COMPLEXES IN ABELIAN GROUPS

PETER SCHERK AND J. H. B. KEMPERMAN

Introduction. Let G be an abelian group of order $[G] \leqslant \infty$. Let $A=\{a\}$, $B=\{b\}, \ldots$ denote non-empty finite complexes in G. Let $[A]$ be the number of elements of A. Finally put

$$
A+B=\{a+b\}
$$

If $[A]+[B]>[G]$, then (7) obviously $A+B=G$. From now on we shall assume
0.1

$$
[A]+[B] \leqslant[G] .
$$

A well-known theorem by Cauchy and Davenport states that

$$
[A+B] \geqslant[A]+[B]-1
$$

if G is cyclic of prime order $(\mathbf{1} ; \mathbf{3} ; \mathbf{4})$. But 0.2 need not hold true any longer if G is cyclic and $[G]$ is composite. However, Chowla (2) proved 0.2 for cyclic G 's under an additional assumption.

Let k be a fixed integer with $k \geqslant 1$. We wish to prove

$$
[A+B] \geqslant[A]+[B]-k
$$

and related results under various additional conditions and for arbitrary abelian G 's. All these conditions $\Gamma, \bar{\Gamma}, \Delta$, . . will be empty if $[B] \leqslant k$.

Our results can be obtained by adaptations of Davenport's method (3). However, we shall use a slightly different approach which is also related to Mann's (7) and to another paper by the authors (appearing immediately after the present one).

The Main Result

1. The Condition Γ_{1}. We first prove 0.3 for complexes A, B which satisfy the following

Condition $\Gamma_{1}(A, B)$:
(i) If $[B]>k$ and if $\Gamma_{1}(A, B)$ holds, then there is an element b_{0} in B such that

1.1

$$
A+B \not \subset A+b_{0}
$$

(ii) $\Gamma_{1}(A, B)$ implies $\Gamma_{1}\left(A_{2}, B_{2}\right)$ for every pair of complexes A_{2}, B_{2} such that

$$
1.2 \quad b_{0} \subset B_{2} \subset B, \quad A \subset A_{2}
$$

$1.3 \quad\left[A_{2}\right]-[A]=[B]-\left[B_{2}\right]$,
and
1.4
$A_{2}+B_{2} \subset A+B$.
Received January 8, 1953; in revised form May 26, 1953.

Our statement is trivial for $[B] \leqslant k$. Suppose it is proved for $[B] \leqslant n-1$ and let $[B]=n(n>k)$. From 1.1 there is an a_{0} in A such that

$$
a_{1}=a_{0}+b_{1}-b_{0} \not \subset A
$$

has solutions b_{1} in B. Let $A_{1}=\left\{a_{1}\right\}$ and $B_{1}=\left\{b_{1}\right\}$. Since $b_{0} \not \subset B_{1}$ we have

1.5

$$
0<\left[A_{1}\right]=\left[B_{1}\right]<[B] .
$$

Let $A_{2}=A \cup A_{1}$ and let B_{2} be the complement of B_{1} in B. Thus 1.2 and 1.3 are satisfied and 1.6

$$
0<\left[B_{2}\right]<[B] .
$$

We now verify 1.4. Since $A+B_{2} \subset A+B$, we have only to show that

$$
A_{1}+B_{2} \subset A+B
$$

Let $a_{1} \subset A_{1}, b_{2} \subset B_{2}$. Thus $a_{1}=a_{0}+b_{1}-b_{0}$. The definition of B_{1} and $b_{2} \subset B_{2}$ imply $a_{0}+b_{2}-b_{0} \subset A$. Hence

$$
\begin{gathered}
a_{1}+b_{2}=\left(a_{0}+b_{1}-b_{0}\right)+b_{2}=\left(a_{0}+b_{2}-b_{0}\right)+b_{1} \\
\subset A+B_{1} \subset A+B
\end{gathered}
$$

This proves 1.7 and hence 1.4.
From 1.6 and our induction assumption, we have

1.8

$$
\left[A_{2}+B_{2}\right] \geqslant\left[A_{2}\right]+\left[B_{2}\right]-k
$$

Finally, 1.4, 1.8 and 1.3 yield

$$
[A+B] \geqslant\left[A_{2}+B_{2}\right] \geqslant\left[A_{2}\right]+\left[B_{2}\right]-k=[A]+[B]-k .
$$

2. The Condition Γ_{2}. Our Condition Γ_{1} is implied by

Condition $\Gamma_{2}([A], B)$:
(i) If $k<[B] \leqslant[A]$, then there are two elements b_{0} and b_{1} in B such that
2.1

$$
[A]\left(b_{1}-b_{0}\right) \neq 0
$$

(ii) $\Gamma_{2}([A], B)$ implies $\Gamma_{2}\left([A]+[B]-\left[B_{2}\right], B_{2}\right)$ for every subcomplex B_{2} of B that contains b_{0}.

It suffices to prove 1.1. Let $b_{0} \subset B$ be arbitrary if $[B]>[A]$. Choose b_{0} according to (i) if $k<[B] \leqslant[A]$. Suppose

$$
a_{1}=a+b-b_{0} \subset A
$$

for every a, b. If $[B]>[A]$, we keep a fixed and let b run through B. This would yield more than $[A]$ different elements of A. If $[B] \leqslant[A]$, we specialize $b=b_{1}$. If a runs through A, then so will a_{1}. Hence
or

$$
\begin{aligned}
\Sigma a=\Sigma a_{1}=\Sigma\left(a+\left(b_{1}-b_{0}\right)\right. & =\Sigma a+[A]\left(b_{1}-b_{0}\right) \\
{[A]\left(b_{1}-b_{0}\right) } & =0 .
\end{aligned}
$$

This contradicts 2.1. Thus 2.2 is false for some a, b. This implies 1.1.
3. Further specializations. Condition Γ_{2} is certainly satisfied if each B_{2} with
3.1
$b_{0} \subset B_{2} \subset B$
and
3.2

$$
k<\left[B_{2}\right] \leqslant[A]+[B]-\left[B_{2}\right]
$$

contains an element b such that

$$
\left([A]+[B]-\left[B_{2}\right]\right)\left(b-b_{0}\right) \neq 0
$$

This in turn is sure to be the case if the relation 3.3 has not less than $[B]-\left[B_{2}\right]+1$ solutions in B for each [B_{2}] satisfying 3.2. We thus arrive at

Condition $\Gamma_{3}([A], B)$: There is a b_{0} in B such that the relation

3.4

$$
([A]+m)\left(b-b_{0}\right) \neq 0
$$

has not less than $m+1$ solutions b in B whenever

$$
\max \left(0, \frac{1}{2}[B]-\frac{1}{2}[A]\right) \leqslant m \leqslant[B]-k-1
$$

Condition Γ_{3} is always satisfied if $[A]$ and $[B]$ are not too large. Suppose, e.g., that G has the type $\left(p_{1}{ }^{\alpha_{1}}, \ldots, p_{n}^{\alpha_{n}}\right)$ and that
3.5

$$
[A]+[B]-k \leqslant \min \left(p_{1}, \ldots, p_{n},[G]-k\right)
$$

(some of the p_{k} 's may be infinite). Then $[A]+m$ will be prime to the product of all finite p_{k} 's and 3.4 will hold for each $b \neq b_{0}$. Thus 3.5 implies 0.3 .

Let G be a finite cyclic group. Suppose there is a b_{0} in B such that

$$
3.6
$$

$$
b-b_{0} \text { is primitive for each } b \neq b_{0} .
$$

Then, for $m<[B], 0.1$ implies $[A]+m<[A]+[B] \leqslant[G]$. Hence each $b \neq b_{0}$ satisfies 3.4. Condition Γ_{3} is satisfied, even if $k=1$, and 0.2 holds. If we represent G by the cyclic group of residue classes $(\bmod [G])$, then 3.6 is equivalent to
3.7

$$
\left(b-b_{0},[G]\right)=1 \text { for each } b \neq b_{0}
$$

Chowla's theorem is identical with the observation that 0.1 and 3.7 imply 0.2 . If $[G]$ is a prime number, then 3.7 is trivially satisfied and 0.2 follows from 0.1 . This is the theorem of Cauchy and Davenport.
4. Comments. Suppose that for $k \geqslant 1$

4.1

$$
[A+B]<[A]+[B]-k
$$

and let $b_{0} \subset B$. Then there exist two complexes A^{\prime} and B^{\prime} such that

$$
\begin{gather*}
A \subset A^{\prime}, \quad b_{0} \subset B^{\prime} \subset B \\
k<\left[B^{\prime}\right] \leqslant[B]
\end{gather*}
$$

4.4

$$
\left[A^{\prime}\right]-[A]=[B]-\left[B^{\prime}\right]
$$

$$
A^{\prime}+B^{\prime} \subset A+B
$$

$$
A^{\prime}+B^{\prime}-b_{0}=A^{\prime} .
$$

In fact, we obtain such complexes A^{\prime} and B^{\prime} by iterating our construction of A_{2} and B_{2} (cf. §1) as often as possible, each time with b_{0} as the basic element.

Let B^{-}be the set of elements $b^{\prime}-b_{0}\left(b^{\prime} \subset B^{\prime}\right)$ and let B_{0}^{-}be the subgroup generated by B^{-}. Hence

$$
k+1 \leqslant\left[B^{\prime}\right]=\left[B^{-}\right] \leqslant\left[B_{0}^{-}\right] .
$$

By 4.6, $A^{\prime}+B^{-}=A^{\prime}$. Because A^{\prime} is finite, we have that B_{0}^{-}is finite and

$$
A^{\prime}+B_{0}^{-}=A^{\prime}
$$

Thus A^{\prime} consists of cosets of B_{0}^{-}. In particular, $\left[A^{\prime}\right]=[A]+[B]-\left[B^{\prime}\right]$ will be a multiple of $\left[B_{0}^{-}\right]$. Therefore, putting $[B]-\left[B^{\prime}\right]=m$,

$$
([A]+m)\left(b-b_{0}\right)=0
$$

for each of the $\left[B^{\prime}\right]=[B]-m$ elements in B^{\prime}. Thus the relation

$$
([A]+m)\left(b-b_{0}\right) \neq 0
$$

has at most m solutions in B. By $k<\left[B^{\prime}\right] \leqslant[B]$, we have

$$
0 \leqslant m \leqslant[B]-k-1
$$

Moreover, 4.6 implies $\left[B^{\prime}\right] \leqslant\left[A^{\prime}\right]=[A]+[B]-\left[B^{\prime}\right]$, that is,

$$
m \geqslant-\frac{1}{2}[A]+\frac{1}{2}[B]
$$

Consequently, if 4.1 holds, Condition Γ_{3} cannot be true, which yields a second proof that Γ_{3} implies 0.3.

Another consequence of 4.1 is:

$$
A+B_{0}^{-}+b_{0} \subset A^{\prime}+B_{0}^{-}+b_{0}=A^{\prime}+b_{0} \subset A^{\prime}+B^{\prime} \subset A+B .
$$

Therefore:
The inequality 4.1 implies, for each b_{0} in B, the existence of at least k different elements $b_{i} \neq b_{0}$ in B such that the group B_{0}^{-}generated by the differences $b_{i}-b_{0}$ is finite and satisfies

$$
A+B_{0}^{-}+b_{0} \subset A+B
$$

As an easy consequence of the special case $k=1,0 \subset B \subset A, b_{0}=0$, we obtain a theorem due to Shepherdson (8, p. 85).

Variants

In the following, A, B, \ldots will still be non-empty complexes in G. Their finiteness, however, and 0.1 will not necessarily be assumed. We wish to discuss some variants of §1. The analogues of §§2-4 being rather obvious, only some of them will be stated.
5. The complex \bar{A}. Let \bar{A} be the complement of A in G. In this section, \bar{A} and B are assumed to be finite. Only the case $[G]=\infty$ will be of interest.

If $g \subset \overline{A+B}$, then $g-b \subset \bar{A}$ for any b. Hence

$$
[\bar{A}] \geqslant[\overline{A+B}] .
$$

In particular, the finiteness of \bar{A} implies that of $\overline{A+B}$. Also, if
5.1

$$
[B]>[\bar{A}]
$$

then $A+B=G$.
Proof. Let g be any element of G and let b range through B. From 5.1, not all of the $[B]$ elements $g-b$ can lie in \bar{A}. Thus $a=g-b \subset A$ for some b, that is, $g \subset A+B$.

Again, let k be a fixed integer with $k \geqslant 1$. The following analogue of $\S 1$ can now be stated:

Suppose

5.2

$$
[B] \leqslant[\bar{A}] .
$$

Then
5.3

$$
[\bar{A}+\bar{B}] \leqslant[\bar{A}]-[B]+k
$$

provided that \bar{A} and B satisfy some Condition $\bar{\Gamma}$.
Condition $\bar{\Gamma}_{1}(\bar{A}, B)$:
(i) If $[B]>k$ and if $\bar{\Gamma}_{1}(\bar{A}, B)$ holds true, then there is an element b_{0} in B such that
5.4

$$
A+B \not \subset A+b_{0}
$$

(ii) $\bar{\Gamma}_{1}(\bar{A}, B)$ implies $\bar{\Gamma}_{1}\left(\bar{A}_{2}, B_{2}\right)$ for every pair of complexes A_{2}, B_{2} satisfying 1.2, 1.4 and

$$
[\bar{A}]-\left[\bar{A}_{2}\right]=[B]-\left[B_{2}\right] .
$$

The proof of the sufficiency of condition $\bar{\Gamma}_{1}(\bar{A}, B)$ is identical with the proof in §1. Only 1.3 has to be replaced by 5.5 and 1.8 by

$$
\left[\overline{A_{2}+B_{2}}\right] \leqslant\left[\bar{A}_{2}\right]-\left[B_{2}\right]+k .
$$

We note that the left hand terms of 5.5 and 1.3 both count the number of those elements of A_{2} that do not lie in A.

Condition $\bar{\Gamma}_{2}([\bar{A}], B)$ is obtained by replacing $[A]$ in Condition Γ_{2} by $[\bar{A}]$ and $[A]+[B]-\left[B_{2}\right]$ by $[\bar{A}]-[B]+\left[B_{2}\right]$. In verifying this condition we use the fact that $\bar{A}+B \not \subset \bar{A}+b_{1}$ for some $b_{1} \subset B$ implies 5.4 for some $b_{0} \subset B$.

The following is an analogue of Γ_{3}.
Condition $\bar{\Gamma}_{3}([\bar{A}], B)$: There is $a b_{0}$ in B such that each of the relations

$$
([\bar{A}]-m)\left(b-b_{0}\right) \neq 0
$$

has not less than $m+1$ solutions b in $B(m=0,1, \ldots,[B]-k-1)$.
6. Inversion and differences of complexes. In this section, A, B, C may be arbitrary complexes in G. They may be empty or infinite.

The difference $A-B$ of A and B is defined (5) to be the set of all those $c \subset G$ such that $c+B \subset A$. If $A \subset A^{\prime}$ and $B \subset B^{\prime}$ then
6.1

$$
A-B^{\prime} \subset A-B \subset A^{\prime}-B
$$

Obviously
6.2

$$
A+B \subset C \leftrightarrow A \subset C-B
$$

Another connection between sums and differences can be obtained by means of a concept essentially due to Khintchine (6). Let i be any fixed element of G. The inversion \tilde{A} of A with respect to i consists of all the elements $i-\bar{a}$ where $\bar{a} \subset \bar{A}$. Thus $(\widetilde{A})^{\sim}=A$ and $[\widetilde{A}]=[\bar{A}]$. We readily verify (5)

$$
A-B=(\tilde{A}+B)^{\sim}, \quad A+B=(\tilde{A}-B)^{\sim}
$$

If $A+B \subset C$, then $\widetilde{C} \subset(A+B)^{\sim}=\widetilde{A}-B$ and hence from 6.2
6.4

$$
B+\widetilde{C} \subset \tilde{A}
$$

This is an analogue of Khintchine's inversion formula (6).
7. The dual theorems. Formula 6.3 enables us to derive duals of $\S \S 1-\mathbf{4}$ from §5.

Let C and B denote finite non-empty complexes in G. Put
7.1

$$
A=\widetilde{C}
$$

Then
7.2

$$
C-B=(A+B)^{\sim}
$$

7.3

$$
[\bar{A}]=[C]<\infty \text { and }[C-B]=[\overline{A+B}]<\infty .
$$

If $[B]>[C], C-B$ is empty. Furthermore, $[C]=[G]$ implies $C=C-B=G$ on account of $[B]>0$.
7.1-7.3 enable us to translate §5. Let k be a fixed integer with $k \geqslant 1$.

Suppose
7.4

$$
[B] \leqslant[C]<[G] .
$$

Then
7.5

$$
[C-B] \leqslant[C]-[B]+k
$$

provided that B and C satisfy a Condition Δ.
Condition $\bar{\Gamma}_{1}(\bar{A}, B)$ yields
Condition $\Delta_{1}(C, B)$:
(i) If $[B]>k$ and if $\Delta_{1}(C, B)$ holds there is an element b_{0} in B such that

$$
7.6 \quad C+B \not \subset C+b_{0}
$$

(ii) $\Delta_{1}(C, B)$ implies $\Delta_{1}\left(C_{2}, B_{2}\right)$ for every pair of complexes C_{2}, B_{2} such that

$$
b_{0} \subset B_{2} \subset B, \quad C_{2} \subset C
$$

7.8

$$
[C]-\left[C_{2}\right]=[B]-\left[B_{2}\right]
$$

and
7.9
$C-B \subset C_{2}-B_{2}$.
Condition $\bar{\Gamma}_{3}$ leads to
Condition $\Delta_{2}([C], B)$: There is $a b_{0}$ in B such that each of the relations

$$
([C]-m)\left(b-b_{0}\right) \neq 0
$$

has not less than $m+1$ solutions in $B(m=0,1, \ldots,[B]-k-1)$.
If B and \bar{C} are finite, we may obtain similar results for $[\overline{C-B}]$ applying $\S \mathbf{1}$ rather than §5.
8. A condition on $A+B$. In the last sections of this paper, A and B denote again finite non-empty complexes in G which satisfy 0.1 . Formula 6.4 suggests that the following variant of Γ_{1} implies 0.3 .

Condition $\Gamma_{4}(A, B)$:
(i) If $[B]>k$ and if $\Gamma_{4}(A, B)$ holds, then there is an element b_{0} in B such that 8.1

$$
(A+B)+B \not \subset(A+B)+b_{0}
$$

(ii) $\Gamma_{4}(A, B)$ implies $\Gamma_{4}\left(A, B_{2}\right)$ for every complex B_{2} such that

$$
b_{0} \subset B_{2} \subset B
$$

We wish to give a direct proof by induction. By 8.1 , there is a $\bar{c}_{0} \subset \overline{A+B}$ such that
8.3

$$
c_{1}+b_{1}=\bar{c}_{0}+b_{0}
$$

has solutions $c_{1} \subset A+B, b_{1} \subset B$. Put $B_{1}=\left\{b_{1}\right\}, C_{1}=\left\{c_{1}\right\}$. Thus

$$
0<\left[C_{1}\right]=\left[B_{1}\right]<[B] .
$$

Let B_{2} be the complement of B_{1} in B and let C_{2} denote (3) the complement of C_{1} in $A+B$. From 8.4,

$$
\left[C_{2}\right]=[A+B]-[B]+\left[B_{2}\right]
$$

We readily verify (cf. 1.7) that

$$
A+B_{2} \subset C_{2}
$$

Since $b_{0} \subset B_{2} \subset B$ and $\left[B_{2}\right]<[B]$, our induction assumption implies

$$
\left[A+B_{2}\right] \geqslant[A]+\left[B_{2}\right]-k
$$

Finally, 8.5, 8.6 and 8.7 yield 0.3 .
9. Final corollaries. A condition which does not involve $A+B$ is

Condition $\Gamma_{5}([A], B)$:
(i) If $[B]>k$ and if $\Gamma_{5}([A], B)$ holds, there are two elements b_{0}, b_{1} in B such that 9.1

$$
([A]+[B]-k-1)\left(b_{1}-b_{0}\right) \neq 0
$$

(ii) $\Gamma_{5}([A], B)$ implies $\Gamma_{5}\left([A], B_{2}\right)$ for every subcomplex B_{2} of B that contains b_{0}.

Proof. Suppose there exists a smallest positive integer n such that 0.3 is false for $[B]=n$. Then $n>k$ and there are two complexes A, B which satisfy Condition $\Gamma_{5}([A], B)$ and $[B]=n$ but not 0.3 . Thus

$$
[A+B]=[A]+[B]-k-1
$$

On account of part (i) of Condition Γ_{5}, the relation

$$
[A+B]\left(b_{1}-b_{0}\right) \neq 0
$$

then has solutions b_{0}, b_{1} in B. This easily implies (cf. §2) that b_{0} is a solution of 8.1. Therefore, we can construct a pair of sets B_{2}, C_{2} for which $8.4,8.5$, and 8.6 hold. Moreover, by induction, 8.7 is true. This yields 0.3 , contradicting 9.2.

The following is a special case of Γ_{5}.
Condition $\Gamma_{6}([A], B)$: There is $a b_{0}$ in B such that

$$
([A]+m)\left(b-b_{0}\right)=0
$$

has not more than $m+k$ solutions b in $B(m=0,1, \ldots,[B]-k-1)$.
In a similar way, more conditions $\bar{\Gamma}$ and Δ can be derived.

References

1. A. L. de Cauchy, Recherches sur les nombres, Guvres (2nd series, Paris, 1882), vol. 1, 39-63.
2. I. Chowla, A theorem on the addition of residue classes, Proc. Indian Acad. Sci., 2 (1935), 242-243.
3. H. Davenport, On the addition of residue classes, J. London Math. Soc., 10 (1935), 30-32.
4. - A historical note, J. London Math. Soc., 22 (1947), 100-101.
5. H. Hadwiger, Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt, Math. Zeitschr., 53 (1950), 210-218.
6. A. Khintchine, Zur additiven Zahlentheorie, Matem. Sbornik, 39 (1932), 27-34.
7. H. B. Mann, On products of sets of group elements, Can. J. Math., 4 (1952), 64-66.
8. J. C. Shepherdson, On the addition of elements of a sequence, J. London Math. Soc., 22 (1947), 85-88.

University of Saskatchewan and
University of Southern California
Purdue University

