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SYSTOLIC FILLINGS OF SURFACES
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Abstract

A filling of a closed hyperbolic surface is a set of simple closed geodesics whose complement is a disjoint
union of hyperbolic polygons. The systolic length is the length of a shortest essential closed geodesic
on the surface. A geodesic is called systolic, if the systolic length is realised by its length. For every
g ≥ 2, we construct closed hyperbolic surfaces of genus g whose systolic geodesics fill the surfaces with
complements consisting of only two components. Finally, we remark that one can deform the surfaces
obtained to increase the systole.
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1. Introduction

Fillings of surfaces have become increasingly important in the study of the mapping
class groups, Teichmüller spaces and moduli spaces of surfaces which have their origin
in the work of Thurston [5]. Let Mg denote the moduli space of oriented closed
hyperbolic surfaces of genus g. It is a very well known and difficult problem to
construct a spine of Mg. Thurston has proposed the set χg (so-called Thurston set)
of all closed surfaces Fg of genus g, whose systolic geodesics fill the surface, as
a candidate spine of Mg and has provided a sketch of a proof [5]. But the proof
is difficult to complete. Moreover, many things about the set χg are unknown, for
example connectivity, dimension and contractibility.

Fillings of surfaces have been studied extensively by Alexander, Parlier and Pettet
[1, 2], Aougab and Huang [3] and others. In [2], the authors bound the cardinality of
a filling set of systolic geodesics from below by π

√
g(g − 1)/log(4g − 2) [2, Theorem

3]. Anderson, Parlier and Pettet have constructed a sequence of surfaces Sgk in the
Thurston set χgk with large Bers constant, where gk is large enough [1, Theorem
1.1]. Furthermore, they have studied the shape of χg, comparing it with the set Yg
of trivalent surfaces, by giving a lower bound on the Hausdorff distance between χg
and Yg (see [1, Section 4]).

More recently, Fanoni and Parlier have studied fillings of punctured surfaces [4].
They have constructed hyperbolic surfaces of signature (0, n) for n ≥ 4, with a filling
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set of systolic geodesics of cardinality n [4, Proposition 5.3]. Furthermore, they
have shown that the cardinality of a filling set of systoles of a surface Sg,n is at least
π(4g − 4 + n)/4l, where l is the systolic length [4, Theorem 4].

In this article, we construct closed hyperbolic surfaces with systolic fillings. More
precisely, for genus g = 2, we construct a hyperbolic surface S2 (the so-called Bolza
surface), where the set of all systolic geodesics has cardinality 12 and provides
a triangulation of the surface. In [2], Anderson, Parlier and Pettet have already
constructed hyperbolic surfaces with 2g + 2 systolic geodesics filling the surface and,
furthermore, there are subsets with cardinality 2g of these 2g + 2 systolic geodesics
filling the surface. What is new here is that, for each g ≥ 3, we construct a hyperbolic
surface Sg of genus g, whose set of systolic geodesics has exactly 2g curves and fills
the surface (see Theorem 4.1). Furthermore, for g ≥ 3, these are the surfaces with
the minimum number of systolic geodesics among such surfaces in χg that are known
so far. Our construction is combinatorial and uses decorated fat graphs. Finally, we
remark that one can deform these surfaces Sg, g ≥ 3, continuously in the Thurston set
to increase the systolic lengths.

2. Preliminaries

In this section, we recall some notions on fat graphs and systoles (the shortest
length essential geodesics) of surfaces and discuss the connection between them. We
conclude the section with a proof of Proposition 2.1 on hyperbolic polygons, which
will be used in the subsequent sections. The idea behind the proof of this proposition
is similar to the proof of [4, Proposition 5.3].

A fat graph is a graph equipped with a cyclic order on the set of edges emanating
from each vertex. If the degree of each vertex of a fat graph is even and at least four,
then we call it a decorated fat graph. A cycle in a decorated fat graph is called a
standard cycle if every two consecutive edges in the cycle are opposite each other with
respect to the cyclic order on the set of edges emanating from their common vertex.
For more details on fat graphs, we refer the reader to [7, Section 2].

A surface S will always be a closed Riemann surface with constant curvature
−1; such a surface is called a hyperbolic surface. A filling of S is a set of simple
closed geodesics whose complement is a disjoint union of polygonal regions. For a
nonnegative integer k, the kth complexity Tk(Ω) of a system of curves (in particular, a
filling system) Ω on a surface S is defined as the number of elements in{

γ ∈ C(S ) \Ω

∣∣∣∣∣ ∑
δ∈Ω

i(γ, δ)| = k
}
,

where C(S ) denotes the set of all simple closed geodesics on S and i(γ, δ) denotes the
geometric intersection number between γ and δ on S .

The systolic length sys(S ) of a hyperbolic surface S is the length of a shortest
essential geodesic on the surface. A simple closed geodesic on S realising sys(S )
is called a systolic geodesic or, simply, a systole. The set of all systolic geodesics of S
is denoted by SLG(S ). We are interested in the surfaces S , where SLG(S ) is a filling.
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Figure 1. The polygon Pn.

Given a filling Ω of a surface S , it naturally corresponds to a decorated fat graph
Γ(Ω), where the vertices are the intersection points of the curves in Ω, the edges are
the subarcs of the curves in Ω between the vertices, and the fat graph structure is
provided by the orientation of the surface. The standard cycles of Γ(Ω) correspond
to the curves in Ω as the curves in a filling are pairwise in minimal position and, in
particular, intersect transversally.

Proposition 2.1. Let Pn be a right-angled regular hyperbolic n-sided polygon, where
n ≥ 5. If x and y are two nonconsecutive sides of Pn, then

dH(x, y) ≥ tn, (2.1)

where tn is the length of a side of Pn and dH is the distance function on the hyperbolic
plane H. Furthermore, the inequality in (2.1) is strict if and only if the minimum
number of sides between x and y in Pn is greater than one.

Proof. First, we compute the length tn. Any two consecutive vertices and the centre
of Pn form a hyperbolic triangle with the interior angles π/4, π/4 and 2π/n. The side
opposite the vertex with interior angle 2π/n is the side of Pn in the triangle. Thus,
using the hyperbolic cosine rule II (see [6, Section 7.12]) on this triangle,

tn = cosh−1
(cos2(π/4) + cos(2π/n)

sin2(π/4)

)
= cosh−1

(
1 + 2 cos

(2π
n

))
.

Let dn be the length of the perpendicular from the centre to a side of Pn (see Figure 1).
From [6, Theorem 7.11.3],

dn = cosh−1
( 1
√

2 sin(2π/n)

)
.

Now consider two nonconsecutive sides x and y of Pn. Let k be the minimum number
of edges in Pn between x and y. If k = 1, then the distance dH(x, y) is realised by the
length of the side between them which is the common perpendicular of x and y and,
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therefore, equality holds in (2.1). Next we assume that k ≥ 2. Let lk be the common
perpendicular of x and y. The perpendiculars from the centre of Pn to x, y, together
with the arcs of x, y and lk, form a pentagon in which all the angles are right angles
except the interior angle at the centre which is equal to 2(k + 1)π/n. The perpendicular
from the centre to lk divides the pentagon into two congruent sharp corners (Lambert
quadrilateral) with the only non right angle equal to (k + 1)π/n (see Figure 1). Now,
using [6, Theorem 7.17.1, formula (ii)] on the sharp corner,

cosh(lk/2) = cosh dn sin((k + 1)π/n),

which implies that lk > lk′ , if k > k′. In particular, lk > l1 = tn for all k > 1, which
completes the proof. �

3. Genus two

In this section, we construct a hyperbolic surface of genus two (which is the so-
called Bolza surface) in χ2. We prove the following theorem.

Theorem 3.1. There exists a closed hyperbolic surface S2 of genus two such that:

(1) SLG(S2) provides a triangulation of S2 and, in particular, S2 ∈ χ2;
(2) |SLG(S2)| = 12;
(3) sys(S2) = 2 cosh−1(1 +

√
2); and

(4) Ti(SLG(S2)) = 0 for 0 ≤ i ≤ 5.

Proof. Let us consider a decorated fat graph Γ2 with four standard cycles, as given
in Figure 2. A simple Euler characteristic argument implies that the genus of the fat
graph is two.

The graph Γ2 has two boundary components, which are given by

∂1 = a1d2c̄2b̄2ā2d̄1c1b1 and ∂2 = ā1b2c̄1d̄2a2b̄1c2d1.

Now, consider two labelled right-angled regular hyperbolic polygons Pi = Pi(∂i) for
i = 1, 2, as shown in Figure 3, which correspond to the boundaries of Γ2. Note that the
boundary words of the polygons provide a side pairing.

The polygons P1 and P2, with the labellings as indicated in Figure 3, project onto
a closed hyperbolic surface of genus two when we glue the edges labelled by the
same letter with the same subscript by hyperbolic isometries. We denote the resulting
surface by S2.

The sides {a1, a2}, {b1, b2}, {c1, c2} and {d1, d2} project onto simple closed geodesics
on S2. We denote these geodesics by a, b, c and d, respectively, and define

Ω2 = {a, b, c, d}.

Let γ̃i
j be the geodesic segments on the polygon Pi joining two diagonally opposite

vertices labelled by v j, where i = 1, 2 and j = 1, . . . , 4 (see Figure 3). The geodesic
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Figure 2. The graph Γ2.

Figure 3. Labelled polygons P1 and P2.

segments γ̃i
j project onto simple closed geodesics on S2; we denote these geodesics by

γi
j. Now we define

X2 := Ω2 ∪ {γ
i
j | i = 1, 2 and j = 1, . . . , 4}.

Next, we prove two lemmas.

Lemma 3.2. If t is the hyperbolic length of each side of Pi and d is the distance between
two diagonally opposite vertices, then

cosh t = cosh(d/2) = 1 +
√

2.
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Proof. Consider the hyperbolic triangle T with vertices at any two consecutive vertices
and the centre of the polygon Pi. Then T is an equilateral triangle with each interior
angle π/4. Using the hyperbolic cosine rule II (see [6, Section 7.12]),

cosh t = cosh(d/2) =
cos2 (π/4) + cos (π/4)

sin2 (π/4)
= 1 +

√
2. �

Lemma 3.3. Length(α) = 2 cosh−1(1 +
√

2) for all α ∈ X2.

Proof. Suppose α ∈ X2. Then its length is either d, if α = γi
j, or 2t, if α ∈ Ω2. In both

of these cases, it follows from Lemma 3.2 that length(α) = 2 cosh−1(1 +
√

2). �

The set X2 is a filling of S 2 with |X2| = 12 and it provides a triangulation of S 2. The
proof of (1), (2) and (3) of Theorem 3.1 will be completed once we prove the following
claim.

Claim 3.4. SLG(S 2) = X2.

Proof of Claim 3.4. The subset Ω2 ⊂ X2 is a filling of S 2 with complement P1 and
P2. It is straightforward to see in Figure 3 that each pair of edges labelled by the same
letter with the same subscript is in a different polygon, which implies that, if γ is a
simple closed geodesic, then it intersects the union of the curves in Ω2 at least twice,
that is, Tk(Ω2) = 0, if k ≤ 1.

Let γ ∈ C(S 2) \ X2. Then γ cannot cross only two consecutive sides of Pi, otherwise
it would be null homotopic. Hence, it crosses two nonconsecutive sides x, y. Therefore,
by Proposition 2.1, we have length(γ) ≥ 2dH(x, y), which implies that length(γ) > 2t1 =

2 cosh−1(1 +
√

2). Therefore Lemma 3.3 yields the claim. �

Now we focus on the proof of (4) of Theorem 3.1. Let γ be a simple closed geodesic
on S2 which is not in SLG(S2). Then γ intersects two nonconsecutive sides of Pi,
which implies that

∑
α∈Ω2

i(γ, α) ≥ 2 and
∑
α∈SLG(S 2)\Ω2

i(γ, α) ≥ 4. Therefore we have∑
α∈SLG(S 2) i(γ, α) ≥ 6 and Ti(SLG(S 2)) = 0, for i = 0, 1, . . . , 5. �

4. Higher genus

In this section, we consider the closed surfaces of genus g ≥ 3. We prove the
following theorem.

Theorem 4.1. Let g ≥ 3 be any integer. There exists a closed hyperbolic surface Sg of
genus g, such that:

(1) SLG(Sg) fills S g, and, in particular, Sg ∈ χg;
(2) |SLG(Sg)| = 2g;
(3) the complement of SLG(Sg) in Sg is the disjoint union of two right-angled

hyperbolic regular polygons;
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(4) sys(Sg) = 2t4g, where t4g is given in Proposition 2.1; and
(5) Ti(SLG(Sg)) = 0, if i < 2.

The proof of Theorem 4.1, depends on the following essential proposition.

Proposition 4.2. There exists a filling Ωg of the closed topological surface Σg of genus
g such that:

(1) |Ωg| = 2g;
(2) Tk(Ωg) = 0, if k ≤ 1; and
(3) the number of connected components in Σg \Ωg is two.

Proof. Consider the decorated 4-regular graph Γg = (E,∼, σ1, σ0) given by:

(1) E = {a′i , a
′′
i , ā

′
i , ā
′′
i | i = 1, 2, . . . , 2g};

(2) V = E/∼ = {vi | i = 0, 1, . . . , 2g − 1}, where

vi =


{ā′1, a

′′
2g, a

′′
1 , ā

′
2g} for i = 0,

{a′i , a
′′
i+1, ā

′′
i , ā

′
i+1} for i = 1, . . . , 2g − 2,

{a′2g−1, ā
′′
2g, ā

′′
2g−1, a

′
2g} for i = 2g − 1;

(3) σ1(a′i) = āi and σ1(ā′i) = a′i and σ1 is similarly defined on {a′′i , ā
′′
i }, i = 1, . . . 2g;

(4) σ0 =
∏2g−1

i=0 σvi , where σv0 = (ā′1, a
′′
2g, a

′′
1 , ā

′
2g), σv2g−1 = (a′2g−1, ā

′′
2g, ā

′′
2g−1, a

′
2g) and

σvi = (a′i , a
′′
i+1, ā

′′
i , ā

′
i+1), for 2 ≤ i ≤ 2g − 2.

Note that, for a formal definition of a fat graph and examples with such descriptions
of fat graphs, we refer the reader to [7, Section 2].

The fat graph Γg has 2g standard cycles and the set of standard cycles is given by

SC(Γg) = {ai = [(a′i , a
′′
i )], i = 1, . . . , 2g}.

The fat graph has two boundary components δ1, δ2 given by

δ1 = a′′2g︸︷︷︸
1

, ā′′2g−1, . . . , ā
′′
3 , ā

′′
2 , ā

′′
1 ,︸                    ︷︷                    ︸

2g−1

ā′2g,︸︷︷︸
1

a′2g−1, . . . , a
′
3, a
′
2, a
′
1︸                  ︷︷                  ︸

2g−1

and (4.1)

δ2 = ā′1, a
′′
2 , ā

′
3, a
′′
4 , . . . , a

′′
2g−2, ā

′
2g−1,︸                                 ︷︷                                 ︸

2g−1

ā′′2g,︸︷︷︸
1

a′′1 , ā
′
2, a
′′
3 , ā

′
4, . . . , ā

′
2g−2, a

′′
2g−1,︸                                 ︷︷                                 ︸

2g−1

a′2g︸︷︷︸
1

. (4.2)

A simple Euler characteristic argument implies that the genus of Γg is g. Let Σg be the
oriented closed topological surface obtained by attaching a topological disc to each
boundary component of the fat graph. The set of standard cycles of Γg provides the
required filling set Ωg of Σg, where the boundary components δ1 and δ2 correspond to
the components in the complement of the filling. �
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Proof of Theorem 4.1. Let us consider two regular right-angled hyperbolic 4g-sided
polygons Pg and Qg equipped with a side pairing given by the boundary words

ω(δ1) = a′′2g︸︷︷︸
1

ā′′2g−1 . . . ā
′′
3 ā′′2 ā′′1︸              ︷︷              ︸

2g−1

ā′2g︸︷︷︸
1

a′2g−1 . . . a
′
3a′2a′1︸             ︷︷             ︸

2g−1

and

ω(δ2) = ā′1a′′2 ā′3a′′4 . . . a
′′
2g−2ā′2g−1︸                        ︷︷                        ︸

2g−1

ā′′2g︸︷︷︸
1

a′′1 ā′2a′′3 ā′4 . . . ā
′
2g−2a′′2g−1︸                        ︷︷                        ︸

2g−1

a′2g︸︷︷︸
1

of the polygons Pg and Qg, respectively, which are the same as the boundaries given
in equations (4.1) and (4.2) in the proof of Proposition 4.2. We obtain the closed
hyperbolic surface Sg of genus g by gluing the side pairing of the polygons Pg and
Qg using hyperbolic isometries. The sides of Pg,Qg labelled by a′i , a

′′
i , ā

′
i , ā
′′
i project

to simple closed geodesics ai, i = 1, 2, . . . , 2g, on Sg. The length of ai is twice
the length of a side of Pg, which is equal to 2t4g by Proposition 2.1. We define
Ωg = {ai | i = 1, 2, . . . , 2g}. Now we claim that SLG(Sg) = Ωg. The rest of the proof
follows from the next lemma. �

Lemma 4.3. Let γ be an essential simple closed geodesic on Sg with the property that
γ < {ai | i = 1, 2, . . . , 2g}. Then

length(γ) > 2t4g.

Proof. It is easy to see in the boundary words ω(δ1) and ω(δ2) that each pair of edges
with identical labelling is in a different polygon, which implies that Tk(Ωg) = 0 for
k ≤ 1. Therefore γ intersects the union of curves in Ωg at least twice.

If γ is the projection of a geodesic arc joining two opposite vertices in the polygons,
then

length(γ) = 2 cosh−1
(1 + cos (π/2g)

sin (π/2g)

)
> 2 cosh−1

(
2 + 2 cos

π

2g

)
(since g ≥ 3)

> 2 cosh−1
(
1 + 2 cos

π

2g

)
= 2tg.

If γ intersects only two consecutive sides of the polygons, then it will be
homotopically trivial. In the remaining cases, γ intersects two nonconsecutive sides
x, y, say. Let n(x, y) be the minimum number of sides of the polygon between x and y.
We choose x and y so that n(x, y) is maximum. For such a choice, we have n(x, y) > 1;
otherwise γ will be one of the curves in Ωg. Therefore, by Proposition 2.1,

length(γ) ≥ 2dH(x, y) > 2tg. �

Remark 4.4. Let Pg(ε) and Qg(ε) be two hyperbolic 4g-gons, g ≥ 3, with alternative
angles π/2 + ε and π/2 − ε and side length tg(ε), where

tg(ε) = cosh−1
(cos ε + 2 cos(π/2g)

cos ε

)
.
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Figure 4. The polygons Pg(ε),Qg(ε) and a local picture at the vertex v1 on S g(ε).

Such polygons can be obtained by attaching together 4g copies of hyperbolic triangles
with interior angles π/4 + ε/2, π/4 − ε/2 and π/2g in an appropriate way. Note that
it is straightforward to see that tg(ε) is a monotonically increasing function in ε. We
consider the side pairing given by the boundary words

ω(δ1) = a′′2g︸︷︷︸
1

ā′′2g−1 . . . ā
′′
3 ā′′2 ā′′1︸              ︷︷              ︸

2g−1

ā′2g︸︷︷︸
1

a′2g−1 . . . a
′
3a′2a′1︸             ︷︷             ︸

2g−1

and

ω(δ2) = ā′1a′′2 ā′3a′′4 . . . a
′′
2g−2ā′2g−1︸                        ︷︷                        ︸

2g−1

ā′′2g︸︷︷︸
1

a′′1 ā′2a′′3 ā′4 . . . ā
′
2g−2a′′2g−1︸                        ︷︷                        ︸

2g−1

a′2g︸︷︷︸
1

,

as in the proof of Theorem 4.1 (see Figure 4 for the case when g = 3).
We denote the surface provided by the configuration above by Sg(ε), and we denote

the set of simple closed geodesics which are the projections of the boundary sides of
these polygons by Ωg(ε) = {ai(ε) | i = 1,2, . . . ,2g}. By arguments similar to those in the
proof of Theorem 4.1, SLG(Sg(ε)) = Ωg(ε) for 0 ≤ ε < π(g − 2)/2g, and sys(Sg(ε)) =

2tg(ε). Thus we have a continuous family of surfaces {S g(ε) | 0 ≤ ε < π(g − 2)/2g} in
the Thurston set χg with the property

sys(Sg(t1)) < sys(S g(t2)) when 0 ≤ t1 < t2 <
π(g − 2)

2g
,

and hence a deformation in the Thurston set which increases the systolic length.
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