and $K=K\left(n, d\left(x_{0}, \partial D\right), \max _{x \in \partial D} d\left(x, x_{0}\right)\right)$.

We need the following trace lemma for the proof of Theorem 5.1.
LEmmA 5.2. Let D be a domain in R^{n} and let $B^{n}(2 \ell) \subset D$. If $F:[0, \infty) \rightarrow[0, \infty)$ is a convex, continuous function with $F(0)=0$, then

$$
\int_{S^{n-1}(\xi)} F\left(\frac{1}{2 \ell}|u(z)|\right) d m_{n-1}(z) \leq \frac{1}{\ell} \int_{B^{n}(\ell)} F\left(\frac{1}{\ell}|u(x)|\right) d x+\frac{2^{n-1}}{\ell} \int_{B^{n}(\ell)} F(|\nabla u(x)|) d x,
$$

for each $\xi \in[\ell / 2, \ell]$ whenever $u \in C^{1}(D)$.
Proof. By the mean value theorem for integrals we have

$$
\begin{align*}
& \int_{r=\ell / 2}^{\ell} \int_{S^{n-1}(1)} F(|u(\theta, r)|) r^{n-1} d m_{n-1}(\theta) d r \tag{5.3}\\
&=(\ell-\ell / 2) \int_{S^{n-1}(1)} F(|u(\theta, \sigma)|) \sigma^{n-1} d m_{n-1}(\theta)
\end{align*}
$$

for some $\sigma \in[\ell / 2, \ell]$.
On the other hand for ξ with $\ell / 2 \leq \xi \leq \sigma \leq \ell$,

$$
\begin{aligned}
F\left(\frac{1}{2 \ell}|u(\theta, \xi)|\right) & \leq F\left(\frac{1}{2 \ell}|u(\theta, \sigma)|+\frac{1}{2 \ell} \int_{\xi}^{\sigma}\left|D_{r} u(\theta, t)\right| d t\right) \\
& \leq \frac{1}{2} F\left(\frac{1}{\ell}|u(\theta, \sigma)|\right)+\frac{1}{2} \frac{1}{\ell / 2} \int_{\ell / 2}^{\ell} F\left(\left|D_{r} u(\theta, t)\right|\right) d t .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& F\left(\frac{1}{2 \ell}|u(\theta, \xi)|\right) \xi^{n-1} \\
& \quad \leq \frac{1}{2} F\left(\frac{1}{\ell}|u(\theta, \sigma)|\right) \sigma^{n-1}+\frac{1}{\ell}\left(\frac{2}{\ell}\right)^{n-1} \ell^{n-1} \int_{\ell / 2}^{\ell} F\left(\left|D_{r} u(\theta, t)\right|\right) t^{n-1} d t
\end{aligned}
$$

where we have used $\xi^{n-1} \leq \sigma^{n-1}$ and $1 \leq t^{n-1} /(\ell / 2)^{n-1}$.

Combining the estimates and (5.3) we obtain

$$
\begin{aligned}
& \int_{S^{n-1}(\xi)} F\left(\frac{1}{2 \ell}|u(z)|\right) d m_{n-1}(z) \\
&= \int_{S^{n-1}(1)} F\left(\frac{1}{2 \ell}|u(\theta, \xi)|\right) \xi^{n-1} d m_{n-1}(\theta) \\
& \leq \frac{1}{2} \int_{S^{n-1}(1)} F\left(\frac{1}{\ell}|u(\theta, \sigma)|\right) \sigma^{n-1} d m_{n-1}(\theta) \\
&+\frac{2^{n-1}}{\ell} \int_{t=\ell / 2}^{\ell} \int_{S^{n-1}(1)} F\left(\left|D_{r} u(\theta, t)\right|\right) t^{n-1} d m_{n-1}(\theta) d t \\
& \leq \frac{1}{\ell} \int_{r=\ell / 2}^{\ell} \int_{S^{n-1}(1)} F\left(\frac{1}{\ell}|u(\theta, r)|\right) r^{n-1} d m_{n-1}(\theta) d r \\
&+\frac{2^{n-1}}{\ell} \int_{B^{n}(\ell) \backslash B^{n}(\ell / 2)} F(|\nabla u(x)|) d x \\
&= \frac{1}{\ell} \int_{B^{n}(\ell) \backslash B^{n}(\ell / 2)} F\left(\frac{1}{\ell}|u(x)|\right) d x \\
&+\frac{2^{n-1}}{\ell} \int_{B^{n}(\ell) \backslash B^{n}(\ell / 2)} F(|\nabla u(x)|) d x .
\end{aligned}
$$

This yields the desired inequality and the proof is complete.
Proof for Theorem 5.1. Write $d\left(x_{0}, \partial D\right)=2 \ell, \max _{x \in \partial D} d\left(x, x_{0}\right)=L$, and $B^{n}\left(x_{0}, \frac{1}{2} \ell\right)=B$. It suffices to consider functions $u \in W_{p}^{1}(D) \cap C^{\infty}(D), c f$. [5, Theorem 1.1.6/1]. We assume, for convenience, that $x_{0}=0$. By (3.3) it is enough to estimate the term $\int_{D} F\left(\left|u(x)-u_{B}\right|\right) d x$.

First we note that

$$
\begin{align*}
\int_{D} F\left(\left|u(x)-u_{B}\right|\right) d x \leq & \int_{D} F\left(f_{B}|u(x)-u(y)| d y\right) d x \\
\leq & \int_{B} f_{B} F(|u(x)-u(y)|) d y d x \tag{5.4}\\
& \quad+\int_{D \backslash B} f_{B} F(|u(x)-u(y)|) d y d x .
\end{align*}
$$

The function F is increasing and by Theorem 1.2 a ball B is an F-Poincaré domain and hence

$$
\begin{array}{rl}
\int_{B} f_{B} & F\left(\frac{1}{9 \operatorname{dia}(D)}|u(x)-u(y)|\right) d y d x \\
& \leq \int_{B} f_{B} F\left(\frac{1}{\operatorname{dia}(B)}\left|u(x)-u_{B}\right|\right) d x d y \tag{5.5}\\
\quad \leq c(n) \int_{B} F(|\nabla u(x)|) d x
\end{array}
$$

We estimate the last double integral in (5.4) in three parts:

$$
\begin{array}{rl}
\int_{D \backslash B} f_{B} & F\left(\frac{1}{9 \operatorname{dia}(D)}|u(x)-u(y)|\right) d y d x \\
\leq & \frac{1}{3} \int_{D \backslash B} f_{B} F\left(\frac{1}{3 \operatorname{dia}(D)}\left|u(x)-u\left(\frac{\ell}{2|x|} x\right)\right|\right) d y d x \tag{5.6}\\
& \quad+\frac{1}{3} \int_{D \backslash B} f_{B} F\left(\frac{1}{3 \operatorname{dia}(D)}\left|u\left(\frac{\ell}{2|x|} x\right)-u_{B}\right|\right) d y d x \\
& \quad+\frac{1}{3} \int_{D \backslash B} f_{B} F\left(\frac{1}{3 \operatorname{dia}(D)}\left|u(y)-u_{B}\right|\right) d y d x,
\end{array}
$$

where

$$
\begin{array}{rl}
\int_{D \backslash B} f_{B} & F\left(\frac{1}{\operatorname{dia}(D)}\left|u(y)-u_{B}\right|\right) d y d x \\
& \leq c(n) \frac{|D \backslash B|}{|B|} \int_{B} F(|\nabla u(x)|) d x \tag{5.7}
\end{array}
$$

by Theorem 1.2.
Since D is starshaped the first integral of the right hand side in (5.6) can be estimated by using spherical coordinates: for $\theta \in S^{n-1}(1)$ write $R(\theta)=|z|$ where z is the unique common point of ∂D and the ray $t \theta, t \geq 0$. Thus

$$
\begin{aligned}
\int_{D \backslash B} f_{B} F & \left(\frac{1}{\operatorname{dia}(D)}\left|u(x)-u\left(\frac{\ell}{2|x|} x\right)\right|\right) d y d x \\
& =\int_{S^{n-1}(1)} \int_{\ell / 2}^{R(\theta)} F\left(\frac{1}{\operatorname{dia}(D)}\left|u(r, \theta)-u\left(\frac{\ell}{2}, \theta\right)\right|\right) r^{n-1} d r d m_{n-1}(\theta) .
\end{aligned}
$$

Applying the inequalities $\ell / 2 \leq r \leq R(\theta) \leq L$ and $\ell / 2=\operatorname{dia}(B) \leq \alpha \leq r$ we obtain

$$
\begin{array}{rl}
\int_{\ell / 2}^{R(\theta)} F & F\left(\frac{1}{\operatorname{dia}(D)}\left|u(r, \theta)-u\left(\frac{\ell}{2}, \theta\right)\right|\right) r^{n-1} d r \\
& \leq \int_{\ell / 2}^{R(\theta)} F\left(\frac{1}{|R(\theta)-\ell / 2|} \int_{\ell / 2}^{r}\left|u_{\alpha}(\alpha, \theta)\right| d \alpha\right) r^{n-1} d r \\
& \leq \int_{\ell / 2}^{R(\theta)} F\left(\frac{1}{|R(\theta)-\ell / 2|} \int_{\ell / 2}^{R(\theta)}\left|u_{\alpha}(\alpha, \theta)\right| d \alpha\right) r^{n-1} d r \\
& \leq \int_{\ell / 2}^{R(\theta)} \frac{1}{|R(\theta)-\ell / 2|} \int_{\ell / 2}^{R(\theta)} F\left(\left|u_{\alpha}(\alpha, \theta)\right|\right) d \alpha r^{n-1} d r \\
& \leq \int_{\ell / 2}^{R(\theta)} \frac{1}{\ell / 2} \int_{\ell / 2}^{L} F\left(\left|u_{\alpha}(\alpha, \theta)\right|\right) d \alpha r^{n-1} d r \\
& \leq \frac{2}{n} \frac{L^{n}}{\ell} \int_{\ell / 2}^{R(\theta)} F(|\nabla u(\alpha, \theta)|) \frac{\alpha^{n-1}}{\alpha^{n-1}} d \alpha \\
& \leq \frac{1}{n}\left(\frac{2 L}{\ell}\right)^{n} \int_{\ell / 2}^{R(\theta)} F(|\nabla u(\alpha, \theta)|) \alpha^{n-1} d \alpha .
\end{array}
$$

Hence

$$
\begin{gather*}
\int_{D \backslash B} f_{B} F\left(\frac{1}{\operatorname{dia}(D)}\left|u(x)-u\left(\frac{\ell}{2|x|} x\right)\right|\right) d y d x \tag{5.8}\\
\leq c(n)\left(\frac{L}{\ell}\right)^{n} \int_{D \backslash B} F(|\nabla u(x)|) d x .
\end{gather*}
$$

In order to estimate the second integral of the right hand side of (5.6) we need Lemma 5.2. Changing the variables and using Lemma 5.2 and Theorem 1.2 we obtain

$$
\begin{align*}
\int_{D \backslash B} f_{B} F & \left(\frac{1}{\operatorname{dia}(D)}\left|u\left(\frac{\ell}{2|x|} x\right)-u_{B}\right|\right) d y d x \\
& \leq \int_{\ell / 2}^{L} \int_{S^{n-1}(r)} F\left(\frac{1}{2 \ell}\left|u\left(\frac{\ell}{2|x|} x\right)-u_{B}\right|\right) d m_{n-1}(x) d r \\
& =\int_{\ell / 2}^{L} \int_{S^{n-1}(\ell / 2)} F\left(\frac{1}{2 \ell}\left|u(z)-u_{B}\right|\right) \frac{r^{n-1}}{(\ell / 2)^{n-1}} d m_{n-1}(z) d r \tag{5.9}\\
& \leq c(n)\left(\frac{L}{\ell}\right)^{n-1} L \int_{s^{n-1}(\ell / 2)} F\left(\frac{1}{2 \ell}\left|u(z)-u_{B}\right|\right) d m_{n-1}(z) \\
& \leq c(n)\left(\frac{L}{\ell}\right)^{n} \int_{D} F(|\nabla u(x)|) d x .
\end{align*}
$$

Estimates (5.4)-(5.9) and (3.3), where $G=D$, together yield the inequality (1.1) with $b=\frac{1}{18}$.
6. Further remarks. We need an additional assumption of F to get $b=1$ in inequality (1.1) for more general domains than convex domains. In this case, a variation of inequality (1.1) is the following one which was studied by Bhattacharya and Leonetti

$$
\begin{equation*}
\int_{D} F\left(\frac{\left|u(x)-u_{D}\right|}{\operatorname{dia}(D)}\right) d x \leq K_{F} \int_{D} F(|\nabla u(x)|) d x, \tag{6.1}
\end{equation*}
$$

where D is a bounded domain in R^{n}, u is a function from an appropriate Sobolev space, $F:[0, \infty) \rightarrow[0, \infty)$ is a convex, continuous function satisfying the Δ_{2}-condition, and $F(0)=0$. Here constant K_{F} depends at most on F and D. By the Δ_{2}-condition we mean that there is a constant τ_{F} such that $F(2 x) \leq \tau_{F} F(x)$ for all $x>0$.

Then Theorems 4.1 and 5.1 read as
THEOREM 6.2. An (α, β)-John domain in R^{n} satisfies the inequality (6.1) with $K_{F}=$ $c(n)\left(\frac{\beta}{\alpha}\right)^{n+1} \tau_{F}^{\eta}$; here $\eta=\eta\left(\frac{\alpha}{\beta}\right)<0$.

THEOREM 6.3. A starshaped domain in R^{n} satisfies inequality (6.1) with a constant $K_{F}=\tau_{F}^{-5} K\left(n, d\left(x_{0}, \partial D\right), \max _{x \in \partial D} d\left(x, x_{0}\right)\right)$; here K is a constant from Theorem 5.1.

The proofs for Theorems 6.2 and 6.3 are essentially the same as the proofs for Theorems 4.1 and 5.1.
6.4. Remark. Let $F_{i}:[0, \infty) \rightarrow[0, \infty), i=1,2$, be continuous functions with constants c_{1} and c_{2} such that the inequalities $c_{1} F_{1}(x) \leq F_{2}(x) \leq c_{2} F_{1}(x)$ hold for all $x \in[0, \infty)$. If F_{1} is a convex function and $F_{1}(0)=0$, then D is an F_{2}-Poincare domain whenever D is an F_{1}-Poincaré domain in the sense of (1.1). Further if F_{1} satisfies the Δ_{2}-condition and D satisfies (6.1) with F_{1}, then D is an F_{2}-Poincaré domain in the sense of (6.1).

Acknowledgments. I wish to thank Peter Lindqvist for bringing this problem to my attention and Jouni Luukkainen for carefully reading the manuscript.

References

1. T. Bhattacharya and F. Leonetti, A new Poincaré inequality and its application to the regularity of minimizers of integral functionals with nonstandard growth, Nonlinear Anal. 17(1991), 833-839.
2. F. W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn., Series A. I. Math. 10(1985), 203-219.
3. R. Hurri, Poincaré domains in R^{n}, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 71(1988), 1-42.
4. O. Martio, John domains, bilipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures Appl. 33(1988), 107-112.
5. V. G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.
6. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970.

Department of Mathematics
University of Helsinki
P.O. Box 4 (Ylipistonkatu 5)

FIN-00014 University of Helsinki
Finland
e-mail: hurrisyrjane@cc.helsinki.fi

