
Bull. Aust. Math. Soc. 83 (2011), 338–352
doi:10.1017/S0004972710001917

REAL IDEALS IN POINTFREE RINGS
OF CONTINUOUS FUNCTIONS

THEMBA DUBE

(Received 4 August 2010)

Abstract

Real ideals of the ring RL of real-valued continuous functions on a completely regular frame L are
characterized in terms of cozero elements, in the manner of the classical case of the rings C(X). As
an application, we show that L is realcompact if and only if every free maximal ideal of RL is hyper-
real—which is the precise translation of how Hewitt defined realcompact spaces, albeit under a different
appellation. We also obtain a frame version of Mrówka’s theorem that characterizes realcompact spaces.
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1. Introduction

Real ideals in classical rings C(X) of real-valued continuous functions on a
Tychonoff space X have very transparent characterizations in terms of zero-sets [11,
Theorem 5.14] which often simplify computations with these types of ideals. The
intent of this note is to extend these characterizations to the rings RL of real-valued
continuous functions on a completely regular frame L . There are some noteworthy
consequences of results obtained en route to the characterizations, and also of the
characterizations themselves. They include the following:

(a) a characterization of realcompact frames as precisely those L for which every
free maximal ideal of RL is hyper-real;

(b) a frame analogue of Mrówka’s [17] characterization of realcompact spaces which
states that

a Tychonoff space X is realcompact if and only if for each p ∈ βX \ X
there exists a function f ∈ C(βX) such that f (p)= 0 and f (x) > 0
for all x ∈ X;

(c) a characterization of pseudocompact frames as those L for which every maximal
ideal of RL is real.
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[2] Real ideals in RL 339

The first of these results deserves some elaboration. In his celebrated paper [13],
Hewitt defined realcompact spaces (under the appellation ‘Q-spaces’) to be those
completely regular spaces X such that every free maximal ideal of the ring C(X)
is hyper-real. He then characterized them, in modern parlance, as precisely those X
such that every z-ultrafilter on X with the countable intersection property is fixed.
It is the frame-theoretic articulation of this characterization which has generally been
adopted as the definition of realcompact frames. Actually, in pointfree topology
realcompactness has always been defined by a condition which is a frame version
of one or other characterization of spatial realcompactness, such as:

(1) a completely regular frame L is realcompact if any σ -proper maximal ideal of
Coz L is completely proper;

as in [9], or

(2) a completely regular frame L is realcompact if every ring homomorphism
RL→ R is a point evaluation,

as in [4, 6]. These definitions are equivalent and are ‘conservative’ in the sense that a
completely regular space X is realcompact if and only if the frame OX of open sets
of X is realcompact.

The result in (a) above is the exact translation to frames of Hewitt’s original
definition of realcompact spaces as it appears in [13]. Although this result has hitherto
not appeared stated explicitly as above, Banaschewski has shown us how it can be
proved without the description of real ideals given here. His elegant proof (which is
choice-free, to boot) is outlined in Remark 4.2.

2. Preliminaries

Here we collect a few facts about frames and their rings of real-valued continuous
functions that will be relevant for our discussion, and fix notation. For the general
theory of frames we refer to [14, 18]. Recall that a frame is a complete lattice L in
which the distributive law

a ∧
∨

S =
∨
{a ∧ x | x ∈ S}

holds for all a ∈ L and S ⊆ L . We denote the top element and the bottom element of L
by 1L and 0L respectively, dropping the subscripts if L is clear from the context. The
frame of open subsets of a topological space X is denoted by OX .

We denote the ‘completely below’ relation by ≺≺. All frames considered here are
assumed to be completely regular. A point of L is an element p such that p < 1 and
x ∧ y ≤ p implies that x ≤ p or y ≤ p. The points of any regular frame are precisely
those elements which are maximal below the top. We denote the set of all points of L
by Pt(L).

The right adjoint of a frame homomorphism h is denoted by h∗. If h : L→ M
is an onto frame homomorphism (between regular frames) and p ∈ Pt(L), then
either h(p)= 1 or h(p) ∈ Pt(M). Indeed, suppose that h(p) < 1. Let y ∈ M be
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such that h(p)≤ y < 1. Then p ≤ h∗(y) < 1, so that maximality gives p = h∗(y),
and hence h(p)= hh∗(y)= y. Therefore h(p) ∈ Pt(M).

Pointfree function rings can be studied starting with OR, as in [2], or starting with
the frame of reals L(R), as in [3]. We follow the latter approach. The frame L(R) is
defined by generators, which are pairs (p, q) of rationals, and the following relations:

(R1) (p, q) ∧ (r, s)= (p ∨ r, q ∧ s);
(R2) (p, q) ∨ (r, s)= (p, s) whenever p ≤ r < q ≤ s;
(R3) (p, q)=

∨
{(r, s) | p < r < s < q};

(R4) 1L(R) =
∨
{(p, q) | p, q ∈Q}.

A continuous real-valued function on L is a frame homomorphism L(R)→ L . The
ring RL has as its elements continuous real-valued functions on L , with operations
determined by the operations of Q viewed as a lattice-ordered ring as follows.

For � ∈ {+, ·, ∧, ∨} and α, β ∈RL ,

α � β =
∨
{α(r, s) ∧ β(t, u) | 〈r, s〉 � 〈t, u〉 ⊆ 〈p, q〉},

where 〈·, ·〉 denotes the open interval in Q, and the given condition means that
x � y ∈ 〈p, q〉 for any x ∈ 〈r, s〉 and y ∈ 〈t, u〉.

For any α ∈RL and p, q ∈Q,

(−α)(p, q)= α(−q,−p),

and for any r ∈ R, the constant function r is the member of RL given by

r(p, q)=

{
1 if p < r < q,
0 otherwise.

Then RL becomes an archimedean f -ring with identity, and is therefore reduced,
meaning that it has no nonzero nilpotent element. Furthermore, the correspondence
L 7→RL is functorial, where, for any frame homomorphism h : L→ M , the
`-ring homomorphism Rh :RL→RM is given by Rh(α)= h · α, the centre dot
designating composition.

An important link between a frame and its ring of real-valued continuous functions
is given by the cozero map coz :RL→ L defined by

coz ϕ =
∨
{ϕ(p, 0) ∨ ϕ(0, q) | p, q ∈Q} = ϕ((−, 0) ∨ (0,−)),

where, for any r ∈Q,

(−, r)=
∨
{(p, r) | p < r in Q} and (r,−)=

∨
{(r, q) | q > r in Q}.

The cozero map has several known properties (see [2, 3]) that we shall use freely.
A cozero element of L is an element of the form coz ϕ for some ϕ ∈RL . The cozero

part of L , denoted Coz L , is the sublattice of L consisting of all cozero elements of L .
Because we assume the axiom of choice (in all its guises) throughout, Coz L is, for us,
a sub-σ -frame of L . General properties of cozero elements and cozero parts of frames
can be found in [8]. Here we highlight the following:
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(a) if a, b ∈ Coz L and a ≺≺ b, then there exists s ∈ Coz L such that a ∧ s = 0 and
s ∨ b = 1;

(b) if (an) is a sequence in Coz L with
∨

an = 1, then there is a sequence (bn) in
Coz L (called a shrinking of (an)) such that bn ≺≺ an for each n, and

∨
bn = 1.

The first result follows from [8, Corollary 3], and the second is proved (more generally)
in [7, Proposition 4]. It should be noted though that, regarding the latter result, in the
cited paper the rather below relation is used instead of the completely below relation.
However, in a regular σ -frame the two relations coincide, modulo countable dependent
choice.

An ideal I of Coz L is σ -proper if, for any countable S ⊆ I ,
∨

S < 1. It is
completely proper if

∨
I < 1, and it is a σ -ideal if it is closed under countable joins. A

frame L is realcompact if any σ -proper maximal ideal of Coz L is completely proper.
Recall that an element ϕ of RL is said to be bounded if ϕ(p, q)= 1 for some p, q ∈Q.
The subring of RL consisting of bounded elements is denoted by R∗L . A frame L is
said to be pseudocompact if RL =R∗L .

As in the classical case, call an ideal Q of RL a z-ideal if, for any α, β ∈RL ,
coz α = coz β and β ∈ Q imply that α ∈ Q. By the rules of the coz function, it is
immediate that Q is a z-ideal if and only if coz α ≤ coz β and β ∈ Q imply that α ∈ Q.
Every maximal ideal M of RL is a z-ideal. To see this, suppose that coz α = coz β
and β ∈ M . If α /∈ M , then the ideal of RL generated by M and α is the entire ring.
Therefore 1= µ+ %α, for some µ ∈ M and % ∈RL . But then this implies (the false
statement) that M contains the invertible element µ2

+ β2. This element is invertible
because

1= coz(µ+ %α)≤ coz µ ∨ coz(%α)≤ coz µ ∨ coz β = coz(µ2
+ β2).

Finally, there are several ways of realizing βL , the Stone-Čech compactification
of L . We shall regard it as the frame of regular ideals of Coz L . We denote the
right adjoint of the join map σL : βL→ L by rL , and recall that rL(a)= {c ∈ Coz L |
c ≺≺ a}.

3. Real and hyper-real ideals of RL

We adhere to the standard terminology and practice in partially ordered fields such
as can be found in [11, Ch. 5]. In particular, given a maximal ideal M of RL , we
consider the field RL/M as a partially ordered field with ≥ defined by

α + M ≥ 0⇔ α − β ∈ M for some β ≥ 0 in RL .

Recall that an ideal I of an `-ring is said to be an `-ideal if whenever |a| ≤ |b| and
b ∈ I , then a ∈ I . Every maximal ideal M of RL is an `-ideal because, if |α| ≤ |β|
with β ∈ M , then

coz α = coz(|α|)≤ coz(|β|)= coz β,
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implying that α ∈ M as M is a z-ideal. Of course this already follows from [12,
Lemma 1.1] since RL has bounded inversion. Consequently, by [11, Theorem 5.3],
if M is a maximal ideal of RL , then the partial order on RL/M is given by

α + M ≥ 0⇔ α − |α| ∈ M,

and is, in fact, a total order. We provide what is, for our purposes, a more convenient
criterion for an element α + M of RL/M to be positive based on cozero elements.
This criterion is preceded by the following auxiliary result1.

LEMMA 3.1. For any ϕ ∈RL, coz(ϕ − |ϕ|)= ϕ(−, 0).

PROOF. Since ϕ ≤ |ϕ|, ϕ − |ϕ| ≤ 0, and therefore coz(ϕ − |ϕ|)= (ϕ − |ϕ|)(−, 0).
Since ϕ − |ϕ| ≤ ϕ, ϕ(−, 0)≤ (ϕ − |ϕ|)(−, 0). It therefore remains to show that
(ϕ − |ϕ|)(−, 0)≤ ϕ(−, 0). For any α, β ∈RL ,

(α + β)(−, 0)=
∨
{α(−, s) ∧ β(−,−s) | s ∈Q},

as has been observed in [3, p. 42]. Therefore, in light of the fact that α(−, q)=
(−α)(−q,−), for any q ∈Q and α ∈RL ,

(ϕ − |ϕ|)(−, 0) =
∨
{ϕ(−, s) ∧ (−|ϕ|)(−,−s) | s ∈Q}

=

∨
{ϕ(−, s) ∧ |ϕ|(s,−) | s ∈Q}

≤ ϕ(−, 0) ∨
∨
{ϕ(−, s) ∧ |ϕ|(s,−) | s ∈Q, s > 0}.

Now, as shown in [2, p. 13], for any V ∈ L(R),

|ϕ|(V )=
∨

U∨(−U )⊆V

ϕ(U ).

Thus, for any s ∈Q with s > 0,

|ϕ|(s,−)=
∨
{ϕ(p, q) | 〈p, q〉 ∨ 〈−q,−p〉 ⊆ 〈s,∞〉},

so that

ϕ(−, s) ∧ |ϕ|(s,−) =
∨
{ϕ(−, s) ∧ ϕ(p, q) | 〈p, q〉 ∨ 〈−q,−p〉 ⊆ 〈s,∞〉}

=

∨
{ϕ((−, s) ∧ (p, q)) | 〈p, q〉 ∨ 〈−q,−p〉 ⊆ 〈s,∞〉}.

Call an element (p, q) of L(R) admissible if 〈p, q〉 ∨ 〈−q,−p〉 ⊆ 〈s,∞〉. In order
for (p, q) to be admissible and contribute nontrivially to the join above, we must have
s < p or s <−q . But now if s < p, then (−, s) ∧ (p, q)= 0L(R); and if s <−q , then

(−, s) ∧ (p, q)= (p, q)≤ (−,−s)≤ (−, 0).

1 I thank Rick Ball for pointing out a minor slip in the original proof.
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Thus, in either case,
ϕ((−, s) ∧ (p, q))≤ ϕ(−, 0).

It follows therefore that∨
{ϕ(−, s) ∧ |ϕ|(s,−) | s ∈Q, s > 0} ≤ ϕ(−, 0),

and hence (ϕ − |ϕ|)(−, 0)≤ ϕ(−, 0). 2

The criterion, alluded to above, for the positivity of an element of the field RL/M
is given by the following result.

COROLLARY 3.2. For any α ∈RL and M a maximal ideal of RL, α + M ≥ 0 if and
only if α(−, 0)≤ coz β, for some β ∈ M.

PROOF. Suppose that α + M ≥ 0. Then α − |α| ∈ M . Put β = α − |α|. By
Lemma 3.1, coz β = coz(α − |α|)= α(−, 0). Thus, α(−, 0)≤ coz β.

Conversely, suppose that α(−, 0)≤ coz β for some β ∈ M . By Lemma 3.1,
coz(α − |α|)= α(−, 0)≤ coz β, so that α − |α| ∈ M since M is a z-ideal. Therefore
α + M ≥ 0. 2

We note that, for any maximal ideal M , the field RL/M always contains a subfield
isomorphic to the field of real numbers. The mapping r 7→ r is a one–one ring
homomorphism R→RL . Thus, the map

9 : R→RL/M given by 9(r)= r+ M

is a one–one ring homomorphism. It is clear that it is a ring homomorphism. It is one–
one because, for any r ∈ R, 9(r)= 0 implies that r ∈ M , so that r is not invertible,
and hence r = 0. Now, as usual, M is real if RL/M ∼= R, and hyper-real otherwise.
The discussion preceding these definitions shows that

a maximal ideal M is hyper-real if and only if RL/M contains an infinitely
large element if and only if it contains an infinitely small element.

The next step towards our main goal (Proposition 3.6) is to characterize infinitely
large elements of RL/M . Let α ∈RL and a ∈ L . We say that α is bounded on ↑a

if the composite L(R) α
−→ L

−∨a
−−−→↑a is a bounded element of R(↑a). Otherwise,

we say that α is unbounded on ↑a. Note that α is bounded on ↑a if and only if
a ∨ α(−n, n)= 1L for some n ∈ N.

In one of the implications in the following result we shall use the fact that if M
is a maximal ideal of RL , then coz[M] is a maximal ideal of Coz L . To see this,
let c ∈ Coz L be such that c ∨ coz α 6= 1, for each α ∈ M . Pick γ ∈RL such that
c = coz γ . Suppose, by way of contradiction, that γ /∈ M . By maximality, this
implies that 1= ϕ + τγ , for some ϕ ∈ M and τ ∈RL . But then this implies that
1≤ coz ϕ ∨ c, contrary to the nature of c. It follows therefore that γ ∈ M , whence we
have c ∈ coz[M], proving that coz[M] is a maximal ideal of Coz L .
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LEMMA 3.3. Let α ≥ 0 in RL and M be a maximal ideal of RL. The following are
equivalent:

(1) α + M is infinitely large;
(2) α /∈ M and α(−, n) ∈ coz[M] for each n ∈ N;
(3) α is unbounded on ↑c for each c ∈ coz[M].

PROOF. (1)⇒ (2): suppose that α + M is infinitely large. Since α + M 6= 0, it
follows that α /∈ M . Now let n ∈ N. Then α + M ≥ n+ M since α + M is infinitely
large. Therefore (α − n)+ M ≥ 0, and hence there is a positive τ ∈RL such that
(α − n)− τ ∈ M . Take ρ ∈ M such that α − n= τ + ρ. Thus, α ≥ ρ + n, and
therefore

α(−, n) ≤ (ρ + n)(−, n)

≤ (ρ + n)((−, n) ∨ (n,−))

= coz((ρ + n)− n) by [2, Lemma 3.2.1]

= coz ρ

∈ coz[M].

Since coz[M] is an ideal of Coz L and α(−, n) ∈ Coz L , it follows that α(−, n) ∈
coz[M].
(2)⇒ (1): let n ∈ N. Observe that, for any α ∈RL ,

(α − n)(−, 0) =
∨
{α(−, s) ∧ (−n)(−,−s) | s ∈Q}

=

∨
{α(−, s) ∧ n(s,−) | s ∈Q}

=

∨
{α(−, s) | s ∈Q, s < n}

= α(−, n),

the last but one step because n(s,−)= 0L(R) if s ≥ n, and n(s,−)= 1L(R) if s < n.
Now suppose that the stated condition holds. Consider any n ∈ N. By Lemma 3.1,

coz((α − n)− |α − n|)= (α − n)(−, 0)≤ α(−, n) ∈ coz[M].

Therefore (α − n)− |α − n| ∈ M since M is a z-ideal. Thus, (α − n)+ M ≥ 0, and
hence α + M ≥ n+ M . This shows that α + M is infinitely large.
(2)⇒ (3): if not, let c ∈ coz[M] be such that α is bounded on ↑c. Pick n ∈ N

such that c ∨ α(−n, n)= 1. Since α(−n, n)≤ α(−, n), this implies that 1= c ∨
α(−, n) ∈ coz[M]; a contradiction since coz[M] is a proper ideal.
(3)⇒ (2): let n ∈ N, and consider any c ∈ coz[M]. Since α is not bounded on ↑c,

α(−n, n) ∨ c < 1. Since α(−n, n) ∈ Coz L and coz[M] is a maximal ideal of Coz L ,
it follows that α(−n, n) ∈ coz[M]. But now α(−, n)= α(−n, n) since α ≥ 0, so (2)
holds. 2

We need two more lemmas. The first, distilled from [1, Proposition 3.13], serves
only to facilitate certain calculations in proving the second, which is germane to our
goal.
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LEMMA 3.4. Let α and β be elements of RL. Then, for any q ∈Q,

(α + β)(q,−)=
∨

r+s=q

(α(r,−) ∧ β(s,−)).

Of course in [1] this result is stated for q ∈ R and the summands r, s also in R.
Clearly the result also holds as we have restated it, keeping in mind that, in our case,
the summands r, s are also restricted to come from Q.

In order to state the second lemma we require some background. Suppose that (ϕn)

is a sequence of positive elements of RL . The set

{(ϕ1 ∧ 2−1)+ · · · + (ϕn ∧ 2−n) | n ∈ N}

has a supremum in the poset RL (see [6, Section 6] and [19, Lemma 4]). This
supremum is denoted by

∞∑
n=1

(ϕn ∧ 2−n).

The property of this supremum which we require is given by the following lemma.

LEMMA 3.5. Let (ϕn) be a sequence of positive elements of RL, and put

ϕ =

∞∑
n=1

(ϕn ∧ 2−n).

Then, for any m ∈ N,

ϕ

(
1

2m ,−

)
≤ coz ϕ1 ∨ · · · ∨ coz ϕm .

PROOF. Write ϕ = α + β with

α = (ϕ1 ∧ 2−1)+ · · · + (ϕm ∧ 2−m) and β =

∞∑
j=m+1

(ϕ j ∧ 2−j).

Since, for each k ≥ m + 1,
k∑

j=m+1

(ϕ j ∧ 2−j)≤
1

2m+1 + · · · +
1
2k ≤

1
2m ,

it follows that β ≤ 1/2m. For brevity, let us put q = 1/2m . Now, by Lemma 3.4,

ϕ(q,−) =
∨

r+s=q

(α(r,−) ∧ β(s,−))

=

∨
r+s=q;s<q

(α(r,−) ∧ β(s,−)) ∨
∨

r+s=q;s≥q

(α(r,−) ∧ β(s,−))

≤

∨
r+s=q;s<q

α(r,−) ∨
∨

r+s=q;s≥q

(α(r,−) ∧ q(s,−))

=

∨
r+s=q;s<q

α(r,−) since q(s,−)= 0 for s ≥ q
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≤ α(0,−) since s < q and r + s = q imply that r > 0

= coz α since α ≥ 0

= coz(ϕ1 ∧ 2−1) ∨ · · · ∨ coz(ϕm ∧ 2−m)

= coz ϕ1 ∨ · · · ∨ coz ϕm,

as required. 2

We are now equipped to characterize real ideals. Observe that if α + M is infinitely
large, then α + M ≥ 0, and so α + M = |α| + M . Thus, if α + M is infinitely large,
we may assume, without loss of generality, that α ≥ 0.

PROPOSITION 3.6. The following are equivalent for a maximal ideal M of RL.

(1) M is real.
(2) coz[M] is a σ -ideal.
(3) coz[M] is σ -proper.

PROOF. Since coz[M] is a maximal ideal of Coz L whenever M is a maximal ideal of
RL , we see that the equivalence of (2) and (3) is a special case of [9, Lemma 1].

Next, we show that that (2) implies (1). So assume that coz[M] is a σ -ideal but M
is hyper-real. Then α + M is infinitely large for some α ≥ 0 in RL . By Lemma 3.3,
α(−, n) ∈ coz[M], for each n ∈ N. Since coz[M] is a σ -ideal, it contains the element∨

n∈N
α(−, n)= α

(∨
n∈N

(−, n)

)
= α(1L(R))= 1,

which is false because coz[M] is a proper ideal of Coz L .
Finally, assume that (2) fails. We will show that (1) fails. Take ϕn ≥ 0 in M for

each n ∈ N such that
∨

coz ϕn /∈ coz[M]. Let ϕ be the element of RL defined by

ϕ =

∞∑
n=1

(ϕn ∧ 2−n).

By Lemma 3.5,
ϕ(2−n,−)≤ coz ϕ1 ∨ · · · ∨ coz ϕm,

for each n ∈ N. Now, by Lemma 3.1,

coz((2−n
− ϕ)− |2−n

− ϕ|) = (2−n
− ϕ)(−, 0)

= (ϕ − 2−n)(0,−)

= ϕ(2−n,−)

≤ coz ϕ1 ∨ · · · ∨ coz ϕn

∈ coz[M].

It then follows from Corollary 3.2 that (2−n
− ϕ)+ M ≥ 0, so that

0≤ ϕ + M ≤ 2−n
+ M ≤

1
n
+ M. (†)
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That ϕ + M ≥ 0 follows from the fact that ϕ ≥ 0. Since coz ϕ =
∨

coz ϕn /∈ coz[M],
it follows that ϕ /∈ M , and hence ϕ + M > 0. Since (†) holds for every n ∈ N and
ϕ + M > 0, we deduce that ϕ + M is infinitely small. Therefore (1) does not hold. 2

As in the classical case, we say that an ideal Q of RL is fixed if
∨

coz[Q]< 1, and
we say that it is free otherwise. The foregoing characterization shows that every fixed
maximal ideal of RL is real.

A noteworthy corollary to the above proposition is a characterization of hyper-real
ideals in terms of properties of υL , the realcompact coreflection of L . Let us recall
how υL is constructed (see [9] or [16] for details). The regular Lindelöf coreflection
of L , denoted λL , is the frame of σ -ideals of Coz L (see [15]). The frame υL is
constructed in the following manner. For any t ∈ L , let [t] = {c ∈ Coz L | c ≤ t}. The
map ` : λL→ λL given by

`(J )=
[∨

J
]
∧

∧
{P ∈ Pt(λL) | J ≤ P}

is a nucleus. The frame υL is defined to be Fix(`).
The map

βL→ λL given by I 7→ 〈I 〉σ ,

where 〈·〉σ signifies σ -ideal generation in Coz L , is an onto frame homomorphism
(see [9]). Thus, there is an onto frame homomorphism

βL −→ υL given by I 7→ `(〈I 〉σ ).

We characterize hyper-real ideals of RL in terms of this map. We have thus far not
needed to know what maximal ideals of RL look like. For the next result we do need
an explicit description (see [10]). For each I ∈ βL , the ideal MI of RL is defined by

MI
= {ϕ ∈RL | rL(coz ϕ)⊆ I }.

Then maximal ideals of RL are precisely the ideals MI for I ∈ Pt(βL). Let us also
(mimicking the classical case) introduce the following notation. For any I ∈ βL , set

AI
= {c ∈ Coz L | rL(c)⊆ I }.

Clearly, coz[MI
] = AI , so that AI is an ideal of Coz L . The latter can also be shown

directly making use of the fact that, for any a, b ∈ Coz L , rL(a ∨ b)= rL(a) ∨ rL(b).
As observed in the preliminaries, if I ∈ Pt(βL), then either 〈I 〉σ = 1λL or 〈I 〉σ ∈
Pt(λL).

COROLLARY 3.7. For any point I of βL the following conditions are equivalent:

(1) MI is hyper-real;
(2) I is not σ -proper;
(3) 〈I 〉σ = 1λL ;
(4) `(〈I 〉σ )= 1υL .
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PROOF. (1)⇒ (2): if MI is hyper-real, then, by Proposition 3.6, AI is not σ -proper.
Take a sequence (sn) in AI such that

∨
sn = 1. Let (tn) be a shrinking of (sn). Since

rL(sn)⊆ I and tn ≺≺ sn , it follows that tn ∈ I for each n, and hence I is not σ -proper.
The implications (2)⇒ (3)⇒ (4) are immediate.
(4)⇒ (1): if `(〈I 〉σ )= 1υL , then[∨

〈I 〉σ
]
=

∧
{P ∈ Pt(λL) | 〈I 〉σ ≤ P} = 1υL .

Since I ∈ Pt(βL), either 〈I 〉σ = 1λL or 〈I 〉σ ∈ Pt(λL). The latter is not possible,
otherwise we have

1λL = 1υL =
∧
{P ∈ Pt(λL) | 〈I 〉σ ≤ P} ≤ 〈I 〉σ ,

which is a contradiction. Therefore we must have 〈I 〉σ = 1λL , which is clearly
equivalent to saying that I is not σ -proper. Since, as subsets of Coz L , we have that
I ⊆ AI , it follows that AI is not σ -proper. Thus MI is hyper-real. 2

We remark, in passing, that the equivalence of (1) and (4) generalizes the spatial
result that, for a point p of βX , the maximal ideal Mp of C(X) is hyper-real if and
only if p /∈ υX .

4. Some applications

Using the machinery developed in the foregoing section, we now prove the results
about realcompactness and pseudocompactness stated in the introduction. Recall from
the preliminaries the definition of realcompact frames that we have adopted. As
pointed out in [9], in the presence of the axiom of countable dependent choice (which
is weaker than AC, which we have assumed throughout), L is realcompact if and only
if every σ -proper point of βL is completely proper. Here is the first of the desired
results.

PROPOSITION 4.1. A completely regular frame L is realcompact if and only if every
free maximal ideal of RL is hyper-real.

PROOF. Assume that L is realcompact, and let M be a free maximal ideal of RL . Take
a point I of βL such that M =MI . By freeness,

∨
AI
= 1. For any a ∈ AI , rL(a)⊆ I ,

so that, by complete regularity, we have a =
∨

rL(a)≤
∨

I . Therefore
∨

I = 1. By
realcompactness, I is not σ -proper, and hence, by Corollary 3.7, MI is hyper-real.

Conversely, let I be a point of βL with
∨

I = 1. Then MI is hyper-real, by
hypothesis, and therefore I is not σ -proper, by Corollary 3.7. Consequently, L is
realcompact. 2

REMARK 4.2. When we showed this proof to Banaschewski, after much rumination
he produced a choice-free proof which does not require the explicit description of
real ideals given here. Here is an outline of his very delectable argument. Recall
that L is realcompact if and only if any ring homomorphism ϕ :RL→ R is Rξ for
some frame homomorphism ξ : L→ 2. Denote by AfR the category of commutative
archimedean f -rings with identity, where the morphisms are `-ring homomorphisms.
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Recall that an archimedean kernel of an archimedean f -ring A is an `-ideal K such
that, for any a, b ≥ 0 in A, if (na − b)+ ∈ K for every n, then a ∈ K . The set KA of
all archimedean kernels of A is a completely regular frame, and the correspondence
A 7→ KA is a functor AfR→ CRegFrm which is left adjoint to R : CregFrm→ AfR
(see [5, 6]) with adjunction map

µL : K(RL)→ L given by J 7→
∨

coz[J ].

Now, any real maximal ideal of RL is a maximal archimedean kernel since any ring
homomorphism RL→ R is, in fact, an `-ring homomorphism. Conversely, for any
maximal Q ∈ K(RL), RL/Q ∼= R because it is a totally ordered archimedean ring
with identity, containing R and hence equal to R (up to isomorphism), so that Q is a
real maximal ideal of RL .

Let L be realcompact, and consider any maximal Q ∈ K(RL). Then there is a
ring homomorphism ϕ :RL→ R with Ker(ϕ)= Q, and, by realcompactness, a frame
homomorphism ξ : L→ 2 such that ϕ =Rξ (using the fact that R2∼= R). Now, if
γ ∈ Q then ξγ = 0, and hence ξ(coz γ )= coz(ξγ )= 0, showing that ξ(µL(Q))= 0
and therefore µL(Q) < 1, saying that Q is fixed.

Conversely, given any ϕ :RL→ R, let Q = Ker(ϕ), so that µL(Q) < 1 by the
present hypothesis. Since Q ∈ Pt(K(RL)) with µL(Q) < 1, we have that µL(Q) ∈
Pt(L), and so there is a frame homomorphism ξ : L→ 2 such that ξ(µL(Q))= 0, and
hence ξµL = ζ for the frame homomorphism ζ : K(RL)→ 2 determined by Q. Now
the aim is to show that ϕ =Rξ , and for this it suffices to see that ϕ(γ )= 0 if and only
if ξγ = 0 for any γ ∈RL because, for any r ∈ R, ϕ(r)= r = ξr. If ϕ(γ )= 0, then
γ ∈ Q, and so coz γ ≤ µL(Q), and therefore

coz(ξγ )= ξ(coz γ )≤ ξµL(Q)= ζ(Q)= 0,

showing that ξγ = 0. Conversely, if ξγ = 0, then ξ(coz γ )= 0, and since J = {α ∈
RL | coz α ≤ coz γ } is an archimedean kernel, it follows that

ζ(J )= ξµL(J )= ξ(coz γ )= 0,

thus J ⊆ Q, by the definition of ζ , while γ ∈ J then shows that ϕ(γ )= 0. This
completes the proof.

Next, we present a characterization of realcompact frames which, as stated in the
introduction, is a frame version of Mròwka’s [17] characterization of realcompact
spaces.

PROPOSITION 4.3. A completely regular frame L is realcompact if and only if for
every I ∈ Pt(βL) with

∨
I = 1, there exists ϕ ∈R(βL) such that coz ϕ ≤ I and∨

ϕ(0,−)= 1.

PROOF. (⇒): suppose that L is realcompact, and let I be a point of βL with
∨

I = 1.
By realcompactness, there is a sequence (cn) in I such that

∨
cn = 1. For each n
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choose γn ≥ 0 in RL such that coz γn = cn . Let γ =
∑
∞

n=1(γn ∧ 2−n). Then
0≤ γ ≤ 1, so that γ is bounded. Since σL : βL→ L is a C∗-quotient map (see [2]
for details), there exists ϕ ∈R(βL) such that σL · ϕ = γ . Now Lemma 3.5 shows
that, for any n ∈ N,

γ (2−n,−)≤ c1 ∨ · · · ∨ cn;

upon invoking the equality σL · ϕ = γ , this reduces to

σL(ϕ(2−n,−))≤ c1 ∨ · · · ∨ cn,

so that, in view of rL being the right adjoint of σL ,

ϕ(2−n,−)≤ rL(c1 ∨ · · · ∨ cn)≤ I,

the latter inequality holding because c1 ∨ · · · ∨ cn ∈ I . Since this is true for every n,

ϕ(0,−)=
∨
n∈N

ϕ(2−n,−)≤ I.

On the other hand, γ (−, 0)= 0 since γ ≥ 0, and so∨
ϕ(−, 0)= (σL · ϕ)(−, 0)= γ (−, 0)= 0,

which implies that ϕ(−, 0)= 0βL . It follows therefore that coz ϕ ≤ I , establishing the
first part of the desired result. The second part holds because, in light of the equality
γ (0,−)= coz γ (as γ ≥ 0),∨

ϕ(0,−)= (σL · ϕ)(0,−)= γ (0,−)= coz γ =
∨

cn = 1.

(⇐): let I be a point of βL such that
∨

I = 1. Take ϕ ∈R(βL) with the
hypothesized features. Now, coz ϕ is a cozero element of the Lindelöf frame βL .
Therefore it is a Lindelöf element by [8, Corollary 4]. Thus, in light of the fact that

coz ϕ =
∨
{rL(c) | c ∈ coz ϕ},

there is a sequence (sn) in coz ϕ such that

coz ϕ =
∨
n∈N

rL(sn).

Applying the frame homomorphism σL to this gives∨
sn =

∨
coz ϕ ≥

∨
ϕ(0,−)= 1,

which completes the proof since the sequence (sn) is in I as coz ϕ ⊆ I , by
hypothesis. 2

We conclude by giving a characterization of pseudocompact frames in terms of real
ideals. This result also extends a similar one for spaces.
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PROPOSITION 4.4. A completely regular frame L is pseudocompact if and only if
every maximal ideal of RL is real.

PROOF. Suppose that L is not pseudocompact. Then there is an unbounded function
ϕ ≥ 0 in RL . For each n ∈ N, let an = ϕ(−n, n). Then an ∈ Coz L and an ≤ an+1 < 1
for each n. Let I ⊆ Coz L be defined by

I = {z ∈ Coz L | z ≤ ak for some k ∈ N}.

Then I is a proper ideal of Coz L , and is therefore contained in some maximal ideal J
of Coz L . The set

M = {α ∈RL | coz α ∈ J }

is a maximal ideal of RL . That it is an ideal is easy to check using the rules of the
coz map. To see maximality, let τ /∈ M . Then coz τ /∈ J , and so there exists c ∈ J
such that coz τ ∨ c = 1. If γ ∈RL is such that coz γ = c, then coz(τ 2

+ γ 2)= 1,
which implies that the ideal generated by τ and M is the entire ring. Now note that
an ∈ coz[M], for each n. Furthermore, ϕ /∈ M , otherwise we have coz ϕ ∈ coz[M],
and hence

1= coz ϕ ∨ ϕ(−1, 1) ∈ coz[M],

contrary to the fact that M is proper. Since ϕ ≥ 0, ϕ(−, 0)= 0, and therefore, for
every n ∈ N,

ϕ(−, n)= ϕ(−n, n) ∈ coz[M].

By Lemma 3.3, it follows that ϕ + M is infinitely large, so that M is hyper-real.
Conversely, suppose that RL has a hyper-real maximal ideal, M , say. Take α ≥ 0

in RL such that α + M is infinitely large. By Lemma 3.3, α is unbounded on ↑c, for
some c ∈ coz[M]. This clearly implies α is an unbounded function in RL . Therefore L
is not pseudocompact. 2
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