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Abstract

Highly critical application domains, like medicine and aerospace, require the use of strict design,
implementation, and validation techniques. Functional languages have been used in these domains
to develop synchronous dataflow programming languages for reactive systems. Causal stream func-
tions and functional reactive programming (FRP) capture the essence of those languages in a way
that is both elegant and robust. To guarantee that critical systems can operate under high stress
over long periods of time, these applications require clear specifications of possible faults and haz-
ards, and how they are being handled. Modeling failure is straightforward in functional languages,
and many functional reactive abstractions incorporate support for failure or termination. However,
handling unknown types of faults, and incorporating fault tolerance into FRP, requires a different
construction and remains an open problem. This work demonstrates how to extend an existing func-
tional reactive framework with fault tolerance features. At value level, we tag faulty signals with
reliability and probability information and use random testing to inject faults and validate system
properties encoded in temporal logic. At type level, we tag components with the kinds of faults they
may exhibit and use type-level programming to obtain compile-time guarantees of key aspects of
fault tolerance. Our approach is powerful enough to be used in systems with realistic complexity,
and flexible enough to be used to guide system analysis and design, validate system properties in
the presence of faults, perform runtime monitoring, and study the effects of different fault tolerance
mechanisms.

1 Introduction

Mission critical systems – those in which a malfunction may result in loss of life or great
economic impact – require the use of careful design, implementation, testing, and deploy-
ment techniques. In domains like aviation and transportation, the development of both
hardware and software is heavily regulated and strict guidelines must be followed (RTCA,
2011).

The use of synchronous programming languages with clear semantics is frequent
in these domains (Halbwachs et al., 1991; Berry et al., 2000; Dormoy, 2008). These
languages are normally based on a notion of streams and stream functions, and they must
guarantee, at compile time, that all streams are causal and well formed.
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The essence of these languages can be captured via causal stream functions and some
forms of functional reactive programming (FRP) (Elliott & Hudak, 1997; Nilsson et al.,
2002; Courtney et al., 2003). While FRP has traditionally been applied to domains
like interactive programming and games, abstractions like monadic stream functions
(MSFs) (Perez et al., 2016; Perez, 2017; Bärenz & Perez, 2018) help bridge the gap
between discrete-time causal stream programming and continuous-time FRP.

However, even when functional reactive and synchronous dataflow systems are imple-
mented according to specifications, they may fail in production due to undetected
software bugs in other components, hardware failures, or environmental hazards. It is
extremely important to determine the most likely hardware and software faults and envi-
ronmental damage and to minimize their impact by introducing mechanisms for fault
tolerance (Avižienis, 1967, 1976; Butler, 2008).

A general way of capturing and addressing faults in typed functional languages is by
means of optional values or values that encode errors, and possibly the reasons behind
those errors. FRP frameworks like MSFs and Yampa introduce notions of failure or
termination via the use of Maybe and Either.

While these types capture notions of detectable failures, they are not suitable to rep-
resent failures that are not detectable or correctable at a given stage. For example, in
space applications, we normally see bit flips due to radiation, which alter values in mem-
ory (Bedingfield et al., 1996). Without further adjustments to our program, we may not be
able to tell that an error occurred, let alone correct it.

This paper presents mechanisms to encode the possibility of undetectable failures in a
functional specification of a reactive system. We do so in three ways: by tagging values
with different degrees of confidence, by means of distributions denoting possible values
and their probabilities, and by tagging values with value-level and type-level fault sets
that denote the kinds of failures that may have affected them. We combine this approach
with random testing encoding desired system properties using temporal logic, for a more
systematic and comprehensive verification and validation methodology.

This extra information serves two purposes: during system design and implementation,
it helps understand the possible failures, how they may affect system requirements, and
what fault tolerance mechanisms need to be introduced to address those faults. During
execution, it helps understand the confidence we can place on a specific result and make
dynamic adjustments and decisions about a mission based on the margins of error we can
tolerate. We discuss prototypes in Haskell and in Idris, based on an extension of MSFs to
work with parameterized monads, and explain which kinds of analysis are possible in each
language.

Our work makes the following contributions:

• We present a polymorphic type constructor to encode potentially unreliable data,
show how it can be used to compute the expected reliability or availability of reac-
tive constructs (Section 3), and show how to introduce fault tolerance mechanisms
to increase the overall reliability (Section 4).

• We provide a representation of certainty based on probability distributions and show
how to calculate the total confidence of a reactive network (Section 5).
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• We demonstrate how to tag components with the faults that can affect them, to
synthesize an enumeration of all potential faults in a reactive system (Section 6).

• We demonstrate how to use QuickCheck to validate temporal logic properties of a
system, injecting faults with different probabilities (Section 7).

• We extend MSFs, an existing formalism for FRP that combines Arrows with
Monads, with support for parameterized or indexed monads, which facilitates
chaining constructions working on different monads (Section 8).

• We show how to use type-level programming to capture potential faults, leveraging
fault analysis on the type system to obtain a proof of the faults that may affect the
behavior of a reactive network (Section 9).

This paper is an extended version of Perez (2018). Section 7 is an original contribution
in this extended version, with examples from Perez et al. (2019).

In the following section, we introduce basic concepts in FRP and fault tolerance and
illustrate the problem we seek to address.

2 Background

In the interest of making this paper sufficiently self-contained, we summarize the basics of
FRP and MSFs in the following. We later describe basic ideas from the field of fault toler-
ance, together with an example that illustrates the problems we seek to address. For further
details, see earlier papers on FRP (Elliott & Hudak, 1997; Nilsson et al., 2002; Courtney
et al., 2003) and MSFs (Perez et al., 2016; Perez, 2017; Bärenz & Perez, 2018). This
presentation draws heavily from the summaries in Perez & Nilsson, (2017) and Courtney
et al. (2003). For details on fault tolerance, see Avižienis (1967, 1976) and, for an in-depth
introduction, see Butler (2008).

2.1 Functional reactive programming

FRP is a programming paradigm to describe hybrid systems that operate on time-varying
data. FRP is structured around the concept of signal, which conceptually can be seen as a
function from time to values of some type:

Signal α ≈ Time→ α

Time is (notionally) continuous and represented as a nonnegative real number. The type
parameter α specifies the type of values carried by the signal. For example, the type of
an animation would be Signal Picture for some type Picture representing static pictures.
Signals can also represent input data, like values read from a sensor.

Additional constraints are required to make this abstraction executable. First, it is nec-
essary to limit how much of the history of a signal can be examined, to avoid memory
leaks. Second, if we are interested in running signals in real time, we require them to be
causal: they cannot depend on other signals at future times. FRP implementations address
these concerns by limiting the ability to sample signals at arbitrary points in time. Also,
although FRP is conceptually continuous, implementations still execute by sampling inputs
at discrete points in time and some even hide time completely.
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The space of FRP frameworks can be subdivided into two main branches, namely
Classic FRP (Elliott & Hudak, 1997) and Arrowized FRP (Nilsson et al., 2002). Classic
FRP programs are structured around signals or a similar notion representing internal and
external time-varying data. In contrast, Arrowized FRP programs are defined using causal
functions between signals, or signal functions, connected to the outside world only at the
top level.

To address some of the limitations of different forms of FRP and bridge the gap between
Classic and Arrowized FRP, and between continuous-time and discrete-time variants,
MSFs separate the notion of time from the notion of causal transformation over a vary-
ing sampled input. MSFs can be empowered with additional features by means of different
monads, which can serve both to make them more expressive, to synthesize information,
or with different control mechanisms. In the following, we turn to MSFs and later explain
current limitations that this paper addresses.

2.2 Monadic stream functions

MSFs are an abstraction that can be used to implement FRP and supports discrete and con-
tinuous time, and both Classic and Arrowized FRP1. MSFs are defined by a polymorphic
type MSF and a function step that applies an MSF to an input and returns, in a monadic
context, an output and a continuation:

newtype MSF m a b

step :: Monad m⇒MSF m a b→ a→m (b, MSF m a b)

We purposefully hide the details of the definition of MSF. Functions to define and com-
bine MSFs, while preserving causality and avoiding leaks, will be provided in the rest of
this section.

The type MSF and the step function alone do not represent causal functions on streams.
It is only when we successively apply the function to a stream of inputs and consume the
side effects that we get the unrolled, streamed version of the function. Causality, or the
requirement that the n-th element of the output stream only depend on the first n elements
of the input stream, is obtained as a consequence of applying the MSF continuations step by
step, or sample by sample. For the purposes of exposition, we use the following function to
apply an MSF to a finite list of inputs, with effects and continuations chained sequentially.
This is merely a debugging aid, not how MSFs are actually executed:

embed :: Monad m⇒MSF m a b→ [a]→m [b]

MSFs are Arrows (Hughes, 2000), and so Arrow combinators can be used to define
MSFs compositionally (Bärenz et al., 2016). Some central combinators are arr that lifts
an ordinary function to a stateless signal function, composition ≫, parallel composition
&&&. Through the use of these and related combinators, arbitrary MSF networks can be
expressed. Specialized for MSFs, the basic Arrow operations have the following types:

1 The Haskell packages dunai and bearriver implement, respectively, MSFs and Arrowized FRP on top of
MSFs.
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Fig. 1. Basic MSF combinators.

arr :: (a→ b) →MSF m a b
(≫) :: MSF m a b→MSF m b c→MSF m a c
(&&&) :: MSF m a b→MSF m a c→MSF m a (b, c)

MSFs must remain leak-free, so we introduce limited ways of depending on past values.
To keep state by producing an extra accumulator accessible in future iterations we use

feedback :: c→MSF m (a, c) (b, c)→MSF m a b

This combinator takes an initial value for the accumulator, runs the MSF, and feeds the
new accumulator back for future iterations.

We can think of streams and MSFs using a simple flow chart analogy (Figure 1). Lines
or “wires” represent streams, with arrowheads indicating the direction of flow. Boxes rep-
resent MSFs, with one input flowing into the box’s input port and an output stream flowing
out of the box’s output port.

Example. A counter, for example, can be defined as follows. The second MSF in this
expression calculates the cumulative sum of its inputs, initializing an accumulator to 0 and
using a feedback loop:

count :: (Num n, Monad m)⇒MSF m () n
count= arr (const 1) ≫ feedback 0 (arr add2)

where
add2 (n, acc)= let n′ = n+ acc in (n′, n′)

2.2.1 Monads

MSFs can be combined with different monads for different effects. We provide a general
function arrM to lift a Kleisli arrow, so that it is applied pointwise to every sample:

arrM :: Monad m⇒ (a→m b)→MSF m a b

The use of monads with MSFs provides great versatility. For example, we can make
certain values available in an environment in a Reader monad, without having to route
them down manually as inputs to other MSFs:

data Env= Env {windowWidth :: Int
, windowHeight :: Int
}

rotateTapPos180 :: MSF (Reader Env) (Int, Int) (Int, Int)
rotateTapPos180= proc (x, y)→ do
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winW← arrM (\_→ asks windowWidth) −≺ ()
winH ← arrM (\_→ asks windowHeight)−≺ ()
returnA−≺ (winW − x, winH − y)

It is possible to “flatten” an MSF by removing the monadic effect, by means of what are
called MSF running functions. This normally requires extra inputs, extra outputs, or extra
continuations. For example, the running function for the Reader monad has signature:

runReaderS_ :: MSF (ReaderT r m) a b→ r→MSF m a b

We can test rotateTapPos180 in a session, by providing an additional environment, plus
the input samples denoting examples of positions where the user could have tapped on the
screen. Because Reader is defined as a ReaderT on the Identity monad, we use runIdentity
to extract the value from the bottom monad in the stack:

ghci > runIdentity $
embed (runReaderS_ (rotateMousePos180) (Env 1024 768)) [(10, 10), (100, 100)]

[(1014, 758), (924, 668)]

Analogously, the associated execution function for terminating MSFs would have type:

runMaybeS :: Monad m⇒MSF (MaybeT m) a b→MSF m a (Maybe b)

For this monad, step has type MSF Maybe a b→ a→Maybe (b, MSF Maybe a b) and
may produce no continuation (runMaybeS applied to such an MSF would output Nothing
from that point on). “Recovering” from failure requires an additional continuation:

catchM :: Monad m⇒MSF (MaybeT m) a b→MSF m a b→MSF m a b

With a monad Either c for some type c, the recovering function resembles Yampa’s
switch combinator, showing that switching emerges for free by combining MSFs with the
Either monad. When combined with the list monad, MSFs give rise to dynamic collections
of MSFs in parallel.

The extensibility provided by different monads, transformers and their running func-
tions, makes MSFs unusually flexible for describing dynamic reactive systems. Different
choices of inputs, outputs, and monads lets us realize streams, monadic streams, Classic
FRP signals and Arrowized FRP signal functions, all with the same abstraction. MSFs that
do not depend on their input produce a Monadic Stream (a stream of outputs in a monadic
context), or an ordinary stream if the monad is identity. Monadic Streams with a Reader
monad that includes external inputs and/or time can implement Classic FRP. Introducing
time via a Reader monad in an MSF can be used to implement Arrowized FRP, obtaining
a step function that is isomorphic to Yampa’s internal representation of initialized signal
functions. This makes it possible to run Yampa simulations on top of an intermediate layer
that implements an API-compatible version of Yampa on top of MSFs.

2.3 Faults in reactive systems

Let us illustrate the issues we seek to address with an example. Imagine that we are building
a system to control a spacecraft. To move and orient the spacecraft, we carry out a phase
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of attitude determination (determining the spacecraft’s position and direction) prior to atti-
tude control (correcting position and direction via actuators). Errors in these calculations
can lead to the spacecraft deviating from its path, being lost, or colliding.

To determine the attitude, we obtain data from a star tracker, which estimates the posi-
tion and orientation relative to stars whose locations in space we know, and from an inertial
measurement unit (IMU), which combines gyroscopes and accelerometers to estimate the
spacecraft’s acceleration, linear velocity, orientation, and surrounding magnetic fields.

A schematic definition of our control system follows. Our reactive control MSF takes
a desired attitude as input and produces a set of actions as output. Internally, it gathers
data from a star tracker and the IMU. The use of feedback allows us to calculate the new
attitude based on the last known attitude and the information gathered from the sensors:

controlSystem :: Attitude→MSF m Attitude [Action]
controlSystem initialAttitude= proc (desiredAttitude)→ do

stars ← starTrackerSense−≺ ()
inertialInfo← imuSense −≺ ()
attitude ← feedback initialAttitude (arr (dup ◦ calculateAttitude))

−≺ (stars, inertialInfo)
let actions= calculateActions desiredAttitude attitude

returnA−≺ actions

-- Predefined elsewhere
type Action = ...
type Attitude = ...
type StarInfo = ...
type InertialInfo = ...

starTrackerSense :: MSF m () [StarInfo]
imuSense :: MSF m () InertialInfo
calculateAttitude :: (([StarInfo], InertialInfo), Attitude)→ Attitude
calculateActions :: Attitude→ Attitude→ [Action]
dup :: a→ (a, a)

Ideally, we would assume that the hardware works perfectly that values from sensors
are accurate and that the memory is never corrupted. However, this is not true in practice,
and critical systems that carry out important operations over long periods of time in hostile
environments without maintenance, like a satellite, warrant extra levels of reliability.

In particular, in our example, nothing tells us whether data is inaccurate, how inaccurate
it is, and what kinds of faults may have lead to incorrect results. In cases like these, using a
Maybe type to encode the possibility of failure in the output type of a sensor is not enough.

The use of techniques to minimize the impact of failures is grouped under the umbrella
term of fault tolerance (Avižienis, 1967, 1976). In fault tolerance, redundancy can be
used to compare results from multiple units and disable those that fail or to average them
and lower the impact of minor deviations (voting). For instance, in our example, three
star trackers could be used to calculate a midpoint, as well as to detect if either star
tracker is providing values that are too far from the average. Additionally, and to limit
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the possibility of redundant units failing for the same reason, subsystems can be physically
and electrically isolated, placing them in separate fault containment regions (FCRs).

The combination of these fault tolerance mechanisms helps determine which of possible
faults may still affect system operations and defines the fault model. Total reliability is
never possible, so our fault model is likely to determine both the kinds of faults that are
handled and also how many simultaneous faults may be tolerated. For instance, a system
may be able to deal with a value not being available, but not be with a value being incorrect.
Others are capable of handling Byzantine errors (those in which different subsystems have
different incorrect values for the same conceptual element), whereas others may only be
able to do so if the error is corrected before another simultaneous error occurs.

2.4 Limitations

FRP and MSF definitions normally assume that systems do not fail unexpectedly and all
errors can be detected, which is not always true. The limitations we seek to address are2:

Availability. System descriptions using MSFs do not help us understand how reliable
systems can be and how much time we can expect them to be un/available. While we
may have obtained information about the expected availability or reliability of subsystems
or components from the manufacturer or from prior experience, these specifications hide
data dependencies and do not help synthesize a global reliability factor based on those of
expected components. This also makes it hard to determine if fault tolerance is needed and
whether it would guarantee system requirements in the presence of faults.

Ranges and probabilities. These system descriptions operate with exact values, and,
unless randomized testing is used, simulations would normally work with ideal inputs
from the sensors. In practice, most components and subsystems have margins of error, and
a range of values may be expected. The use of probability distributions constitutes a better
mechanism to represent possible input and, potentially, analyze the possibility of values
being within the desired margins of tolerance.

Fault model. These frameworks let us specify data dependencies from multiple subsys-
tems and therefore hide details in the implementation. In particular, nothing in our example
lets us know that attitude calculation may be affected by, for example, condensation in the
star tracker’s battery unit. The use of monads, available in MSFs, opens an opportunity to
specify these failures at the type level and let them propagate across a network, tagging all
reactive constructs that may have been affected.

In the following, we present an approach to model, validate, and verify reactive systems
when results are unreliable and different subsystems can fail. We do so in two ways. First,
we alter values to attach reliability information or to produce multiple values with differ-
ent probabilities. This information is dynamic and available at runtime, and so validation

2 In the following, when we refer to MSFs, the limitations apply generally also to other forms of FRP and stream
programming.
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Table 1. Summary of fault information introduced in reactive systems, level at which it is

introduced, the type chosen to represent it, and the sections where it is discussed

Information Level Representation Sections

Reliability Value Fault tolerance/Writer monad, with numeric values Sections 3, 4
Probabilities Value Dist (probability) monad Section 5
Fault sets Value Fault tolerance/Writer monad, with fault sets Sections 6, 7
Fault sets Type Tagging monad, with type-level fault sets Sections 8, 9

of these systems is performed using temporal logic and QuickCheck. Second, we elevate
value-level information to type level, to leverage the analysis of possible faults on the
type system. To do so, we extend MSFs to operate on parameterized or indexed monads.
Because fault information is expressed at the type level and performed by the compiler
following typing rules, this constitutes a form of verification that provided that the char-
acterization of faults for different subcomponents is performed correctly. Our presentation
is based on MSFs, as described in Section 2, and relies on the choice of the right monad
to introduce fault tolerance information (Table 1). Implementations in Haskell and in Idris
are discussed.

3 Reliability factors

Ideally, we would like to be able to estimate the reliability of a complex system based
on the reliability of the subsystems that form it, which may itself be obtained from the
manufacturer or from previous experiments.

Let us present an example to understand how to introduce reliability or confidence
factors in reactive MSFs. Imagine that we gather data from the two sensors used in the
example in Section 2 and want to tag them with a reliability factor. For the sake of sim-
plicity, we use a numerical value between 0 and 1, with 0 expressing no confidence or
reliability on the accuracy of the value, and 1 expressing absolute certainty. In Section 5,
we show how to use more structured representations of reliability.

We can represent this information in MSFs by just changing the inputs and the outputs.
First, let us introduce a type for values with a degree of uncertainty:

type Uncertain a= (Certainty, a)
type Certainty =Double -- zero to one

For simplicity, we assume that reliability is constant and irrespective of the conditions
of operation (we later present how reliability could be dynamically changed). We rely on
MSFs defined earlier and state that both sensors have a 90% accuracy:

starTrackerSense′ :: MSF m () (Uncertain [StarInfo])
starTrackerSense′ = starTrackerSense ≫ arr (λstarData→ (0.9, starData))

imuSense′ :: MSF m () (Uncertain InertialInfo)
imuSense′ = imuSense ≫ arr (λimuData→ (0.9, imuData))
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These new MSFs add some extra information to the output. We now adapt both the step
function and the attitude and action calculation functions to handle uncertainty. Functions
like controlSystemStep′ just route the uncertainty together with the accompanying values:

controlSystemStep′ :: Uncertain Attitude→MSF m Attitude (Uncertain [Action])
controlSystemStep′ initialAttitude= proc (desiredAttitude)→ do

stars ← starTrackerSense′ −≺ ()
inertialInfo← imuSense′ −≺ ()
attitude ← feedback initialAttitude (arr (dup ◦ calculateAttitude′))

−≺ (stars, inertialInfo)
let actions = calculateActions′ desiredAttitude attitude
returnA−≺ actions

Functions like calculateAttitude′, however, need access to this factor to calculate the
combined uncertainty of the result. If the sensors are independent (e.g., one does not
become less accurate when the other fails to report accurate data), then we could say that
the result is accurate if both sensors are accurate. Therefore, the combined confidence of a
result based on data from two sensors is the multiplication of the reliabilities of both. This
operates similar to probabilities of independent events.

calculateAttitude′ :: ((Uncertain [StarInfo], Uncertain InertialInfo), Uncertain Attitude)
→Uncertain Attitude

calculateAttitude′ ((starUnc, starData), (inerUnc, inerData)), (attUnc, attData))=
let attitude= calculateAttitude ((starData, inerData), attData)
in (attUnc ∗ starUnc ∗ inerUnc, attitude)

calculateActions′ :: Attitude→Uncertain Attitude→Uncertain [Action]
calculateActions′ desiredAttitude (attUnc, attData)=

(attUnc, (calculateActions desiredAttitude attData))

Our main function controlSystemStep′ now also estimates the confidence on the action.
In a hypothetical system, if we execute this action and obtain a value lower than a given
threshold, we might want to use an alternative calculation, turn off some devices, or address
the loss of accuracy in some other way.

Manipulating factors by hand is error-prone. Without a facility to guarantee that calcu-
lations are correct, this method does not increase the knowledge we have about certainty
in our system, and a false sense of security is placed on potentially incorrect results.

We can abstract the underlying details into a monad that performs the calculation steps
from the reliability factors. This monad is exactly like a Writer monad, in which the monoid
are real numbers between 0 and 1 in the log, using multiplication as the monoidal operation
and 1 as identity. However, monoidal operations would only maintain or decrease certainty
(i.e., multiplication of a positive value by a value between 0 and 1 can render it smaller,
but not larger). To provide fault tolerance, we also need a way to increase confidence on
our system, which requires that we inspect the contents of the Writer.

The following section captures this pattern of operation with a custom monad, which we
later enrich with further structure to introduce fault tolerance mechanisms.
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3.1 Fault tolerance monad

Let us abstract the details of the previous example into a type for “uncertain” or “impre-
cise” values. As we saw before, this is just a polymorphic product type FaultTolerance e a,
in which we tag values of type a with extra reliability information of type e. In order to
operate with these values, we first need to be able to combine fault information, so they
must have a binary operation with identity, making them a monoid. This structure is equiv-
alent to a Writer monad, making it a Functor, an Applicative, and a Monad. The use of the
functor operation fmap leaves the reliability unchanged, while the applicative and monadic
operators combine the information available using the monoidal operation mappend (in our
example, multiplication).

To hide details from the user, we add an operation to put a value with a specific tag:

liftUnreliable :: e→ a→ FaultTolerance e a
liftUnreliable e x= FaultTolerance e x

3.2 Example

Adapting the previous example to this new interface should be straightforward, and it only
makes the specification simpler (we overload names where appropriate):

starTrackerSense′ :: MSF (FaultTolerance Certainty) () [StarInfo]
starTrackerSense′ = starTrackerSense ≫ arrM (liftUnreliable 0.9)

imuSense′ :: MSF (FaultTolerance Certainty) () InertialInfo
imuSense′ = imuSense ≫ arrM (liftUnreliable 0.9)

We adapt the main control functions as follows. For the sake of simplicity, we tem-
porarily eliminate the monad m from the stack. We remedy this situation later with the
introduction of a monad transformer for fault tolerance.

controlSystemStep′ :: Attitude
→MSF (FaultTolerance Certainty) Attitude [Action]

controlSystemStep′ initialAttitude= proc (desiredAttitude)→ do
stars ← starTrackerSense′ −≺ ()
inertialInfo← imuSense′ −≺ ()
attitude ← feedback initialAttitude (arr (dup ◦ calculateAttitude))

−≺ (stars, inertialInfo)
actions ← arr (uncurry calculateActions)−≺ (desiredAttitude, attitude)
returnA−≺ actions

Note that this only changes the signature of the function, but not the definition. This
is a key strength of this approach, and we explore this benefit further in future sections.
Calculating the attitude and the actions now becomes trivially simple and we can use the
original functions, as it is leveraged onto the Monad instance of FaultTolerance.

While the example above introduces a fixed reliability, the reliability of a component
might depend on different factors, including, for example, the mission runtime. For exam-
ple, if we assumed a discrete notion of time, we can model the running time using a
counter, which is trivially implementable using the feedback primitive in our language,
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as counter= feedback 1.0 (arr (dup ◦ (+1.0) ◦ snd)). We could change the expression that
introduced the reliability to dynamically decrease over time, for example, starting at 0.9
and decreasing to 0.5, with the calculation:

starTrackerSense′′ :: MSF (FaultTolerance Certainty) () [StarInfo]
starTrackerSense′′ = starTrackerSense ≫ reliabilityST ′′

reliabilityST ′′ :: MSF (FaultTolerance Certainty) a a
reliabilityST ′′ = proc (a)→ do

time← counter−≺ ()
let reliability= 0.5+ 0.4 / time
arrM (uncurry liftUnreliable)−≺ (reliability, a)

The introduction of these mechanisms makes networks produce a dynamic degree of
reliability. Present reliability is no longer indicative of future reliability. This both makes
the mechanism provided more powerful and versatile and also requires more thorough
evaluation during validation and verification.

3.3 Fault tolerance monad transformer

We can generalize the previous type into a monad transformer (Liang et al., 1995), to
combine it with other monads. The new polymorphic type definition simply encapsulates
the fault-tolerant value in a monad, which we can define like a WriterT transformer:

data FaultToleranceT e m a= FaultToleranceT
{runFaultToleranceT :: m (e, a)}

As is usual with transformers, type FaultTolerance= FaultToleranceT Identity. Due
to the similarity with the previous FaultTolerance, as well as the Writer monad and the
WriterT monad transformer, we obviate the details of the implementations of the Functor,
Applicative, and Monad instances. We provide two convenience functions to create values
with limited and with absolute confidence:

liftUnreliableT :: Monoid e→m a→ FaultToleranceT e m a
liftUnreliableT f m= FaultToleranceT <$> (λx→ ( f , x)) <$> m

liftReliableT :: Monoid e⇒m a→ FaultToleranceT e m a
liftReliableT m= FaultToleranceT <$> (λx→ (mempty, x)) <$> m

3.4 Example

Our main MSF remains largely the same, except that we must use the new operations in
our calculations:

starTrackerSense′ :: MSF (FaultToleranceT Certainty m) () [StarInfo]
starTrackerSense′ = starTrackerSense ≫ arrM (liftUnreliableT 0.9)

imuSense′ :: MSF (FaultToleranceT Certainty m) InertialInfo
imuSense′ = imuSense ≫ arrM (liftUnreliableT 0.9)
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We now simplify the main control function:

controlSystemStep′ :: Attitude
→MSF (FaultToleranceT Certainty m) Attitude [Action]

controlSystemStep′ initialAttitude= proc (desiredAttitude)→ do
stars ← starTrackerSense′ −≺ ()
inertialInfo← imuSense′ −≺ ()
attitude ← feedback initialAttitude (arr (dup ◦ calculateAttitude))

−≺ (stars, inertialInfo)
let actions = calculateActions desiredAttitude attitude
returnA−≺ actions

The auxiliary functions calculateAttitude′ and calculateActions′ are now unnecessary,
as their fault tolerance handling is now embedded in the monad. This last example demon-
strates the elegance of this solution: we have incorporated a notion of uncertainty in our
function without making it any more complex than it originally was.

In the following section, we will see how this can be expanded on, by adding more
structured information in our uncertainty factors.

4 Fault tolerance and voting

Fault tolerance is usually implemented by introducing redundancy, that is, multiple units
that perform the same or similar actions. Redundancy can be used either to detect failures
(by comparing the results of different redundant units), to mask failures (by averaging the
results of different redundant units), or to recover from failure (by discarding faulty units
and replacing them by their redundant counterparts) (Butler, 2008).

In the previous section, we saw how to calculate using values from multiple, potentially
unreliable sensors. Because certainty is always between 0 and 1 and we use the product
as the monoidal operation, it can remain stable and decrease, but never increase. Fault
tolerance methods, however, are expected to increase the reliability of a system.

We can address this limitation by adding new functions that manipulate signals from
different sensors and produce a result with higher certainty.

As an example, let us consider the possibility (not necessarily realistically) that a satellite
has three star trackers and tries to use the extra information to calculate an average position.
We obtain data from all sensors, together with tolerance factors, and determine that this
approach is reliable so long as only one star tracker fails. We use λx→ 1− x to invert
reliability factors and calculate as follows:

starTrackerAvg′ :: MSF (FaultToleranceT Certainty m) () StarInfo
→MSF (FaultToleranceT Certainty m) () StarInfo
→MSF (FaultToleranceT Certainty m) () StarInfo
→MSF (FaultToleranceT Certainty m) () StarInfo

starTrackerAvg′ starInfo1 starInfo2 starInfo3
= proc ()→ do

( f1, d1)← runFaultToleranceS starInfo1−≺ ()
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( f2, d2)← runFaultToleranceS starInfo2−≺ ()
( f3, d3)← runFaultToleranceS starInfo3−≺ ()

-- A receiver fails if it does not work
let fails1 = 1− f1

fails2 = 1− f2
fails3 = 1− f3

-- Two fail if any combination of two receivers fail
let twoFail= fails1 ∗ fails2+ fails2 ∗ fails3+ fails1 ∗ fails3

-- At least two work if two don’t fail
let twoWork = 1− twoFail

arrM (uncurry liftUnreliableT)−≺ (twoWork, starTrackerAvg d1 d2 d3)

starTrackerAvg :: StarInfo→ StarInfo→ StarInfo→ StarInfo
starTrackerAvg= ...

Note that, in this case, we enclose the star tracker polling operations by the function
starTrackerAvg′, using an MSF that gets the data from each sensor and averages it. This
is because we want the reliability factors of each star tracker data not to influence our
result directly, but only via the fault tolerance method exemplified above. Conceptually,
this denotes that they are part of different FCRs.

Our fault-tolerant control step MSF is now slightly different, as it needs to pass three
star trackers as inputs for this function:

controlSystemStep′ :: Attitude
→MSF (FaultToleranceT Certainty m) Attitude [Action]

controlSystemStep′ initialAttitude= proc (desiredAttitude)→ do
stars ← starTrackerAvg′ starTrackerInfo1′

starTrackerInfo2′

starTrackerInfo3′ −≺ ()
inertialInfo← imuSense′ −≺ ()
attitude ← feedback initialAttitude (arr (dup ◦ calculateAttitude))

−≺ (stars, inertialInfo)
let actions = calculateActions desiredAttitude attitude
returnA−≺ actions

Simulating this new experiment shows that our confidence in the result has increased
due to the more reliable fault tolerance mechanism:

ghci > embed (runFaultToleranceS (controlSystemStep initialAttitude))
[destAttitude, destAttitude, destAttitude]

[(0.9603, [...]), (0.9603, [...]), (0.9603, [...])]

This approach could be generalized to perform other kinds of recovery mechanisms.
For example, we could make starTrackerAvg operate over lists and ignore trackers whose
current values are too far from the average, increasing the overall reliability factors.

https://doi.org/10.1017/S0956796820000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000118


Fault-tolerant functional reactive programming 15

5 Probability

Let us now enrich the type used to represent reliability with further structure, indicating
possible values and their probabilities. We resort to an existing representation for prob-
abilities (Erwig & Kollmansberger, 2006), which we briefly introduce below. We later
explore how to combine this representation with MSFs to obtain reactive specifications
with probability distributions.

5.1 Probabilities in Haskell

The representation of a type for probabilities has been the subject of prior study in Haskell.
It is not our goal to define a custom type for probabilities but, rather, to show that, with
few properties, we can combine existing, orthogonal representations of probability distri-
butions with MSFs. In this paper, we follow the description in Erwig & Kollmansberger
(2006) due to conciseness and elegance. We only require that we can construct a monad
and leave aside the discussion of which specific representation to use.

5.1.1 Probability distributions

We first introduce an abstract type constructor T that represents a probability distribution.
The details of T’s internal definition are purposefully hidden:

newtype T prob a

For example, the type T Double Bool represents the distribution of an event being True
or False that expressed as probabilities with type Double. This flexibility lets us use
alternative types with different precision to represent probabilities.

For clarity, we define

type Dist = T Probability
type Probability= Rational

We can represent values with different probability distributions using multiple auxiliary
functions. For example, we can represent the possible results of throwing a perfect die,
with uniform distribution, as follows:

die :: Dist Int
die= uniform [1 . . 6]

This value can be examined directly in a session3, showing the spread of the distribution
with the probability of each individual event:

ghci > die
fromFreqs [(1, 0.16), (2, 0.16), (3, 0.16), (4, 0.16), (5, 0.16), (6, 0.16)]

We can also query the probability of individual events, for instance, to obtain the
probability of obtaining more than 4 if we throw a die:

ghci > (>4) ?? die
0.33

3 The numbers in this GHCi session are cropped to two decimals for readability.
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We can also create normal distributions, or distributions from specific lists of events and
frequencies:

height :: Dist Double
height= normal [55, 60, 65, 70, 75, 80, 85]

probSuccess :: Dist Bool
probSuccess= fromFreqs [(True, 0.55), (False, 0.45)]

Many other auxiliary functions, types, and distributions are available in this library. A
crucial observation is that T prob is a monad if prob is a number, which means that it can be
used in place of FaultTolerance to capture different possible results of reactive components
and their probabilities. It is worth noting, though, that the interpretation of probabilities
from monadic calculations makes the different distributions potentially dependent, as the
type signature of the bind operator, specialized for this monad, is:

(>>=) :: Dist a→ (a→Dist b)→Dist b

that is, the calculation of the probability distribution for the second argument may depend
on a specific occurrence of the first.

As described in Erwig & Kollmansberger (2006), there is a function in the probability
library, joinWith, that allows us to merge two distributions that are truly independent from
one another. We can obtain the same result using (>>=) with a function that ignores its
argument as the second argument or by using (>>).

5.2 Probabilities in reactive systems

Since T a is a Monad if a is a number, we can immediately use it together with MSFs. We
can use probabilities with MSFs to actually modify or alter the value, modeling the intro-
duction of noise in signals. For example, we can introduce values slightly different from
that of an ideal star tracker (assuming we can multiply it). We indicate that the probability
of those differences is 0.1%, while we have a probability of 99.6% of obtaining the correct
value:

starTrackerSense′ :: MSF Dist () [StarInfo]
starTrackerSense′ = starTrackerSense ≫ arrM

(λs→ let [s1, s2, s3, s4]=map (adjustStarInfo s) [0.90, 0.95, 1.05, 1.10]
in fromFreqs [(s1, 0.001), (s2, 0.001), (s3, 0.001), (s4, 0.001), (s, 0.996)])

adjustStarInfo :: Num a⇒ [StarInfo]→ a→ [StarInfo]
adjustStarInfo= ... -- Defined elsewhere

Just like before, adapting all operations makes our types change, but our main MSF
remains unchanged:

controlSystemStep′ :: Attitude→MSF Dist Attitude [Action]
controlSystemStep′ initialAttitude= proc (desiredAttitude)→ do

stars ← starTrackerSense′ −≺ ()
inertialInfo← imuSense′ −≺ ()
attitude ← feedback initialAttitude (arr (dup ◦ calculateAttitude))
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−≺ (stars, inertialInfo)
let actions = calculateActions desiredAttitude attitude
returnA−≺ actions

To explore values inside Dist, we define an auxiliary function, runDistS, that extracts
the values of an MSF in the Dist monad, putting the probabilities in the output4.

If we try this in a session, we get a probability distribution of all possible outputs
(formatted for readability):

ghci > embed (runDistS $ controlSystemStep′ initialAttitude) [destAttitude]
[ ([Action...], 0.001), ([Action...], 0.001), ([Action...], 0.001)
, ([Action...], 0.001), ([Action...], 0.996)
]

Another possible use of probabilities is to use them to indicate which kinds of faults are
taking place. This will be discussed later in Section 6.

5.3 Fault tolerance with probabilities

Due to the way that probabilities are represented here, adding fault tolerance in this case
is easier than with other constructs. The definitions of bind and return for the Dist monad
already calculate the new probabilities of the different possible combinations of inputs and
outputs, which makes it easier to write expressions that combine probabilities. In this case,
manually calculating the inverses is not necessary, and an occurrence of the same event
multiple times will be combined to provide an accumulated event with the addition of both
probabilities.

starTrackerAvg′ :: MSF Dist () StarInfo
→MSF Dist () StarInfo
→MSF Dist () StarInfo
→MSF Dist () StarInfo

starTrackerAvg′ starInfo1 starInfo2 starInfo3
= proc ()→ do

d1← starInfo1−≺ ()
d2← starInfo2−≺ ()
d3← starInfo3−≺ ()
returnA−≺ starTrackerAvg d1 d2 d3

starTrackerAvg :: StarInfo→ StarInfo→ StarInfo→ StarInfo
starTrackerAvg= ...

If we now explore the probabilities with averaging, we see that it is more likely to be
wrong: it will only be perfectly correct if all star trackers work perfectly. However, due to
the average eliminating part of the error, even when it is incorrect, it would normally be
wrong by a smaller amount.

4 Internally, this particular monad is defined similarly to the so-called “broken” list transformer ListT . Since
MSFs already support working with ListT , defining this function is trivial and we obviate that detail.
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ghci > embed (runDistS $ controlSystemStep′ initialAttitude) [destAttitude]
[(Action..., 0.988047936) , (Action..., 2.985015e−3), (Action..., 2.982025e−3)
, (Action..., 2.979036e−3), (Action..., 2.976048e−3), (Action..., 1.1958e−5)
...
]

It is worth noting that the above definition suggests parallelism and independence
between the star trackers, but the expression is evaluated by first evaluating starInfo1,
passing the output to a calculation that then evaluates starInfo2, and passing that result
to a calculation that evaluates starInfo3. These three MSFs are combined by means of
the monadic bind (>>=) operator, in principle enabling the individual probabilities of the
results of each calculation to be related to one another (i.e., not independent). However, in
this specific example, the star trackers ignore that input and produce a probability dis-
tribution that does not take the previous calculations into account, suggesting that the
probability of faults or errors in their outputs are independent.

To capture the intention of true parallelism of independent MSFs, we could define a spe-
cialized combinator that broadcasts the inputs to several MSFs and collapses the monads
of the outputs, in a parallel and independent fashion. For example, for two MSFs, we could
define:

(|||) :: MSF Dist a b→MSF Dist a c→MSF Dist a (b, c)

implemented internally using joinWith (, ), described earlier in this section, to join the
results of independent events. The new implementation would then be:

starTrackerAvg′ starInfo1 starInfo2 starInfo3
= proc ()→ do

((d1, d2), d3)← starInfo1
||| starInfo2
||| starInfo3−≺ ()

returnA−≺ starTrackerAvg d1 d2 d3

6 Fault sets and fault analysis

The previous approach provides an understanding of the reliability of a system, but it does
not help determine what caused the failure. Let us now use the same abstraction to indicate
the possible faults that may have affected the calculations.

In particular, we want to focus on the case in which we know a fault may take place,
but not whether it actually has, known as a transmissive fault. For example, a bit flip
in the memory of the star tracker may corrupt the results, and, if we are building a data
transmission system for a satellite, we may not have sufficient application knowledge to
understand which values may be completely wrong.

Even if we do not handle a particular kind of fault at a level, we might want to have a
clear, machine-checked specification of the faults that we consider and those we do not.
Let us first define a type that contemplates all possible faults in our fault model:
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data Fault= StarTrackerBatteryError
| StarTrackerFixNotFound
| StarTrackerProcessingError
| ...

deriving (Ord, Eq)

We now use sets with union and the empty set as the monoidal operations for the fault
tolerance monad, so our starTrackerSense′ function becomes

starTrackerSense′ :: MSF (FaultToleranceT (Set Fault) m) () StarInfo
starTrackerSense′ = starTrackerSense ≫ arrM

(liftUnreliableT
[StarTrackerBatteryError
, StarTrackerFixNotFound
, StarTrackerProcessingError
]

)

We assume that imuSense′ changes accordingly. Like in previous occasions, our main
function changes its type, but the definition remains the same. This demonstrates a key
strength of MSFs to specify and extend reactive systems with additional features:

controlSystemStep′ :: Attitude→MSF (FaultToleranceT (Set Fault) m) Attitude [Action]
controlSystemStep′ initialAttitude= proc (desiredAttitude)→ do

stars ← starTrackerSense′ −≺ ()
inertialInfo← imuSense′ −≺ ()
attitude ← feedback initialAttitude (arr (dup ◦ calculateAttitude))

−≺ (stars, inertialInfo)
let actions = calculateActions desiredAttitude attitude
returnA−≺ actions

We run one step of this MSF to obtain a list of all possible faults that may have affected
the result. Due to how the monad affects all MSFs connected to the starTrackerSense′, the
top level MSF includes all the faults that may have affected the star tracker:

ghci > embed (runFaultToleranceS $ controlSystemStep′ initialAttitude) [destAttitude]
[(Set [StarTrackerBatteryError, StarTrackerFixNotFound, StarTrackerProcessingError],

, (Action...))]

In Section 4, we introduced voting to eliminate some classes of faults. Let us adapt that
example to this new case, to show the benefits of adding explicit faults. Assuming that this
fault tolerance mechanism only deals with processing errors in the star trackers, but not
with other kinds of faults (e.g., battery errors), we define

starTrackerAvg′ :: MSF (FaultToleranceT (Set Fault) m) () StarInfo
→MSF (FaultToleranceT (Set Fault) m) () StarInfo
→MSF (FaultToleranceT (Set Fault) m) () StarInfo
→MSF (FaultToleranceT (Set Fault) m) () StarInfo
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starTrackerAvg′ starInfo1 starInfo2 starInfo3
= proc ()→ do

( f1, d1)← runFaultToleranceS starInfo1−≺ ()
( f2, d2)← runFaultToleranceS starInfo2−≺ ()
( f3, d3)← runFaultToleranceS starInfo3−≺ ()

-- A receiver fails if it does not work
let handled = [StarTrackerProcessingError]
let faults1= f1 \ handled

faults2= f2 \ handled
faults3= f3 \ handled

let faults= faults1 ‘union‘ faults2 ‘union‘ faults3

arrM (uncurry liftUnreliableT)−≺ ( faults, starTrackerAvg d1 d2 d3)

starTrackerAvg :: StarInfo→ StarInfo→ StarInfo→ StarInfo
starTrackerAvg= ...

Running an adapted version of controlSystemStep′ with this definition would no longer
include StarTrackerProcessingError in the output, but would still include other kinds of
faults. To make sure we do not remove faults that we do not handle, we explicitly list the
faults that this method may deal with and put them in the output.

Because FaultToleranceT is a monad transformer, we can combine this method with
previous ones. For instance, we could state that a value may fail, or, separately, that it may
be slightly inaccurate, using the monad FaultToleranceT (Set Fault) Dist. We could also
use a multiset or a more complex structure to include multiple possible errors of the same
kind and state that the fault tolerance mechanisms can help recover from up to a number of
possible simultaneous faults, but not more. We have decided to include a fixed fault set but,
as demonstrated in Section 3, different faults can be included in the fault set dynamically
during execution.

7 Fault injection and randomized testing

In previous sections, we saw how to annotate reactive networks with different kinds of
reliability information and how fault-tolerant mechanisms needed to manipulate that infor-
mation so that the conclusions that we drew from the system were correct. Normally, the
evaluation of such mechanisms was done manually, based on one or very few samples.

A thorough, systematic evaluation of fault tolerance requires several steps. First, we
must provide a clear description of the reliability or fault information that we wish to cap-
ture about the system. In the case of fault sets and fault models, this implies capturing
what faults are representable in the system and how they manifest. This process depends
on how we model the system itself: some faults may not be distinguishable from others
in our specific model. Second, to be able to evaluate the fault tolerance mechanisms intro-
duced, we must have a way to capture system requirements and test whether a particular
implementation fulfills them. Third, we must be able to evaluate the system in the presence
of faults, by injecting faults during execution or simulation. Finally, we must have a way
of comparing the behavior of the system with no faults present, when faults are injected,
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and when fault tolerance is introduced, to determine if the fault tolerance mechanisms are
sufficient for the conditions expected in the real world.

In this section, we describe how these steps can be achieved in MSFs, using formal-
izations based on temporal logic to capture system properties, using MSFs that inject
faults with different probabilities or that alter the system in a controlled manner, and using
QuickCheck to randomly explore the input space and evaluate the results.

7.1 Injecting faults

In prior sections, we saw how different kinds of fault information can be incorporated in
reactive systems. A thorough exploration of faults in a reactive system requires that we can
inject the different kinds of faults that we consider, in the locations where those faults can
occur. It is therefore a problem of determining how faults affect values and which values
they affect.

Simulating faults. How faults affect values is specific to the fault model we are consid-
ering. In prior examples, we described a fault model that proposed a class of faults known
as malign faults, those in which a value changes in a way that is not trivially detectable. To
evaluate the control systems we defined before, we could, for example, define a fault injec-
tion MSF that changes StarInfo affecting it slightly: enough to affect the mission, but not
enough that the value is clearly out of range. Assuming that we can multiply it by a scalar
with the function (∗ˆ ), and that a variation of 5% is enough to make the value incorrect,
we could implement such a fault injection MSF by the following expression:

transmissiveFault :: MSF (FaultToleranceT (Set Fault) m) StarInfo StarInfo
transmissiveFault = arr (∗ˆ 0.95)

≫ arrM (liftUnreliableT [StarTrackerProcessingError])

We can modify a larger MSF by introducing this kind of fault in different places and
checking whether the fault affects system operations. For example, we can modify the
fault-tolerant star tracker definition on page 19, so that it uses the following MSF for the
first star tracker:

starInfo1′ :: MSF (FaultToleranceT (Set Fault) m) () StarInfo
→MSF (FaultToleranceT (Set Fault) m) () StarInfo

starInfo1′ = transmissiveFault ≪ starInfo1

Of course, in a more realistic scenario, we might want to add faults randomly, only with
certain probability. For example, we could modify transmissiveFault to inject a fault only
50% of the time or to inject a fault whose magnitude follows some random distribution.
Although we could include the probability calculation as part of the MSF itself, it is easiest
to externalize it and rely on existing mechanisms to generate those probabilities, like the
random testing framework QuickCheck. In the following example, we use an ad hoc type
to represent fault injection factors, simply for readability:

data FaultInjection= FaultInjection { faultInjectionFactor :: Double}

https://doi.org/10.1017/S0956796820000118 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000118


22 I. Perez and A. Goodloe

We now make this factor available via a Reader monad and use it to transform the values
by affecting them by a given factor. Like before, we state that the fault information is also
included in the fault set:

tranmissiveFault :: MSF (FaultToleranceT (Set Fault) (ReaderT FaultInjection m))
Double
Double

tranmissiveFault= valueTransformation ≫ faultSetTransformation
where

valueTransformation =
liftTransS (arrM (λi→ (∗i) <$> faultInjectionFactor <$> get))

faultSetTransformation= arrM (liftUnreliableT [TransmissiveFault ])

The above definition makes use of liftTransS, which lifts an MSF operating on a monad
(in this case, ReaderT FaultInjection m) into one operating on a transformer applied to that
monad (FaultToleranceT (Set Fault) (...)).

The difference between this MSF and the previous one is that this MSF exposes a fault
injection interface all the way to the top level. We could use a session to evaluate a reac-
tive system with fault injection with a particular faultInjectionFactor, by just passing the
desired value to runReader when evaluating the top-level monadic result. We could also
use a system with QuickCheck to randomly generate fault injection factors and evaluate a
property of the system.

In principle, the exact same mechanism would work to introduce a benign fault, with
the difference that a benign fault would be large enough to be obviously a fault and not a
good value. Introducing an omissive fault would require a notion of asynchronicity, which
can be incorporated into MSFs in multiple ways, the simplest of which would be make
outputs optional with Maybe. Different ways of introducing asynchronicity in MSFs have
been studied in Perez (2017) and Bärenz & Perez (2018).

Modeling system properties. Evaluating the fault tolerance mechanisms in MSFs
requires specifying the expected observable behavior and comparing it with the actual sys-
tem during simulation. In the case of the prior example starTrackerAvg′, we could define
correct behavior as the result being close enough to the correct value in the presence of
faults.

Like in other kinds of systems, it is possible to insert assertions in MSFs that detect
property violations during simulation. Because MSFs can have additional side effects, we
can use a referentially transparent method to add ad hoc assertions while only affecting the
types of MSF. For example, if assuming that starInfo2 works correctly, we could define
an MSF that verifies that the average calculated by starTrackerAvg′ is close to the perfect
value provided by starInfo2:

ftAssertion
:: MSF (FaultToleranceT (Set Fault) (ReaderT FaultInjection m)) () StarInfo
→MSF (FaultToleranceT (Set Fault) (ReaderT FaultInjection m)) () StarInfo
→MSF (FaultToleranceT (Set Fault) (ReaderT FaultInjection m)) () StarInfo
→MSF (WriterT String (FaultToleranceT (Set Fault) (ReaderT FaultInjection m)))
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() StarInfo
ftAssertion starInfo1 starInfo2 starInfo3=

(avg &&& ref ) ≫ (identity &&& property) ≫ arr fst

where

avg= liftTransS (starTrackerAvg′ starInfo1 starInfo2 starInfo3)−≺ ()
ref = liftTransS (starInfo2)−≺ ()

property= arr closeEnough ≫ arrM (λt→ unless t $ put "Error")

closeEnough (( , dAvg), ( , dRef ))= abs (dAvg− dRef ) < threshold

The above definition makes use of liftTransS, which lifts an MSF operating on a monad (in
this case, FaultToleranceT (Set Fault) m)) to one operating on a transformer applied to that
monad (WriterT String...). The use of the FaultInjection type allows us to provide informa-
tion during simulation (e.g., when calling this MSF with embed) that becomes available to
the internal star tracker with the transmissive fault, without having to be manually routed
down in these signals.

Nevertheless, as the complexity of systems grows, writing and including these assertions
can be cumbersome. Ideally, we would like to use a high-level language to specify system
properties, such as temporal logic, which can be implemented on top of MSFs (Perez &
Nilsson, 2018), both using past-time temporal logic in the form of assertions within our
network, and using bounded future time linear temporal logic from outside the network,
seeing the complete MSF network as a black box.

An MSF equivalent to the previous example could have been defined as the following
LTL specification, with avg, ref and closeEnough defined as before:

ltlProperty= Always (Prop ((avg &&& ref ) ≫ arr closeEnough))

The evaluation of this temporal property can be done using QuickCheck, by generating
multiple input streams and other additional data, with a function evalMSF provided by our
library.

The use of QuickCheck together with temporal logic and fault injection can help answer
multiple questions, like does this property hold if the probability of some kind of fault is X
(where X can be a specific probability, a range, or a distribution).

7.2 Modeling satellite networks

The introduction of faults in MSF architectures can be done in a systematic way, following
the definition of a fault model that classifies the kinds of faults that the system must tol-
erate, as described in Perez et al. (2019). For example, in a satellite swarm that performs
multiple observations of the same event from different locations to provide redundant
measurements, we may be interested in exchanging information to achieve consensus. In
the presence of asynchronicity, transmissive, and omissive faults, consensus may not be
guaranteed.

System model. A way to structure a model of such network is to see satellites as MSFs,
each reading incoming data from sensors and the network, and producing both new
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Fig. 2. Model of a satellite as an MSF.

Fig. 3. Model of a satellite swarm as an MSF network.

messages and a view of their internal state (for debugging purposes) (Figure 2). For exam-
ple, if we assume that the satellites are measuring some numeric value, the value obtained
from sensors could be defined as:

type SensorData=Double

However, to implement distributed fault tolerance, each satellite needs to know which
values other satellites have obtained so far, which we could capture with the following
type, where the first Int represents the id of the satellite:

type SatelliteState= [(Int, Maybe SensorData)]

Satellites can send each other their readings in network messages which are broadcast
to the whole network:

data NetworkMsg= (Int, SensorData)

A satellite processing MSF would then have the following type, as depicted in Figure 2:

type SatelliteMSF m=MSF m (SensorData, [NetworkMsg ])
(SatelliteState, [NetworkMsg ])

With minor additions, we could connect several such MSFs and broadcast outgoing
messages to all other MSFs (satellites) (Figure 3).

Fault model and fault injection. A suitable fault model to explore fault injection in this
architecture is to see faults as benign (trivially wrong) or malign. The latter group can be
further subdivided into omissive faults (messages dropped) and transmissive faults (mes-
sages altered). Just like in previous examples, we can define MSFs that inject different
kinds of faults, depending on some probability factor P available via a Reader monad
(Figure 4).
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Fig. 4. Fault injection MSFs for benign, omissive, and transmissive faults.

Fig. 5. Networks with symmetric (a) and asymmetric (b) fault injection.

Faults can be made symmetric or asymmetric by inserting them in different parts of the
network (Figure 5). Inserting a fault in a message before the message is broadcast to other
nodes will make it symmetric (all nodes will receive the altered message). On the other
hand, injecting a fault in a message after broadcast will only affect a specific node, making
the fault asymmetric.

Requirements and system properties. The use of redundancy can help satellites detect
and mask some of those faults. Properties of distributed consensus can be modeled as
temporal properties, following the same approach presented in this section, and verified
using QuickCheck. Assuming, for the sake of the example, a discrete notion of time, we
define consistency as a combination of two properties (Kshemkalyani & Singhal, 2008):

• Validity: If a satellite s observes a value v at a time t, other satellites will associate
value v to satellite s at time t+ 1.

• Agreement: any two satellites agree on the last known value for a third satellite.

For example, the first property of validity can be captured in past-time temporal logic
as ∀i, j.(©(�(i �= j⇒ same_as_last(i, j, i)))) where we define same_as_last(i, j, v) as the
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temporal expression valuesj(t− 1)[v]= valuesi(t)[v], where t represents the current time
and valuesj(t)[v] represents the state of satellite v at time t as captured by satellite j,
observable as the global output of the network (satellites states in Figure 3). We can eval-
uate this property with QuickCheck by exploring the space of possible satellites (having
QuickCheck randomly generate pairs (i, j) for input streams of different lengths, as well as
different probability factors for different kinds of faults.

7.3 Modeling faults in the Space Shuttle

Let us now model a small part of NASA’s Space Shuttle and demonstrate a fault that
occurred during the STS-124 mission. This is merely a schematic example to illustrate the
ideas in this paper, based on publicly available documents, but it is not based on the actual
system design. For further details, including technical details on the fault that we model
and the components affected, see Driscoll (2008).

In May 2008, a NASA’s Space Shuttle was loading fuel when a fault occurred in the
system: a diode cracked and started behaving like a capacitor. This diode was part of a
box that sends messages, via a multi-drop bus, to four redundant computers. Due to the
way that the diode was behaving, different computers were getting different messages: a
perfect example of what is known as a Byzantine fault (Lamport et al., 1982).

System model. The four redundant computers were connected to a system that determined
the correct value using fault tolerance. We can model this example with the following
MSF, which specifies that the input is sent to all four buses, and their values are made
available to a fault tolerance subsystem:

subsystem :: MSF m Input Output
subsystem= proc i→ do

b1← bus1−≺ i
b2← bus2−≺ i
b3← bus3−≺ i
b4← bus4−≺ i

faultTolSys−≺ (b1, b2, b3, b4)

To prevent faulty computers from affecting the system, the fault tolerance mechanism
would disable or discard values from a computer that had been flagged as faulty.

A schematic model this fault-tolerant system follows. We use the auxiliary functions
ftMask and valid, which calculate, respectively, the result from a number of valid general
purpose computers (GPCs), and whether a value provided by one GPC is close enough to
the ideal to be considered valid.

faultTolSys :: MSF Fault Input Output
faultTolSys= feedback [True, True, True, True]

$ proc ((i1, i2, i3, i4), cs@[c1, c2, c3, c4])→ do
(b1, f1)← runFaultToleranceS gpc1−≺ i1
(b2, f2)← runFaultToleranceS gpc2−≺ i2
(b3, f3)← runFaultToleranceS gpc3−≺ i3
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(b4, f4)← runFaultToleranceS gpc4−≺ i4

let bs= [b1, b2, b3, b4]

-- Use only values from “valid” computers
let bs′ = [b | (b, c)← zip bs cs, c]

-- Calculate most frequent value
let bRef = ftMax bs

cs′ = zipWith (λb c→ c∧ (valid b bRef )) bs cs

-- A receiver fails if it does not work
let handled = [GPCError]
let faults1 = f1 \ handled

faults2 = f2 \ handled
faults3 = f3 \ handled
faults4 = f4 \ handled

let faults= faults1 ‘union‘ faults2 ‘union‘ faults3 ‘union‘ faults4

arrM (uncurry liftUnreliableT)−≺ ( faults, (bRef , cs′))

Injecting faults. While this mechanism handles up to two simultaneous faults in comput-
ers, it does not handle faults in a diode at all. We could modify the definition subsystem
to inject transmissive faults in the buses, by exposing a record with four-fault injection
or probability factors via a Reader monad. By making these factors available to the top
level, we could control not only when a fault is injected, but also that it is not injected
in more than one processor at a time, making it transmissive. Notice that how the signal
affects values can make it benign or malign in our fault classification. Whether all values
are affected by the same amount or not, which is controlled using different fault injection
factors, determines whether the fault is symmetric or asymmetric. By placing one-fault
injection MSF in each bus, we enable the possibility of asymmetry, just like in the prior
example, by placing the fault injection MSFs immediately before each satellite, and after
the broadcast, make the fault asymmetric.

System requirements and temporal properties. When a fault affects a CPU in a way
that the fault tolerance system can detect it, it assumes the CPU is faulty and that it must
be disabled, assuming that the likelihood that the bus or a component before the bus be
faulty is lower than the CPU being faulty. We can check this example using a reference
MSF as “good” value for testing purposes and evaluating the temporal property:

ltlProperty= Always (Prop ((subssytem &&& ref ) ≫ arr (uncurry valid)))

This property fails with a limited number of tests. When two computers have been dis-
carded, then the system can no longer differentiate between a fault in a third computer and
the correct value, which is exactly what happened during the Space Shuttle mission. In
the next section, we will see how we could have obtained a hint during compilation that
this failure could have taken place in our system, by encoding faults as values at type level,
which would have made the fault-tolerant four-way computer not exhibit a single computer
fault, but the subsystem would have included faults in the diode or in the communication
buses.
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7.4 Discussion

This section provides tools for more systematic evaluation of fault tolerance, but its reach
is still limited. For example, the creation of an appropriate fault model is crucial for a
proper evaluation, and it requires expert knowledge in the specific domain. A fault model
is never absolutely complete, and faults may easily be incompletely or incorrectly catego-
rized. Some hazards are not considered probable enough to be included in the fault model,
although new evidence from experiments may require that they be introduced in future
models. The independence between faults in different parts of the system is only guar-
anteed for components in separate FCRs, and with respect to specific faults. For another
example, determining where and how fault tolerance mechanisms can be introduced is a
task that affects not only the behavior of the system, but its weight and cost, and cannot be
done in isolation without requiring a re-evaluation of the mission, potentially affecting the
original requirements.

Generally, at the level of abstraction provided by MSFs, we can always inject faults in
every signal, and we can inject faults that modify values, that drop values, that duplicate
values, and faults that delay values.

Both modeling and injecting these kinds of faults is currently a manual process. There
are two limitations in the current implementation that prevent us from performing fault
injection automatically. The first has to do with characterizing how faults affect values,
in particular due to the full polymorphism of the primitives and combinators in the Arrow
class. Automatically injecting, for example, a transmissive fault would require being able
to alter any value of any type, for which we currently have no mechanism in Haskell. We
could limit MSFs to operate on values we can alter (or serialize/deserialize), possibly using
a type class to capture that constraint. This, however, would limit our language to operate
only on values that instantiate that class, which is currently not allowed by the Arrow class
or by the notation overloading mechanisms available in Glasgow Haskell Compiler (GHC).
A second limitation stems from the fact that, to inject a fault in a network, we must be able
to determine where in the network it is injected, for which we need an understanding of
the structure of the reactive system. Several alternatives exist the most promising being
the use of a deeply embedded Domain Specific Language (DSL), which would allow us
to inspect it and modify it to inject faults, and to compile MSFs into, for example, C code
that could run on an embedded system.

8 Parameterized MSFs

The approach presented in previous sections allows us to conclude an execution with a set
of faults. While useful, that does not provide any static guarantees about the presence or
absence of certain faults: such information is only obtained during execution.

An alternative approach would be to encode specific faults as values at type level. We
can take advantage of dependently typed programming and encode the possible faults at
a particular point using a Set of Faults. In Haskell, existing formalizations of type-level
sets5 make this possible (Orchard & Petricek, 2015).

5 https://hackage.haskell.org/package/type-level-sets
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For example, in our case, we might have wanted to type starTrackerSense′ as follows:

starTrackerSense′ :: MSF
(FaultToleranceT

(Set′[StarTrackerBatteryError, StarTrackerFixNotFound
, StarTrackerProcessingError])

m)
() StarInfo

While this is possible by means of the aforementioned libraries and with multiple type-
dependent extensions in GHC, a crucial observation is that the monad changes. In order
to make this work for MSFs, we need to extend them to support indexed or parametric
monads. In the rest of this section, we extend MSFs accordingly and we return to this point
in the next section to show the definition of this function with type-level fault information.

Let us introduce a new interface to work with MSFs that extend the functions presented
before. For the purposes of understanding, we also introduce a newtype with the definition
of MSF, which we use to give model definitions of the new operations available. In the
rest of the discourse, we assume that this new interface substitutes the previous one.

8.1 Parametric monads

If we specify the set of possible faults for an operation using a closed set, then the Monad
will change if we specify a different set of possible faults. To work around this limitation6,
we opt for parameterized monads, which relax the definition of bind so that the monad can
change. The definition of the type class for parameterized monads is divided into two type
classes:

class Return m where
returnM :: a→m a

class Bind m1 m2 m3 |m1 m2→m3 where
bindM :: m1 a→ (a→m2 b)→m3 b

Multiple authors have explored different monadic notions with different levels of
parametrization, different kinds of constraints, and different categorical meaning. Our goal
is to show that, if the monad is allowed to change, we can easily work with type-level sets
of faults, which addresses many of our concerns. In practice, some of these proposals are
too general, and type systems have trouble giving type signatures to intermediate con-
structs. We have experimented with different approaches to encode this level of flexibility
and we have had most success with effect monads, which add an additional parameter to the
monad m, instead of allowing bind to alter the monad fully. For the rest of the section, we
describe our proposal based on these parameterized monads, also known as polymonads.
Other proposals are discussed in Section 10.

6 We could have opted to specify type-level fault sets as constraints (Set s contains fault Y , as opposed to set
is Set′[Y ]. While this would make the use of parametric monads unnecessary, it would also complicate type
signatures.
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8.2 Parametric MSFs

8.2.1 Basic definitions

Like before, an MSF is a type that represents a step in a synchronous causal transformation
between changing inputs. We define it fully as:

newtype MSF m a b=MSF {step :: a→m (b, MSF m a b)}
The function step takes an input sample and returns, in a monadic context, an output and

a continuation. In general, we assume that m is a parameterized Monad. While the above
type exposes the constructor of MSFs, in general, we discourage users from using it and
provide the following leak-free causal interface to define and combine MSFs.

In this section, we redefine MSFs using the same names that we used before for functions
and combinators. This lets us use the same notation, including arrow proc notation. In prac-
tice, support for re-binding arrow combinators in GHC is limited. Our real implementation
uses different names. This simplification does not affect the validity of our claims.

8.2.2 Pointwise transformations

MSFs can be transformed by applying a pointwise transformation on the input. While
normally this would be Kleisli arrow for a given Monad instance, we use the type classes
Return and Bind to define this function so that the MSF works for parameterized monads:

arrM :: (Return m, Bind m m m)⇒ (a→m b)→MSF m a b
arrM f =MSF $ λa→ f a >>= λb→ returnM (b, arrM f )

Obviously, one can always apply a pure transformation on the input, so we define, for
convenience:

arr :: (Return m, Bind m m m)⇒ (a→ b)→MSF m a b
arr f = arrM (return ◦ f )

8.2.3 Composition

We also provide a way to compose MSFs. This is one of the main differences with respect
to the previous framework, since the monad now changes:

(≫) :: (Return m1, Return m2, Return m3, Bind m1 m2 m3, Bind m2 m2 m2)
⇒MSF m1 a b
→MSF m2 b c
→MSF m3 a c

(≫) (MSF msf1) (MSF msf2)=MSF $ λa→ do
(r1, msf1′)←msf1 a
(r2, msf2′)←msf2 r1
returnM (r2, msf1′≫ msf2′)

8.2.4 Widening

Arrows require a way of applying a transformation to only one input in a pair, leaving the
other input unchanged. This definition is straightforward and follows the one presented
earlier, except that it is specialized for the interface of parameterized monads:
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first :: (Return m, Bind m m m)⇒MSF m a b→MSF m (a, c) (b, c)
first (MSF msf1)=MSF $ λ(a, c)→ do

(b, msf1′)←msf1 a
returnM ((b, c), first msf1′)

We can define second analogously, although it is not primitive and can also be defined
in terms of first as second msf = arr swap ≫ firstM msf ≫ arr swap.

8.2.5 Depending on the past

Finally, and just like before, we provide a way of creating a well-formed feedback loop:

feedback :: (Return m, Bind m m m)⇒ c→MSF m (a, c) (b, c)→MSF m a b
feedback c (MSF msf )=MSF $ λa→ do

((b′, c′), msf ′)←msf (a, c)
returnM (b′, feedback c′ msf ′)

We can also delay the input by one sample, which can be trivially defined in terms of
well-formed feedback:

iPre :: (Return m, Bind m m m)⇒ a→MSF m a a
iPre a0= feedback a0 (arr swap)

where
swap (x, y)= (y, x)

If we make m1≡m2≡m3 in the definitions presented in this section, then the Return
and Bind type constraints simply correspond to standard Monad type class constraints, and
we obtain an interface equivalent to the one provided before for ordinary MSFs.

9 Encoding faults at the type level

Now that we have extended MSFs to work with different monads, let us come back to our
original proposal for fault tolerance monads and present how to extend it to operate with
type-level fault sets.

Throughout the rest of the section, we simplify some functions, eliminating trivial con-
straints from the type signatures. This is limited only to equivalences that can be derived
from the monoid laws.

First, we define monad instances for FaultToleranceT on fault sets, using the definition
of sets as a monoid with union and the empty set as the identity:

instance Monad m⇒ Return (FaultToleranceT (Set′[ ]) m) where
returnM x= return (Empty, x)

instance Monad m⇒ Bind (FaultToleranceT (Set x) m)
(FaultToleranceT (Set y) m)
(FaultToleranceT (Set (x ‘union‘ y) m) where

bindM (set1, v1) f = do (set2, v2)← f v1
return (set1 ‘union‘ set2, v2)
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Example. We use the same definition of Fault as before. Making Faults into type-level
Faults requires the use of several dependent-type programming extensions in GHC that
promote values to the type level. The use of Fault with set requires the definition of an
instance of Cmp, a type-level comparison function akin to compare for instances of Ord,
that used to eliminate duplicates from the set. For convenience, we also define instances
for Show, to inspect specifications using a GHCi session.

In order to represent these instances at the type level in sets, we need to create a proxy
type. This lets us create values of those faults to fill in the type-level set. While we could
opt to use a generic data Proxy a= Proxy definition, the use of a GADT with multiple
value constructors helps the type system deduce the types of type-level sets, making our
specifications potentially more robust.

data F (a :: Fault) where
MkStarTrackerBatteryError :: F StarTrackerBatteryError
MkStarTrackerFixNotFound :: F StarTrackerFixNotFound
MkStarTrackerProcessingError :: F StarTrackerProcessingError

For convenience, we define a type that makes our signatures slightly shorter:

type StarTrackerFaultModel= Set′[F StarTrackerBatteryError
, F StarTrackerFixNotFound
, F StarTrackerProcessingError
]

We can now express that a transformation is supposed to produce a type-level fault.

starTrackerSense′ :: MSF (FaultToleranceT StarTrackerFaultModel m)
() [StarInfo]

starTrackerSense′ = starTrackerSense ≫ arrM
(liftUnreliableT (asSet′[MkStarTrackerBatteryError,

, MkStarTrackerFixNotFound,
, MkStarTrackerProcessingError
]))

We adapt the main control MSF accordingly. Once again, this shows that only the type
changes, but not the definition, which is a key strength of this proposal and of MSFs in
general.

controlSystemStep′ :: Attitude
→MSF (FaultToleranceT StarTrackerFaultModel m) () [Action]

controlSystemStep′ initialAttitude= proc (desiredAttitude)→ do
stars ← starTrackerSense′ −≺ ()
inertialInfo← imuSense′ −≺ ()
attitude ← feedback initialAttitude (arr (dup ◦ calculateAttitude))

−≺ (stars, inertialInfo)
let actions = calculateActions desiredAttitude attitude
returnA−≺ actions
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9.1 Type-level fault tolerance

In this formalization, recovering from a fault now requires eliminating elements from the
fault set. Due to our definition of Monad being based on the union of elements, we need to
pass the MSFs as arguments to another MSF in the same way we did before. This operation
is very similar to the one we defined for value-level sets before except that it uses the API
available for type-level sets:

starTrackerAvg′ :: FaultToleranceT StarTrackerFaultModel m StarInfo
→ FaultToleranceT StarTrackerFaultModel m StarInfo
→ FaultToleranceT StarTrackerFaultModel m StarInfo
→ FaultToleranceT (Set′[ ]) m StarInfo

starTrackerAvg′ starInfo1 starInfo2 starInfo3
= FaultToleranceT $ do

( f1, d1)← runFaultToleranceT starInfo1
( f2, d2)← runFaultToleranceT starInfo2
( f3, d3)← runFaultToleranceT starInfo3

-- Should be empty
let fs= ( f1 ‘union‘ f2 ‘union‘ f3) ‘delete‘

′[MkStarTrackerBatteryError
, MkStarTrackerFixNotFound
, MkStarTrackerProcessingError
]

pure ( fs, starTrackerAvg d1 d2 d3)

starTrackerAvg :: StarInfo→ StarInfo→ StarInfo→ StarInfo
starTrackerAvg= ...

Note that, in this case, we assume that faults of the same kind but different origins (i.e.,
from different redundant devices) are represented differently. If this is not the case, then
the type should be modified to allow for similar faults from different origins, either with
arguments in the type constructor or using a type-level multiset.

The types of MSFs reflect the precise sets of faults that need to be considered. In partic-
ular, the compiler would throw an error if we indicate in the type of an MSF that it does
not need to consider a fault if an internal MSF does need it. This is a key strength of this
proposal: it lets us know, precisely, what can fail and why. Together with the system of
probabilities introduced before, this allows us to specify not only tolerance ranges of our
operations and their probabilities of occurrence, but also the reasons for certain values to be
out of their normal ranges and to require specific operations to recover from those failures.

10 Implementation

We have implemented the extension of MSFs in Haskell and in Idris.

Haskell. The implementation in Haskell builds on a larger body of previously exist-
ing work, which makes it potentially more useful in practice. Due to the fact that these
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parameterized MSFs subsume the already existing abstraction for MSFs, it makes it pos-
sible to define the latter as a special case of the former, making it also possible to test our
work with previously existing programs. Furthermore, because Yampa can also be built on
top of MSFs, this makes our extension usable for existing work on games and interactive
applications.

We have implemented versions of parameterized MSF using both parametric monads
(via the monad-param library) and effect monads (Orchard & Petricek, 2015) (via the
effect-monad). The implementation of these functions, as well as any kind of type-
dependent programming in Haskell with type-level sets, requires the addition of monoidal
laws as type constraints to the types of MSF combinators. In the case of monad-param, the
type system finds it harder to deduce the types of intermediate monads in do-blocks. The
use of additional GHC plugins (Bracker & Nilsson, 2016) facilitates working with these
structures.

The features available in Haskell for dependently typed programming are lim-
ited and mostly enabled via a series of extensions. Our current definitions make
use of AllowAmbiguousTypes, DataKinds, FlexibleContexts, FlexibleInstances, GADTs,
KindSignatures, MultiParamTypeClasses, NoMonomorphismRestriction, TypeFamilies,
TypeOperators, and RebindableSyntax.

Perhaps the biggest limitation in practice is the difficulty in Haskell to prove certain
trivial laws about sets to fulfill the aforementioned constraints, such as that the empty set
is the identity under set union. Effect monads also include the possibility of constrain-
ing the monad, and these constraints are included as invariants in bind and, therefore, in
every monadic computation that uses bind. Incorporating these constraints makes signa-
tures more complex. We expect some of these limitations to go away as new features of
dependently typed programming are introduced in Haskell and they gain more traction
among users. These minor nuances do not impact the process of describing reactive sys-
tems in practice, and the syntax and support available in Haskell for type-level sets make
it relatively convenient to work with this proposal.

The inclusion of type definitions for monoidal constraints on the parameters of effect
monads, which we also followed in this paper, makes some constructions harder. In par-
ticular, we could have used, as the monoid, functions that alter the sets of faults, with
function composition and identity. This would give us a general mechanism to perform
fault tolerance, by removing faults without having to encapsulate an MSF in another to
make it “safe”. We have experimented with creating this extension, but the arity of the
Effect type class and the definition of a proper Unit type make this approach unsuccessful.
We have found similar problems when working with constrained monads as provided by
the supermonads library (Bracker & Nilsson, 2016).

Idris. We have implemented a basic prototype of MSFs also in Idris, similarly to the one
in Haskell. The existence of libraries to work with sets and with probabilities, based on the
ones we find in Haskell, make the implementation relatively straightforward.

Idris expects certain functions to be total. Due to our basic type being coinductive and
due to the flexibility in the monad, proofs of properties of MSFs and our extensible MSFs
would require constraining the monad to be strictly positive. Basic proofs of Arrow laws
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already exist (Bärenz et al., 2016), and a verified proof of these and other properties
remains as future work.

In spite of Idris being a dependently typed language and making it easier to work with
values at the type level and to define type functions, similar obstacles were found when
trying to define operations that worked on type-level sets of faults. Proofs of some of these
laws had to accompany the implementation, and some of the simplest ones (e.g., union
with the empty set does not change a set) remain as future work7. This is simply a result
of our type-level encoding of sets being based on sorted, balanced trees, which makes it
harder to write proofs of equality between sets.

11 Related work

In this paper, we have presented a technique to bring fault tolerance information to the
types of monadic computations. We have expressed two kinds of fault tolerance informa-
tion: runtime information and compile-time information. The use of runtime information
is more suitable when the information changes over time, or when the type system is not
powerful enough to make deductions based on this information. The use of compile-time
information is more appropriate for data that do not vary dynamically, and that is simple
enough for the compiler to analyze it and manipulate it.

Our work falls in the intersection between fault tolerance, type systems, and func-
tional programming. However, many aspects of fault tolerance are not addressed by this
paper. For example, we have not discussed techniques to determine which faults to con-
sider, or how to define and delimit FCRs, or fault detection and masking algorithms, error
recovery, or proofs of consensus and agreement. For an in-depth description of the field,
see Avižienis (1967, 1976) and Butler (2008).

Functional programming. The use of functional languages in critical systems is not new.
OCaml has been used to implement compilers and tools (Pagano et al., 2009) that

comply with strict aviation guidelines (RTCA, 2011).
In the area of Haskell, specifically, we find that the language has been used both for code

generation from embedded DSLs and for verification. Copilot (Pike et al., 2010, 2012)
is a constrained domain-specific language specify runtime monitors that detect property
violations on stream-based C applications. The language is implemented as a Haskell DSL
whose execution generates correct C code. This effort is complementary to our proposal,
as runtime monitors seek to detect faults during execution (as opposed to specifying them
in the types and check them during compilation). In theory, it might be possible to combine
both frameworks and provide a variant in which external data streams are tagged with the
kinds of unhandled faults that may have affected them.

Huch and Norbisrath introduce an extension to Haskell for distributed program-
ming (Huch & Norbisrath, 2000). This extension provides some elementary facilities to

7 Idris defines a keyword, believe_me, which allows us to defer proving the most basic statements. Care has
been taken to minimize the use of this keyword to only laws that we know from other fields to be true. The
framework computes the type-level sets of faults correctly, and lack of these proofs does not invalidate the
claims of this paper or the usefulness of this work.
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tolerate specific kinds of faults in message passing applied to distributed networks. The
definition of fault tolerance that Huch and Norbirath use is, however, restricted to software
implementations, and much narrower than the one presented in Avižienis (1967). In par-
ticular, it does not consider general fault detection and masking, the definition of FCRs,
the specification of clear fault models, or the use of type systems to guarantee compli-
ance with a fault model. Cloud Haskell (Epstein et al., 2011) includes primitives to handle
fail-stop faults in software processes, similar to the supervisor mechanism provided by
Erlang (Vinoski, 2007), but does not use type-level programming to capture properties of
the type model and guarantee that all the faults in the fault model are handled properly.
Glasgow distributed Haskell (GdH) is a Haskell extension for distributed systems (Trinder
et al., 2000). The authors do identify the same key aspects of fault tolerance that we work
with, but they only deal with runtime aspects and do not use the type system to detect
potential faults. Furthermore, the way that some faults are addressed (re-execution) does
not guarantee that the system tolerates that class of faults, and at best transforms fail-stops
into delays. Depending on the timing requirements of the system built on top of GdH, long
delays might still constitute serious faults. This makes the proposed approach limited in its
fault tolerance, and further analysis and a clear fault model are needed. Haskell distributed
parallel Haskell (HdpH) (Stewart, 2013; Stewart et al., 2013; Maier et al., 2014; Stewart
et al., 2016) is a variant of distributed parallel Haskell for reliable computation. HdpH does
provides monitoring and recovering capabilities but, like other proposals for distributed
Haskell, its fault tolerance mechanisms are applied during runtime, not during compile
time, and it does not provide a mechanism to verify the correct handling of fault classes.

Stream programming in critical systems. Synchronous dataflow programming lan-
guages have been used to specify well-formed stream-based mission critical systems.
Esterel (Boussinot & De Simone, 1991) is a synchronous language with formally veri-
fied semantics that has been used in avionic software development (Berry et al., 2000).
Scade (Dormoy, 2008) is a language and set of tools based on Lustre (Halbwachs et al.,
1991) that provides static analysis and verification. These languages are based on an under-
lying notion of stream programming, which is complementary to our proposal. Just like
with Copilot, these synchronous languages could be extended with a notion of explicit
type-level fault tolerance.

Monads and effects. Types like Maybe, Either and list have been used often to capture
failures or exceptions in lazy functional languages (Spivey, 1990; Wadler, 1985). The
difference between these types and our proposal is that these types assume that failures
can be detected, whereas we do not work under that assumption. Nevertheless, there is
a class of failures, termed omissive or benign, defined as those that can be detected as
failures, and key in the design of fault-tolerant systems is to add redundancy to make
some undetectable or transmissive faults detectable or omissive. The combination of an
exception monad with a fault tolerance monad could provide a very explicit description of
all the faults that are not handled, and, of those that are handled, a partitioning between
transmissive and omissive failures.

Mechanisms like extensible effects (Kiselyov et al., 2013) have been proposed as a com-
posable alternative to monad transformers (Liang et al., 1995). Their use and, especially,
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the possibility of combining different kinds of effects irrespective of their stacking order
might ease the specification of mechanisms for fault tolerance at different architectural lev-
els. We have explored the use of effect monads or graded monads (Orchard et al., 2014),
polymonads (Bracker & Nilsson, 2015), and supermonads (Bracker & Nilsson, 2016). We
have not explored the use of unconstrained indexed monads (Katsumata, 2014; Orchard &
Petricek, 2014). The use of some of these constructs could also help represent MSFs that
account for the duration of processing a value, or that contain type-level information on
how much history of a stream must be kept in memory. Alternatives can also be found in
dependently typed languages like Idris, with different proposals to compose effects (Brady,
2013).

Formal methods in critical systems. The Prototype Verification System (PVS) is a
dependently typed specification language and an associated theorem prover (Owre et al.,
1992, 1996, 1999). PVS has been used in multiple critical systems and fault toler-
ance (Rushby, 2006). To name a few areas of application, PVS has been used to verify
interactive consistency algorithms that handle Byzantine faults (Lincoln & Rushby, 1993,
1994) and clock synchronization algorithms (Pfeifer et al., 1999). In aerospace, an area that
is heavily regulated, PVS has been used for fault tolerance in aircraft control systems (RW,
1996; Dutertre & Stavridou, 1997; Di Vito, 1999), and manned and interplanetary space-
crafts (Di Vito, 1996; Di Vito & Roberts, 1996; Crow & Di Vito, 1998). To the best of
our knowledge, no work attempts to use PVS’s type system to capture unhandled faults
or provide a partitioning of the fault space based on the fault tolerance mechanisms of the
subsystems used.

Formal verification has also been used to prove properties of seL4 (Klein et al., 2009,
2014), an L4 microkernel implementation that has been verified in Isabelle/HOL. While
the goal of seL4 is to provide a kernel that is proven free from programming errors, it has
been extended with a fault-tolerant real-time scheduler (Xu et al., 2016) that handles some
timing faults caused by hardware or software failures.

Our work presents methods to compute reliability factors analytically, and also test and
verify systems as a black box, with a focus on producing systems that are proven correct
by design. The calculation of actual reliability factors based on the errors produced by a
system during testing has been deemed misleading (Butler & Finelli, 1993), due to inaccu-
racies in the results and the large number of tests needed to verify ultra-reliability. Earlier
examples in which reliability factors are added as part of a fault tolerance monad currently
work only for systems in different FCRs or without common cause faults. The approach to
testing presented in Section 7 can be adapted to introduce common cause faults, but it does
not otherwise reduce the large number of tests needed to explore to verify ultra-reliable
systems.

12 Future work

This work has presented a simple approach at capturing aspects of fault tolerance in reac-
tive and FRP Haskell. We have shown how to tag existing reactive transformations with
reliability factors, with probabilities and with a sense of the possible unhandled faults that
may have affected a result. We have demonstrated this approach by averaging the results
from multiple sensors, thus increasing the reliability of the results. We have indicated how
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these fault tolerance mechanisms can be evaluated in a systematic manner, by capturing
system properties using temporal logic and by injecting different faults at different points
in the network. We have also shown that, with dependently typed programming, we can
move some of this information to the type level and carry out compile-type analysis of
the faults that may affect a reactive system. We have given a schematic definition of
an extended reactive framework to handle parameterized monads, which we have imple-
mented also using different monadic extensions in Haskell and in Idris. This extension
does not require adaptations to handle fault tolerance, and all the proposals explored in
this paper are defined orthogonally in separate monads, which is a key strength of our
proposal.

We are currently investigating if it would be possible to use this proposal to describe
some of the control systems in small, unmanned aircrafts. While the use of Haskell itself
during runtime may not be tolerable due to the lack of real-time guarantees imposed by
the garbage collector, compiling a reactive network to C or another language may produce
better results. The commonalities between FRP frameworks, MSFs, and stream-based sys-
tems like Copilot (Pike et al., 2010) suggest that there may be an underlying abstraction
that could be used to represent time-varying systems more generally and later verify, test,
simulate or compile as desired. Also, using a stream framework in which data processors
can be replaced during execution would facilitate using QuickCheck to study the behavior
of the system when internal components malfunction.

Our use of reliability factors was done at execution level, but we have recently suc-
cessfully used a similar approach to add rational numbers at the type level and obtain
static information about reliability, and a compile-time understanding of the probabilities
of different kinds of failures. The use of a dependently typed language, like Idris, would
facilitate operating on rational numbers at the type level, and is obtaining compile-time
reliability factors.

The fault tolerance mechanisms proposed all work similarly: faults are reversed (i.e.,
reliability factors are inverted, faults removed from sets, etc.). All the proposals included
in this paper can be expressed more generally in terms of noncommutative rings. We
expect this to let us generalize the recovery and fault tolerance mechanisms. A common
mechanism in fault tolerance is the re-execution of transactions when failures are detected,
something that monads like STM already provide. In terms of fault tolerance, we have left
aside the study of faults that are related to other faults, as well as timing faults. Dependent
probabilities can already be expressed in our proposal. Nevertheless, we expect to explore
this further in the future, in combination with ongoing work on MSFs with type-level
clocks (Bärenz & Perez, 2018) and integration with QuickCheck.
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