COMPLEXES IN ABELIAN GROUPS

PETER SCHERK AND J. H. B. KEMPERMAN

Introduction. Let G be an abelian group of order $[G] \leq \infty$. Let $A = \{a\}$, $B = \{b\}, \ldots$ denote non-empty finite complexes in G. Let [A] be the number of elements of A. Finally put

$$A + B = \{a + b\}.$$

If [A] + [B] > [G], then (7) obviously A + B = G. From now on we shall assume

$$[A] + [B] \leqslant [G].$$

A well-known theorem by Cauchy and Davenport states that

$$0.2 [A + B] \ge [A] + [B] - 1$$

if G is cyclic of prime order (1; 3; 4). But 0.2 need not hold true any longer if G is cyclic and [G] is composite. However, Chowla (2) proved 0.2 for cyclic G's under an additional assumption.

Let k be a fixed integer with $k \ge 1$. We wish to prove

$$[A + B] \ge [A] + [B] - k$$

and related results under various additional conditions and for arbitrary abelian G's. All these conditions Γ , $\overline{\Gamma}$, Δ , . . will be empty if $[B] \leq k$.

Our results can be obtained by adaptations of Davenport's method (3). However, we shall use a slightly different approach which is also related to Mann's (7) and to another paper by the authors (appearing immediately after the present one).

THE MAIN RESULT

1. The Condition Γ_1 . We first prove 0.3 for complexes A, B which satisfy the following

CONDITION $\Gamma_1(A, B)$:

(i) If [B] > k and if $\Gamma_1(A, B)$ holds, then there is an element b_0 in B such that

and

I $A + B \not\subset A + b_0$. (ii) $\Gamma_1(A, B)$ implies $\Gamma_1(A_2, B_2)$ for every pair of complexes A_2 , B_2 such that

1.2 $b_0 \subset B_2 \subset B, A \subset A_2,$

1.3
$$[A_2] - [A] = [B] - [B_2],$$

1.4 $A_2 + B_2 \subset A + B.$

Received January 8, 1953; in revised form May 26, 1953.

230

Our statement is trivial for $[B] \leq k$. Suppose it is proved for $[B] \leq n-1$ and let [B] = n (n > k). From 1.1 there is an a_0 in A such that

$$a_1 = a_0 + b_1 - b_0 \not\subset A$$

has solutions b_1 in *B*. Let $A_1 = \{a_1\}$ and $B_1 = \{b_1\}$. Since $b_0 \not\subset B_1$ we have 1.5 $0 < [A_1] = [B_1] < [B]$.

Let $A_2 = A \cup A_1$ and let B_2 be the complement of B_1 in B. Thus 1.2 and 1.3 are satisfied and 1.6 $0 < [B_2] < [B].$

We now verify 1.4. Since $A + B_2 \subset A + B$, we have only to show that

$$1.7 A_1 + B_2 \subset A + B.$$

Let $a_1 \subset A_1$, $b_2 \subset B_2$. Thus $a_1 = a_0 + b_1 - b_0$. The definition of B_1 and $b_2 \subset B_2$ imply $a_0 + b_2 - b_0 \subset A$. Hence

$$a_1 + b_2 = (a_0 + b_1 - b_0) + b_2 = (a_0 + b_2 - b_0) + b_1$$

 $\subset A + B_1 \subset A + B.$

This proves 1.7 and hence 1.4.

From 1.6 and our induction assumption, we have

1.8
$$[A_2 + B_2] \ge [A_2] + [B_2] - k.$$

Finally, 1.4, 1.8 and 1.3 yield

$$[A + B] \ge [A_2 + B_2] \ge [A_2] + [B_2] - k = [A] + [B] - k.$$

2. The Condition Γ_2 . Our Condition Γ_1 is implied by

CONDITION $\Gamma_2([A], B)$:

or

(i) If $k < [B] \leq [A]$, then there are two elements b_0 and b_1 in B such that

2.1
$$[A](b_1 - b_0) \neq 0.$$

(ii) $\Gamma_2([A], B)$ implies $\Gamma_2([A] + [B] - [B_2], B_2)$ for every subcomplex B_2 of B that contains b_0 .

It suffices to prove 1.1. Let $b_0 \subset B$ be arbitrary if [B] > [A]. Choose b_0 according to (i) if $k < [B] \leq [A]$. Suppose

$$2.2 a_1 = a + b - b_0 \subset A$$

for every a, b. If [B] > [A], we keep a fixed and let b run through B. This would yield more than [A] different elements of A. If $[B] \leq [A]$, we specialize $b = b_1$. If a runs through A, then so will a_1 . Hence

$$\Sigma a = \Sigma a_1 = \Sigma (a + (b_1 - b_0) = \Sigma a + [A](b_1 - b_0)$$
$$[A](b_1 - b_0) = 0.$$

This contradicts 2.1. Thus 2.2 is false for some a, b. This implies 1.1.

3. Further specializations. Condition Γ_2 is certainly satisfied if each B_2 with

- 3.1 $b_0 \subset B_2 \subset B$ and
- 3.2 $k < [B_2] \leq [A] + [B] [B_2]$

contains an element b such that

3.3
$$([A] + [B] - [B_2])(b - b_0) \neq 0.$$

This in turn is sure to be the case if the relation 3.3 has not less than $[B] - [B_2] + 1$ solutions in B for each $[B_2]$ satisfying 3.2. We thus arrive at

CONDITION $\Gamma_3([A], B)$: There is a b_0 in B such that the relation

3.4
$$([A] + m)(b - b_0) \neq 0$$

has not less than m + 1 solutions b in B whenever

$$\max (0, \frac{1}{2}[B] - \frac{1}{2}[A]) \leq m \leq [B] - k - 1.$$

Condition Γ_3 is always satisfied if [A] and [B] are not too large. Suppose, e.g., that G has the type $(p_1^{\alpha_1}, \ldots, p_n^{\alpha_n})$ and that

3.5
$$[A] + [B] - k \leq \min(p_1, \dots, p_n, [G] - k)$$

(some of the p_k 's may be infinite). Then [A] + m will be prime to the product of all finite p_k 's and 3.4 will hold for each $b \neq b_0$. Thus 3.5 implies 0.3.

Let G be a finite cyclic group. Suppose there is a b_0 in B such that

3.6
$$b - b_0$$
 is primitive for each $b \neq b_0$

Then, for m < [B], 0.1 implies $[A] + m < [A] + [B] \leq [G]$. Hence each $b \neq b_0$ satisfies 3.4. Condition Γ_3 is satisfied, even if k = 1, and 0.2 holds. If we represent G by the cyclic group of residue classes (mod [G]), then 3.6 is equivalent to

3.7
$$(b - b_0, [G]) = 1$$
 for each $b \neq b_0$.

Chowla's theorem is identical with the observation that 0.1 and 3.7 imply 0.2. If [G] is a prime number, then 3.7 is trivially satisfied and 0.2 follows from 0.1. This is the theorem of Cauchy and Davenport.

4. Comments. Suppose that for $k \ge 1$

4.1
$$[A + B] < [A] + [B] - k$$

and let $b_0 \subset B$. Then there exist two complexes A' and B' such that

4.2 $A \subset A', \quad b_0 \subset B' \subset B,$

$$4.3 k < [B'] \leqslant [B],$$

4.4
$$[A'] - [A] = [B] - [B'],$$

4.6
$$A' + B' - b_0 = A'.$$

In fact, we obtain such complexes A' and B' by iterating our construction of A_2 and B_2 (cf. §1) as often as possible, each time with b_0 as the basic element.

Let B^- be the set of elements $b' - b_0$ ($b' \subset B'$) and let B_0^- be the subgroup generated by B^- . Hence

4.7
$$k+1 \leq [B'] = [B^-] \leq [B_0^-].$$

By 4.6, $A' + B^- = A'$. Because A' is finite, we have that B_0^- is finite and

$$4.8 A' + B_0^- = A'.$$

Thus A' consists of cosets of B_0^- . In particular, [A'] = [A] + [B] - [B'] will be a multiple of $[B_0^-]$. Therefore, putting [B] - [B'] = m,

$$([A] + m)(b - b_0) = 0$$

for each of the [B'] = [B] - m elements in B'. Thus the relation

$$([A] + m)(b - b_0) \neq 0$$

has at most *m* solutions in *B*. By $k < [B'] \leq [B]$, we have

$$0 \leqslant m \leqslant [B] - k - 1.$$

Moreover, 4.6 implies $[B'] \leq [A'] = [A] + [B] - [B']$, that is,

$$m \ge -\frac{1}{2}[A] + \frac{1}{2}[B].$$

Consequently, if 4.1 holds, Condition Γ_3 cannot be true, which yields a second proof that Γ_3 implies 0.3.

Another consequence of 4.1 is:

$$A + B_0^- + b_0 \subset A' + B_0^- + b_0 = A' + b_0 \subset A' + B' \subset A + B$$

Therefore:

The inequality 4.1 implies, for each b_0 in B, the existence of at least k different elements $b_i \neq b_0$ in B such that the group B_0^- generated by the differences $b_i - b_0$ is finite and satisfies

$$A + B_0^- + b_0 \subset A + B.$$

As an easy consequence of the special case k = 1, $0 \subset B \subset A$, $b_0 = 0$, we obtain a theorem due to Shepherdson (8, p. 85).

VARIANTS

In the following, A, B, \ldots will still be non-empty complexes in G. Their finiteness, however, and 0.1 will not necessarily be assumed. We wish to discuss some variants of §1. The analogues of §§2-4 being rather obvious, only some of them will be stated.

5. The complex \overline{A} . Let \overline{A} be the complement of A in G. In this section, \overline{A} and B are assumed to be finite. Only the case $[G] = \infty$ will be of interest.

If $g \subset A + B$, then $g - b \subset \overline{A}$ for any *b*. Hence

$$[A] \ge [A + B].$$

In particular, the finiteness of \overline{A} implies that of A + B. Also, if

5.1 $[B] > [\bar{A}],$ then A + B = G.

Proof. Let g be any element of G and let b range through B. From 5.1, not all of the [B] elements g - b can lie in \overline{A} . Thus $a = g - b \subset A$ for some b, that is, $g \subset A + B$.

Again, let k be a fixed integer with $k \ge 1$. The following analogue of §1 can now be stated:

Suppose

5.2 $[B] \leq [\overline{A}].$ Then 5.3 $[\overline{A} + \overline{B}] \leq [\overline{A}] - [B] + k$

provided that \overline{A} and B satisfy some Condition $\overline{\Gamma}$.

Condition $\overline{\Gamma}_1(\overline{A}, B)$:

(i) If [B] > k and if $\overline{\Gamma}_1(\overline{A}, B)$ holds true, then there is an element b_0 in B such that

5.4
$$A + B \not\subset A + b_0$$

(ii) $\overline{\Gamma}_1(\overline{A}, B)$ implies $\overline{\Gamma}_1(\overline{A}_2, B_2)$ for every pair of complexes A_2, B_2 satisfying 1.2, 1.4 and

5.5
$$[A] - [A_2] = [B] - [B_2]$$

The proof of the sufficiency of condition $\overline{\Gamma}_1(\overline{A}, B)$ is identical with the proof in §1. Only 1.3 has to be replaced by 5.5 and 1.8 by

$$[\overline{A_2+B_2}] \leqslant [\overline{A_2}] - [B_2] + k.$$

We note that the left hand terms of 5.5 and 1.3 both count the number of those elements of A_2 that do not lie in A.

CONDITION $\overline{\Gamma}_2([\overline{A}], B)$ is obtained by replacing [A] in Condition Γ_2 by $[\overline{A}]$ and $[A] + [B] - [B_2]$ by $[\overline{A}] - [B] + [B_2]$. In verifying this condition we use the fact that $\overline{A} + B \not\subset \overline{A} + b_1$ for some $b_1 \subset B$ implies 5.4 for some $b_0 \subset B$.

The following is an analogue of Γ_3 .

CONDITION $\overline{\Gamma}_3$ ([\overline{A}], B): There is a b_0 in B such that each of the relations

5.6
$$([\bar{A}] - m)(b - b_0) \neq 0$$

has not less than m + 1 solutions b in B ($m = 0, 1, \ldots, [B] - k - 1$).

234

6. Inversion and differences of complexes. In this section, A, B, C may be arbitrary complexes in G. They may be empty or infinite.

The difference A - B of A and B is defined (5) to be the set of all those $c \subset G$ such that $c + B \subset A$. If $A \subset A'$ and $B \subset B'$ then

6.1 $A - B' \subset A - B \subset A' - B.$ Obviously $A + B \subset C \leftrightarrow A \subset C - B.$ 6.2

Another connection between sums and differences can be obtained by means of a concept essentially due to Khintchine (6). Let i be any fixed element of G. The inversion \tilde{A} of A with respect to *i* consists of all the elements $i - \bar{a}$ where $\bar{a} \subset \bar{A}$. Thus $(\tilde{A})^{\sim} = A$ and $[\tilde{A}] = [\bar{A}]$. We readily verify (5)

6.3
$$A - B = (\tilde{A} + B)^{\tilde{}}, \quad A + B = (\tilde{A} - B)^{\tilde{}}.$$

If $A + B \subset C$, then $\tilde{C} \subset (A + B)^{\sim} = \tilde{A} - B$ and hence from 6.2

This is an analogue of Khintchine's inversion formula (6).

7. The dual theorems. Formula 6.3 enables us to derive duals of §§1-4 from §5.

 $A = \tilde{C}$

Let C and B denote finite non-empty complexes in G. Put

7.1

Then 7.2

$$C-B=(A+B)\tilde{,}$$

7.3
$$\overline{[A]} = [C] < \infty$$
 and $[C - B] = \overline{[A + B]} < \infty$.

If [B] > [C], C - B is empty. Furthermore, [C] = [G] implies C = C - B = Gon account of [B] > 0.

7.1–7.3 enable us to translate §5. Let k be a fixed integer with $k \ge 1$. Suppose

 $[B] \leq [C] < [G].$ 7.4Then

7.5
$$[C-B] \leq [C] - [B] + k$$

provided that B and C satisfy a Condition Δ .

Condition $\overline{\Gamma}_1(\overline{A}, B)$ yields

CONDITION $\Delta_1(C, B)$: (i) If [B] > k and if $\Delta_1(C, B)$ holds there is an element b_0 in B such that $C + B \not\subset C + b_0$. 7.6(ii) $\Delta_1(C, B)$ implies $\Delta_1(C_2, B_2)$ for every pair of complexes C_2, B_2 such that $b_0 \subset B_2 \subset B$, $C_2 \subset C$,

PETER SCHERK AND J. H. B. KEMPERMAN

7.8
$$[C] - [C_2] = [B] - [B_2],$$

and

 $7.9 C - B \subset C_2 - B_2.$

Condition $\overline{\Gamma}_3$ leads to

CONDITION $\Delta_2([C], B)$: There is a b_0 in B such that each of the relations

7.10 $([C] - m)(b - b_0) \neq 0$

has not less than m + 1 solutions in B $(m = 0, 1, \ldots, [B] - k - 1)$.

If B and \overline{C} are finite, we may obtain similar results for $[\overline{C-B}]$ applying §1 rather than §5.

8. A condition on A + B. In the last sections of this paper, A and B denote again finite non-empty complexes in G which satisfy 0.1. Formula 6.4 suggests that the following variant of Γ_1 implies 0.3.

CONDITION $\Gamma_4(A, B)$: (i) If [B] > k and if $\Gamma_4(A, B)$ holds, then there is an element b_0 in B such that 1 $(A + B) + B \not\subset (A + B) + b_0$.

8.1 $(A+B) + B \not\subset (A+B) + b_0.$

(ii) $\Gamma_4(A, B)$ implies $\Gamma_4(A, B_2)$ for every complex B_2 such that

$$8.2 b_0 \subset B_2 \subset B.$$

We wish to give a direct proof by induction. By 8.1, there is a $\bar{c}_0 \subset \overline{A+B}$ such that

 $8.3 c_1 + b_1 = \bar{c}_0 + b_0$

has solutions $c_1 \subset A + B$, $b_1 \subset B$. Put $B_1 = \{b_1\}, C_1 = \{c_1\}$. Thus

8.4
$$0 < [C_1] = [B_1] < [B].$$

Let B_2 be the complement of B_1 in B and let C_2 denote (3) the complement of C_1 in A + B. From 8.4,

8.5
$$[C_2] = [A + B] - [B] + [B_2].$$

We readily verify (cf. 1.7) that

Since $b_0 \subset B_2 \subset B$ and $[B_2] < [B]$, our induction assumption implies

8.7
$$[A + B_2] \ge [A] + [B_2] - k.$$

Finally, 8.5, 8.6 and 8.7 yield 0.3.

9. Final corollaries. A condition which does not involve A + B is

236

CONDITION $\Gamma_5([A], B)$:

(i) If [B] > k and if $\Gamma_5([A], B)$ holds, there are two elements b_0, b_1 in B such that

9.1
$$([A] + [B] - k - 1)(b_1 - b_0) \neq 0.$$

(ii) $\Gamma_5([A], B)$ implies $\Gamma_5([A], B_2)$ for every subcomplex B_2 of B that contains b_0 .

Proof. Suppose there exists a smallest positive integer n such that 0.3 is false for [B] = n. Then n > k and there are two complexes A, B which satisfy Condition $\Gamma_{5}([A], B)$ and [B] = n but not 0.3. Thus

9.2
$$[A + B] = [A] + [B] - k - 1.$$

On account of part (i) of Condition Γ_5 , the relation

9.3
$$[A + B](b_1 - b_0) \neq 0$$

then has solutions b_0 , b_1 in B. This easily implies (cf. §2) that b_0 is a solution of 8.1. Therefore, we can construct a pair of sets B_2 , C_2 for which 8.4, 8.5, and 8.6 hold. Moreover, by induction, 8.7 is true. This yields 0.3, contradicting 9.2.

The following is a special case of Γ_5 .

CONDITION $\Gamma_6([A], B)$: There is a b_0 in B such that

9.4
$$([A] + m)(b - b_0) = 0$$

has not more than m + k solutions b in B $(m = 0, 1, \dots, [B] - k - 1)$.

In a similar way, more conditions $\overline{\Gamma}$ and Δ can be derived.

References

- 1. A. L. de Cauchy, Recherches sur les nombres, Œuvres (2nd series, Paris, 1882), vol. 1, 39-63.
- I. Chowla, A theorem on the addition of residue classes, Proc. Indian Acad. Sci., 2 (1935), 242-243.
- 3. H. Davenport, On the addition of residue classes, J. London Math. Soc., 10 (1935), 30-32.
- 4. , A historical note, J. London Math. Soc., 22 (1947), 100-101.
- 5. H. Hadwiger, Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt, Math. Zeitschr., 53 (1950), 210–218.
- 6. A. Khintchine, Zur additiven Zahlentheorie, Matem. Sbornik, 39 (1932), 27-34.
- 7. H. B. Mann, On products of sets of group elements, Can. J. Math., 4 (1952), 64-66.
- J. C. Shepherdson, On the addition of elements of a sequence, J. London Math. Soc., 22 (1947), 85–88.

University of Saskatchewan and University of Southern California

Purdue University