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NILPOTENT EXTENSIONS OF ABELIAN/^-GROUPS 

JOSEPH BUCKLEY AND JAMES WIEGOLD 

This paper arose out of an attempt to solve the following problem due 
to Suprunenko [5, Problem 2.77]. For which pairs of abelian groups A, B is 
every extension of A by B nilpotent? We obtain complete answers when A 
and B are /^-groups and (a) A has finite exponent or (b) B is divisible or (c) 
A has infinite exponent, is countable and B is non-divisible. The structure 
of a basic subgroup of A plays a central role in cases (b) and (c). 

1. Introduction. At the outset we must say that the problem is too 
difficult to solve in complete generality. If G/A = 2?, then the nilpotency 
of G depends solely on properties of the associated homomorphism 
0.B —» Aut A. Thus for instance if A is torsion-free and B finite, G is 
nilpotent if and only if the extension is a central one, and we would need 
detailed information on finite subgroups of the group Aut A. Such 
information is scanty apart from isolated results about free abelian groups 
of low rank. One could cite the examples of J. de Groot [2] of torsion free 
A for which Aut A is of order 2. Similar comments apply when A is a 
/?-group and B a g-group for distinct primes p, q\ nilpotent extensions 
again have to be central. 

Thus we have focused attention on the case where A and B are both 
/7-groups for the same prime p. Here, and generally, extensions constructed 
using non-nilpotent wreath products provide us with limits for possible 
general statements. Thus if A has a direct factor isomorphic to a restricted 
direct power *-<'> of a non-trivial group K, where |/| is no less than \B\ and 
B is infinite, then there is a non-nilpotent extension of A by B. Other 
insights come from looking at wreath products of the form C m wr C' „. 

For p = 2 everything is easy, due to the existence of the inverter 
automorphism; it is pretty obvious (Theorem 3.6) that every extension of 
an abelian group A by C2, the cyclic group of order 2, is nilpotent if and 
only if A is a 2-group of finite exponent. Indeed for general p, the case 
where A has finite exponent is straightforward. When A has infinite 
exponent, everything is more complex and we are led to consider the three 
cases where B is divisible, finite, and infinite but not divisible respectively. 
In each case the conditions obtained for nilpotency are certain finite-rank 
conditions on the divisible part of A and on the homocyclic components of 
a basic subgroup of A. In all cases our results extend to general nilpotent 
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#, and we are able to give complete answers to the Suprunenko problem in 
the following cases: 

I. A an abelian 2-group, B a nilpotent 2-group (Theorem 3.6); 
II. p odd, A an abelian/7-group of finite exponent and B a nilpotent 

/?-group (Theorems 3.1 and 3.2); 
III. p odd, A an abelian ^-group of infinite exponent and B a divisible 

(abelian)/7-group (Theorem 3.5); 
IV. p odd, A a countable abelian /?-group of infinite exponent and B a 

non-divisible nilpotent ^-group (Theorems 5.3 and 5.4). 
The major portion of the paper is needed for cases III and IV. The 

countability condition in IV arises in the proof of Theorem 5.2, concerning 
the splitting off from a reduced /?-group of "large" factors of a basic 
subgroup, the underlying reason being that Ulm's theorem is false for 
uncountable groups in general. 

Our methods are a blend of abelian group theory and the commutator 
calculus of metabelian groups. By far the longest proof is that of Theorem 
4.2 (the special case where A is a restricted direct product of cyclic 
/^-groups and B is cyclic of order p). There, it is not the use of deep 
theorems that is needed but rather, detailed calculations using certain 
commutator identities repeatedly, together with induction arguments in 
two directions. The extension of Theorem 4.2 to general abelian groups 
in Section 5 is usually a relatively routine induction on the Ulm length, 
but not always (see for instance Step 2 in the proof of Theorem 5.3). 
Throughout, we have resisted the temptation to consider best possible 
bounds for the nilpotency class arising; we think that this would 
complicate matters without good enough cause. 

2. Notation and preliminaries. We shall write all groups multiplicatively, 
even when the concern is exclusively with abelian groups. The cyclic group 
of order n is denoted by CIV and the quasicyclic/?-groups by Coo. For any 
subset I of a group, (X) means the subgroup generated by X\ for a 
p-group G, ®>m(G) means 

(x\x e G and xpm = 1 ) . 

The lower central series of a group G is 

G = Yl(G) ^ y2(G) = G' S . . . S y„(G) i= . . . , 

as usual. The split extension of A by B is written A x 3 B. 
We need the following well-known commutator identity in metabelian 

groups. In it, [x, ny] denotes the iterated commutator [JC, y,y,...,y], with 
n occurrences of y. 

(2.1) For any elements x, y of a metabelian group G and any positive 
integer n, 

https://doi.org/10.4153/CJM-1986-050-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-050-9


NILPOTENT EXTENSIONS 1027 

[x,/1] = [x,y]^\x, 2y]^> . . . [JC, (n - l)yV»-]'[x,ny]. 

Also easy is 

(2.2) Let G be a group generated by an abelian normal subgroup A and an 
element b. Then 

(i) G is nilpotent if and only if there exists n such that that [a, nb] = 1 for 
all a in A ; 

(u)for every integer r, [ar, b] = [a, b]r. 

The first of these results follows from the fact that for / ^ 2, y,+ 1(G) is 
generated by all the iterated commutators [a, tb], since A is abelian and 
normal. The second is because [a, b] commutes with a. 

Next, an abbreviation for a frequently occurring phrase: 

(2.3) For any groups A, B, the symbol Jf(A, B) denotes the statement that 
every extension of A by B is nilpotent. 

At the outset, we show that we can restrict attention to split extensions 
when A is abelian and B nilpotent. Thus suppose that A is abelian, B is 
nilpotent of class c and G/A = B. Then the kernel of the map G —» Aut A 
induced by conjugation contains A, and we have an induced map 
0\B —» Aut A giving rise to the split extension S = A X I B. Thus A and B 
can be viewed as subgroups of S. We let B be the image of 6 in Aut A and 
set S = A X I B. With [A, /G], [A, tB] denoting the iterated mutual 
commutators in the usual way, it is clear that 

A â y , + 1(G) ^ [A, cG] = [A, cB] = yc+](S) 

since A is abelian and B of class c. Continuing, we find that 

Y/(G) ^yt(S) ^ y/ + 1(G) for/ â c + 1. 

Thus G is nilpotent if and only if S is nilpotent. In general the class of G 
could be one more than that of S, but for cyclic B the classes are equal. 
Furthermore [M, B] = [M, B] for every subgroup M of A, and it follows 
that 

y,.(S) = y /(S) for / â 2. 

Thus S is nilpotent if and only if S is nilpotent; so in addition to proving 
that we need only consider split extensions, we also have that B can be 
viewed as a subgroup of Aut A when it is convenient to do so. 

The following facts are in constant use in this article, and they are easily 
verified in view of the foregoing. 

(2.4) For abelian A JV{A, B) if and only if the split extension associated 
with every homomorphism from B to Aut A is nilpotent. 

(2.5) Jf(A, B) implies JV^(A, C) for every epimorphic image C of B. 
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(2.6) JT(AX X A29 B) implies JT(AX, B). 

(2.7) If C is a characteristic subgroup of A, then {Jf(C, B) and 
JT(A/C, B)} =>JT(AyB). 

When B is an infinite nilpotent group, it is readily shown that B has a 
countably infinite image. Thus, since the restricted wreath product K wr H 
has trivial center [1] when K ¥= 1 and H is infinite, (2.5) and (2.6) allow us 
to state: 

(2.8) If A has a direct factor isomorphic to the countably infinite restricted 
power K^N^ of a non-trivial group K, and B is an infinite nilpotent group, then 
-*J/\A,B\ 

3. Extensions of p groups; the case of divisible B. Throughout this 
section we shall assume that p is prime and A and B are both /^-groups, 
initially not necessarily abelian. Our first result is straightforward, and we 
omit the proof. 

THEOREM 3.1. If A is a finite p-group and B a nilpotent p-group, then 
Jf(A, B). 

The second is also easy, but not quite so elementary: 

THEOREM 3.2. Let A be an infinite abelian p-group of finite exponent and 
B a nilpotent p-group. Then JV(A, B) if and only if B is finite. 

Proof. One way this follows is from the well-known theorem of G. 
Baumslag [1] stating that every extension of a nilpotent /?-group of finite 
exponent by a finite p-group is nilpotent. 

Conversely, suppose that ^V(A, B). As A is infinite abelian of finite 
exponent, it follows from Prufer's theorem that A has a direct factor 
isomorphic with cffi for some k and so (2.8) says that B must be finite, 
and the proof is complete. 

When A has infinite exponent, the situation is more complicated and 
results are governed by the structure of a basic subgroup of A. We say that 
a subgroup L of an abelian /7-group A is basic (see [3] ) if 

(i) L is a restricted direct product of cyclic groups, 
(ii) L is pure in A, 

(hi) AIL is divisible. 
Every /?-group has a basic subgroup, and all basic subgroups of a given 
group are isomorphic. Additional properties of basic subgroups that we 
shall need are: 

(iv) If 

OO 

L = n LH, 
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where Ln is the homocyclic component of exponent pn, then for each n, 

A = L, X L2 X . . . X Ln X A*9 

where 

A* = (A"", L*> and L* = I I Lm. 
m>n 

(v) If Aj is a homomorphic image of an abelian /?-group A, a basic 
subgroup of Ax is a homomorphic image of a basic subgroup of A. 

(vi) ^ = LAP. 
We shall need the following definition when we come to investigate 

AT(A, B) for divisible B. 

Definition 3.3. A direct product of cyclic ̂ -groups is said to be thin if the 
ranks of the homocyclic components are all finite. 

It turns out that our investigation of the Suprunenko problem for A of 
infinite exponent requires that we treat the cases of B divisible and B 
non-divisible separately. Recall that a divisible subgroup of a nilpotent 
/?-group is central, so that a divisible nilpotent /?-group is abelian. 

A crucial first step is to consider the case where B is the quasicyclic 
group CpOQ. 

THEOREM 3.4. Let A be an abelian p-group. Then the following statements 
are equivalent. 

(i) ^(A, Cp0o); 
(ii) Aut A contains no subgroup isomorphic to Coo; 

(iii) the divisible part D of A has finite rank and a basic subgroup L of A is 
thin; 

(iv) A has no direct factor of the form K^ \ where K is non-trivial. 

Proof That (i) implies (ii) is easy; if Coo = Aut A, the corresponding 
split extension would be a nilpotent /?-group containing a non-central Cpoo, 
which is impossible. Conversely, if (ii) holds then every homomorphism 
from Coo to Aut A is trivial so that every extension G of A by Ĉ oo is a 
central extension and thus nilpotent. In fact it is abelian since G has 
locally cyclic central factor-group. 

The equivalence of (iii) and (iv) is immediate since D and every 
homocyclic factor of L are direct factors of A. 

That (ii) implies (iii) is a direct consequence of (2.8). 
The hard part of this theorem is the proof that (iii) implies (ii). We need 

some lemmas to enable us to do it. 

LEMMA 3.4.1. Let C be a characteristic subgroup of an abelian group A 
and suppose that AI C is a p-group. / /Coo = Aut A, then either 

Cpoo ^ Aut C or Cpoo ^ Aut(v4/C). 
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Proof. Every automorphism of A induces one on C and one on A/C. 
Furthermore, the obvious map 

0:Aut A -> Aut C X Aut(A/C) 

has kernel the stability group of the chain 1 â C S A, which is isomorphic 
to Hom(A/C, C). Since A/C is a /?-group it is easily shown that 
Hom(v4/C, C) has no elements of infinites-height and so ker 0 contains 
no Coo. Thus 

Cp0o â im 6 ^ Aut C X Aut(,4/C). 

But any Coo in the direct product Aut A X Aut(,4/C) cannot be in the 
kernels of both projections, so 

Cpoo g Aut A or Ĉ oo ê A\xt(A/C). 

COROLLARY. Let A be an abelian p-group with divisible part Z), so that 
A = D X R where R is reduced. Then Cœ = Aut A if and only if 

Cpoo â Aut D or Cpoo g Aut R. 

LEMMA 3.4.2. Let A be an abelian p-group, L a basic subgroup of A, and 
let Ln be the homocyclic component ofL of exponent pn. Then for each « è l , 
Z>|Z>2 • • • LnÂP is characteristic in A. 

Proof. Recall that 

A = L\L2 . . . L„A*, 

where 

A* = AP"L* and L* = (ULjm > n). 

We shall show that (LXL2 . . . Ln)
a is contained in LXL2 . . . LnA

p for each 
n ^ 1 and each a e Aut A. 

For each JC G LXL2 . . . Ltv 

x = xxyxa
y , 

where 

xx G LjL2 . . . L,7, _yj G L* and a & A. 

Since x/;" = xp
x = 1 it follows that 

(y]a
pY = I-

So 

><' = a~p2n and j f G L*. 

But L* is a direct factor of the pure subgroup L and so it is itself pure in A. 
Thus 

yP\ = yPi> where _y2 G L*. 
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Since 

(y^2P"f = i, 

it follows that y\yïP is in J2W(L*), which is contained in L*p. Thus 
y} e L*p and so 

which is in LjL2 . . . LnA
p, as required. 

We return now to the proof of (hi) =̂> (ii) in Theorem 3.4. Write 
A = D X R as before, and suppose that (ii) is false. Then 

Cpoo ^ Aut v4. 

From the corollary to Lemma 3.4.1, we have either 

Cpoo ^ Aut D or Cpoo â Aut #. 

A theorem of Hartley [4] states that the k-ih direct power C^2 of Cpoo 
contains an automorphism of order pd if and only if 

k ^pd~\p ~ 1). 

Thus if Coo = Aut D, it follows that D has infinite rank, contradicting 
(hi). So we may assume that 

Cp0o ^ Aut £. 

At this point we can assume that A is reduced and that 

Cpoo ^ Aut A. 

Recall that each homocyclic component Ln of the basic subgroup L of 
A is finite. We shall derive the contradiction that C TO acts trivially on A. 
From Lemma 3.4.2 it follows that Aut A acts on each factor-group 
LjL2 . . . LnA

p I Ap, and so Cp00 does. Since each of these factor groups is 
finite, Coo must act trivially on it. Now if x is any element of L, then x 
is in LjL2 •• • ̂ ,7 for some n and so 

xa = x mod ^ . 

Since A = LAP\ it follows that C » acts trivially on AIAP. Thus in the split 
extension S of A by our Coo, we have 

This is a start. We consider now the descending series for A defined by 
A0 = A, Ax+X = Ap

x for successor ordinals À + 1 and 

A„ = C) Ax 

for limit ordinals fi. We shall establish by transfinite induction that 
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[A, Coo] = Ax for every À; 

since A is reduced Ax = 1 for some A, and we will then have shown that 
[A, Coo] = 1, the final contradiction which will complete the proof. 

We have seen that [A, Coo] = Ax\ so suppose that fi < 1 and that 

[A, Coo] = ^ whenever À > /x. 

If /A is a limit ordinal then 

so by induction 

[A, Cpoo] = A ^ . 

If /A = A + 1, things are more complicated. Firstly write 

Ĉ oo = («], a2, . . . |a^ = 1, af+1 = at for / i^ 1). 

Given that [A, a}] ta Ax for all /, we must show that 

[A, «,] g ^ = ^ . 

By the standard commutator identity (2.1), we have for each x in A, 

...[x,(p - \)ai+]]^'-l'[x,pal + ]]. 

Clearly, the first p factors are in Ap
x since p divides \ , \ when 

1 ë k < p. But 

[x , a / + 1 ] ^ ^ x § ^ , = ^ ' , 

SO 

[*,2a /+1] ^ [ ^ , a / + 1 ] = M, a/ + 1 f ^ 

and so on repeatedly until we see that 

[x,pal + ]] <= ^ . 

T h u s 

[x, a,] G ^ = ^ 

and the proof of Theorem 3.4 is now complete. 

We can now settle Supunenko's problem for the case where A is an 
abelian /?-group and B is a divisible abelian /?-group. Note that we have 
already done this when A has finite exponent for an arbitrary nilpotent 
/?-group B. 
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THEOREM 3.5. Let A be an abelian p-group of infinite exponent with 
divisible part D and basic subgroup L, and let B be a non-trivial divisible 
abelian p-group, Then Jf(A, B) if and only if D has finite rank and L is 
thin. 

Proof. First suppose that Jf{A, B). Since B has CpOQ as an image, 
^V(A9 Coo) and Theorem 3.4 gives the result. 

Conversely, suppose that D has finite rank and L is thin. By Theorem 
3.4, Aut A has no C M as a subgroup, and so as B is divisible every 
homomorphism from B to Aut A is trivial, and so every extension of A by 
B is nilpotent, of class at most 2. 

The case of 2-groups is really easy. Every abelian group A has the 
inverter automorphism a:a —> a~ , and the extension (A, a) is nilpotent if 
and only if A has finite 2-power exponent. This is because every subgroup 
(a, a) has to be nilpotent of bounded class, together with the observation 
that 

[a, na] = a" . 

Thus we can state: 

T H E O R E M 3.6. Let A be an abelian 2-group and B a nilpotent 2-group. 
Then Jf{A, B) if and only if one of the following holds: 

(i) A is finite\ 
(ii) A is an infinite group of finite exponent and B is finite; 

(iii) A has infinite exponent, its divisible part is of finite rank and its basic 
subgroup is thin, and B is divisible. 

The proof follows from what has gone before; all we need to say is that 
if B is not divisible it has C2 as an image and contemplation of the inverter 
automorphism of A gives what we want. 

The remaining cases are sufficiently long that we go to a new section. 

4. Extensions of ^-groups: sparse direct products of cyclic groups. In our 
investigation of /?-groups we are now left with the situation where the 
prime p is odd, A is an abelian /?-group of infinite exponent, and B a 
non-divisible nilpotent /?-group. A crucial special case is that where A is a 
(restricted) direct product of cyclic groups and B is of order/?. The reason 
for its importance is the central role played by the basic subgroup of the 
bottom group in the general case. 

Moreover, direct products of cyclic groups yield all we need in the way 
of counterexamples. For let Wn stand for the wreath product C n+\ wr Cp 

of a cyclic group of orderpn + ] by one of order/?. Then as is easy to see, for 
t ^ p the factor group Wn/Zt(Wn) of Wn by the /-th term of its upper 
central series is an extension of 

CP n + 1 X Cpn 
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by C and, by [6], it has class (n + \)p — n — t, which is at least n(p — 1). 
Thus we can state: 

Example 4.1. Suppose that A is a restricted direct product of cyclic 
/^-groups and that the ranks rn of the homocyclic components An of the 
exponent p" satisfy the inequality 

rn + rn + \ =P ~ l 

for infinitely many n. Then there is an automorphism b of A of order /? 
such that the split extension (A, b) is not nilpotent. 

For the conditions give that A has a direct factor X expressible as a 
direct product Xx X X2 . . . , where X, is of the form 

for suitable /, ^ /?, and ni —» oo as / —» oo. Thus each Â- has an 
automorphism 6/ of order /? such that the split extension (Xh bt) is 
isomorphic with 

W„/Zti(W„) 

and so has class going to infinity with /. The bi extend to an automorphism 
of order p of A in the obvious way, and the extension (A, b) is not 
nilpotent since it contains subgroups of unbounded class. 

Let A be any direct product of cyclic /^-groups, An the homocyclic 
component of exponent pf\ and rn the rank of An. We introduced the 
adjective "thin" in Section 3 in dealing with the case of divisible B\ in 
the case of cyclic B the example just made indicates that we need a more 
stringent condition. 

Definition 4.1. A is said to be sparse if 

rn + rn+\ = P ~ 2 f ° r aU n = i; 

eventually sparse if there exists n0 such that 

rn + rn + x ^ p — 2 for all w ^ H0-

As an aside, we could observe that a sparse 2-group is trivial and that an 
eventually sparse 2-group is of finite exponent, so that 2-groups fit into 
the general picture correctly. However we have kept the cases separate, 
since it was so easy to deal with 2-groups by themselves. 

The rest of this section is devoted to the proof of the following result: 

THEOREM 4.2. Let A be a sparse direct product of cyclic p-groups and let rn 

be the rank of the homocyclic component of exponent p". For every 
automorphism b of A of order p7 the split extension G = A X I (b) is 
nilpotent of class c = rx + 2 = p. 

Proof. The main thrust will be to prove that c ^ p and then a few more 
lines will give c ^ r} + 2 . Our calculations are based essentially on the 
following easy result: 
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LEMMA 4.2.1. Let G be a p-group generated by an abelian normal 
subgroup A and an element b of order pn. 

(i) If G is nilpotent of class c, then G' has exponent dividing p(c~^n; 
(ii) If G' has exponent pe

9 then G is nilpotent of class at most 
ep" - (e - l)pn~]; 

(iii) G has exponent pe if and only if b centralizes Ap\ 

Proof (i) We proceed by induction on c. For c = 1 everything is trivial; 
so we assume that c > 1 and that the result is true for groups of class < c. 
Then by induction G'/yc(G) has exponent at most /?(C-2K But yc(G) is 
generated by all commutators of the form 

d = [xh x2, • • • , xc] where xt Œ A U {/?}; 

as A is abelian d can be non-trivial only if 

X] e A and x2 = . . . = xc = b. 

Thus as d is central, 

dpH = [JC15 b9 6 , . . . , b]p" = [xl9 b,..., / / ' ] - 1, 

and so yc(G) is generated by elements of order dividing/?". But then yc(G) 
has exponent pn and it follows that Gf has exponent dividing 

p{c-2)n . pu = p{c-\)nt 

(ii) In this case G is generated by elements x = [a, b], with a ^ A. 
As fe^" = 1, we have from (2.1) that 

1 = [a9 b
pn] = [a, b][a, bf[a, bf ...[a, bf~X = xxh . . . x^" \ 

It follows that (x, b) is a homomorphic image of the central factor-group 
of Cpe wr Cpfl9 so its class is at most 

epn - (e - X)pn~x ~ 1 

(see [6] ). Thus for every a e A, 

[a, tb] = 1 where t = epn - (e - \)p"~] 

and (ii) follows since A is abelian. 
(iii) is immediate from 2.2 (ii). 

We turn now to the proof of Theorem 4.2. We will show that 
[A, b]p = 1, so that Lemma 4.2.1 gives that G is nilpotent of class at most 
p. The strategy is to show first that 

[A, b]p ^ Ap\ 

and then inductively that 

[A, b]p ë Apk for k ^ 1, 
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so that [A, b]p = 1 since 

oo , 

n Ap = 1. 

The first step embodies most of the techniques used in the induction step. 
Observe that when A is sparse, so is AP for every k\ the sequence of ranks 
for Ap is rA + 1, rA + 2 ' • • • a n d the sum of two successive ranks is still at 
most p — 2. This fact will be used repeatedly: after establishing some 
statement for A we interpret it in AP and then by taking pk-\\\ roots we 
obtain an additional statement for A. We should point out at this stage 
that any statement we make will become a triviality should b happen to 
centralize some AP (as we will know must happen, once we have proved 
the theorem). 

Let us repeat here that A is sparse, that rn is the rank of Atv the 
homocyclic component of exponent pn, and that bp = 1. We will be 
working inside the split extension G = (A, b), and have to make a large 
number of observations along the way, which we number consecutively. 
We shall use repeatedly elementary commutator identities, often without 
comment. 

(1) [Au rxb] ^ Ap n fl,(,4) = (Ap
2, A^\ . . . >. 

This is because inA/Ap
y the subgroup AXAP/Ap is invariant under bAp, and 

of orderpn; so (A]A
P/AP, bAp) has class at most rx. Since (1) holds for all 

sparse groups it holds for Ap so that 

(2) [Ap
29 r2b] ^ Ap2 n Q}(A

p) = (Ap\ Ap
4\ . . . >. 

On taking/7-th roots in A, (2) gives 

(3) [A2,r2b] ^ (A^A^A^Af,...)-

When (3) is interpreted in Ap, it gives 

(4) [A'i, r3b] ë (Ap
2, AÇ, A$, Ap

5\ ...). 

Combining (1) and (2) gives 

(5) [Al9(rx + r2)b] ^ Ap\ 

When this is interpreted in Ap it gives 

(6) \A\, (r2 + r3)b] â A"\ 

Combining (3) and (1) gives 

(7) [A2, (r, + r2)b] ^ (A"2, A"3, A$, ...). 

When this is interpreted in Ap it gives 

(8) [^ , (r2 + r3)b\ fk (Ap
3\ APl APl,...). 
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Now interpreting (7) in ApS " and taking ps 2-th roots, 

(9) [As, (rs_, + rs)b] § <AU .. .,As-2, A"s_x, A"„ ^ + „ ^ > -

We can now proceed with the main steps of the proof. 
Step I. [A2, b]p g Ap\ 
We know from (2) that 

[A2, r2b]p ^ Ap\ 

If r2 = 0 or 1, we are done. Otherwise r2 = 2. We now turn to the basic 
identity (2.6). As bp = 1, we have for every a ^ A2 

[a, bf[a, 2b]V' ..-[a,(p - \)b]p[a,pb] = 1. 

Commutating this with b r2 — 2 times, 

[a, (r2 - \)bf[a, r2b}^2' . .. [a, (r2 + p - 3)b]p 

X [a, (r2 + p - 2)b] = 1. 

Since p divides each binomial coefficient, it follows from this and the fact 
that 

[A2, r2bf =£ Apl 

2 

that all but the first and last terms of this identity are in Ap . If we can 
show that the last term is, we will have that 

[a, (r2 - \)b]p
 G Ap\ 

and then we can repeat the argument if r2 — 1 = 2 , until we have arrived 
at a proof that 

[a, b]p
 G Apl for all a <= A2, 

which is Step I. 
To do this, note that 

[A2,r2b] ^ (A^Ap
2,AiAp2); 

so 

M2, (r2+p- 2)b] 

â < [^, (/> - 2)ft], M5, (/> - 2)b], [Ap„ (p - 2)6], ^ 2 > . 

But since r, + r2 ^ /? — 2, (5) gives that 

[ ^ , 0 ? - 2)b] ^Ap2; 

similarly (6) and r2 + r3 = p ~ 2 give that 

[Ap
2, (p - 2)b] ^ Ap\ 
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Finally (8) with r2 + r3 ë p — 2 implies that 

[A% (p - 2)b] ^ A"\ 

We have now done enough to establish Step I. 
Step II. If [Ah b]p S Apl for all / = 1, 2, . . . , s - 1, then 

[As, bf ^ Ap\ 

Starting with the hypothesis that 

[As_„bf ^Ap\ 

taking p-i\\ roots in A and using the fact that 

[As_]tb] ^Qs-M) 

we obtain 

[As_{,b]^ (Ax,A^...Mp
s,A^+],...). 

Interpreting this statement in the sparse group Ap gives 

do) [A>;s,b]^(A»2,4,...,Aù^4+2,---y, 
and taking p-th roots we have 

(11) [As,b]S (A],A2,A
p

3,...,A"s+l,A'f+2,...). 

We show next that 

(12) [As, rsb]p ^ Ap\ 

As before we have for all a e As, 

(p) 

[a, rJbY[a, (rs + \)b]^2' • • • [a, (rs + p - 2)b\p 

X [a, (r, + p - \)b] = 1. 
When we commutate (10) with b rs times and use Step I, we find that all 
but the first and last factors of this identity are in Ap . To show that 
the last factor is also in Ap~, we commutate (11) (rs + p — 2) times with b 
obtaining 
(13) [As, (rs + p - \)b] ^([A{,(rs+P- 2)6], [A2, (rs +p- 2)6], 

[Ap, (rs + p - 2)b], . . . . K + 1 , (rs + p - 2)b], A"1). 

Now we have four rather different situations to look at. From (5) we 
have 

[A^ip ~ 2)b] ta Ap\ 

so certainly 

[A^ (rs + p - 2)b] ^ Ap\ 
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For the second term in (13), we begin by taking p-th roots in the statement 
of Step I and obtain 

[A2,rJ,]^(Ax,AP2,A^AP\ 

so that 

[A2,(rs +p- 2)6] ^ ([A{AP ~ 2)b], 

[A?2, (p ~ 2)6], [Ap
3, (p - 2)6], A*1). 

Now (5), (6) and (8) together with 

rx + r2 = p — 2, r2 + r3 ^ p — 2 

are sufficient to give 

[A2, (rs+p - 2)6] =i A"\ 

From the hypothesis in Step II, we see that 

[Ap
j9 (rs + p - 2)b] % Apl for 3 =i j: ^ s - 1; 

and it remains for us to consider 

K , (r, + p - 2)6] and [A"s + ], (rs +p- 2)6] 

in (13). By (10) 

K , r,6] ^ <^ , ^ 2> 

from which it follows that 

K , (r, + /> - 2)6] =i < [^, (p - 2)6], ^ 2 > 

which again by (6) is contained in Ap . 
Turning now to [Ap

sJrX, (rs + p — 2)6], we have from (9) with the indices 
shifted by one that 

[A, + ], (rs + rs+])b] ë (Au A2, . . .,AS-U A"„ A"s+X, A»s + 2, A"2). 

Thus 

[A"s+i,(rs + rs+0b]^(A"2,...,AP+],A"2) 

and so 

[A"S + ],(P ~2)b]^ (A?2,...,A»s_uA
p2) 

which means that 

K + i . (rs+p -2)b}^( [A"2, rj>],..., [A"s_x, rjb], A"1). 
2 

The hypotheses of Step II now give that this is in Ap\ and (12) is now 
established. 

The strategy now is to reduce (12) to what we want, viz to 

[As, bf ^ Ap\ 

https://doi.org/10.4153/CJM-1986-050-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-050-9


1040 J. BUCKLEY AND J. WIEGOLD 

First we take/?-th roots in (12), to obtain 

(14) [As,rsb}^(A],A
p
2,...,A

p
s+],A"2). 

Interpret this in Ap: 

(15) [A»s+X, rs+xb] â (Ap
2, AC, . . . , Af+1, A?). 

From this we obtain 

[Ap
+l,(rs + rs+l)b]îâ({A2,r,b}p,Ap2) 

and application of Step I gives 

(16) [Ap
+U(rs + rs+x)b]^Ap2. 

2 

The last part of the proof that [A, b]p Si Ap~ comes from the 

LEMMA. If[As, kbf ^ Ap" and R 2 , then 

[As, (k - \)b]p S Ap\ 

Proof. For every a e As we have 

(p) 
[a, (k - \)b]p[a, kb]V> ...[a,(k+p- 3)b]p 

X [a, (k + p ~ 2)b] = 1; 

and as so often before, what we have to do is to show that the last factor in 
this identity is in Ap . On taking p-th roots the hypothesis gives 

[As,kb]£ (Ax,A
p
2,...,A

p
s+x,A

p2
+2,...). 

Hence 

[As, (k+p - 2)b] =i ( [Ax, (p - 2)0], [A{, (p - 2)6], 

...,[AP
+X,(p ~ 2)b],Apl). 

From (5) 

[Ax,(p ~ 2)6] ^Ap\ 

whereas for 2 ^ j ^ s — 1 we have that 

[Ap, (p - 2)b] ^ A"2 

by our induction hypothesis in Step II. So again we have two terms to 
consider. From (12) and the fact that rs ^ p — 2 we have 

[Ap, (p - 2)b] â A"\ 

From (16) and rs + rs+x ^k p — 2, it follows that 

[Ap
+i,(p - 2)b] %Apl. 

This establishes the lemma; together with (12) we now have 
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[As, bf ^ AP\ 

This completes the induction in Step II and we can state 

(17) [A, bf ^ Ap\ 

The last stage in the proof of the theorem is to prove: 
Step III. U[A,bf ^ Apk for some k ^ 2, then [A, b]p ^ pk + l. 

Firstly note that (17) and the hypotheses of Step III give 

(18) [Ap\ b] ^ Apk + l and [A, 2b]p ^ Apk+\ 

We establish Step III by showing that 

[An, b]p ^ Apk+] for all n. 

Our induction begins with the statement 

(19) [A2, bf ^ Apk+\ 

To see this, observe that for a in A2, 

(») 
[a,bf[a,2bf2' ...[a,(p ~ \)b]p[a,pb] = 1. 

From (18) we can see that all the factors but the first and last are in Ap 

From (7) we have 

[A2, (r, + r2)b] ^ (Ap
2, A

p
3, Apl) 

so that 

[A2, (p - 2)b] ^ {Ap
2, Ai Apl). 

Thus 

[A2,pb] ^ ( [A2, 2b]", [A3, 2b]p, [A, 2bf). 

But (18) now gives that 

[A2, pb] ^ Apk + > 

and so 

[A2, bf =i Apk+\ 

Next we prove: 
If [Ait b]p ^ ApkV' for 1 S i ^ s - 1 and s â 3, then 

(20) [As, bf ^ Apk+\ 

Taking p-th roots in (19) and noting that k = 2, we get 

[A2, b] Si (Au Ap
2, 4 , . . .,4+x, Ap

k
k
+2, Ad . . .>. 

When this is interpreted in AP and ps~2-th roots are taken, it gives 

(21) \As,b]^ (Ax,...,As-X,Ap
s,Af+x,...). 
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From this we have immediately 

(22) [Ap,b] ë (Ap
2,...,A

p^],A
pl). 

Next we show that 

(23) [Ap, rjb] tk A"" + \ 

As usual we begin with an identity 

[a,rsb]p[a,(rs + l ) ^ 2 ' 

...[a,(rs+p- 2)bf[a, (rs +p- 1)6] = 1, 

valid for a e As. By (18), factors other than the first and last are in A1' 
provided that rs ^ 1; if not there is nothing to prove. From (18) and (21), 
we see that 

[As,(rs + p - \)b) tk ([Au(rs + P ~ 2)b), 

. . . , [As_h (rs +p- 2)b], . . . [Ap, (rs +p- 2)b], A"k + \ 

Going back to (1), 

M „/- , />]§ (Ap
2,A

p\ 

so from (18), 

[/t„(r, + r2)b] =£ ([A2,r2bf,APk + '). 

Applying (19) we get that 

[Ax, (r, + r2)b] S A"k + l 

and hence 

(24) [A]9(p - 2)b] ^APk+\ 

Now taking /7-th roots in the hypothesis in (20), we get for 
l^jfks- \ 

[Ar rsb] ^ (A,, A"2, Af,. . . ,AÙ^ 4+2, • • •) 

thus 

[Aj, (rs + p - 2)b] 

â ([AU(P - 2)b], [Ap
2, (p - 2)b], [Ap\p - 2)b]). 

We have just seen that 

[A„{p - 2)6] ^Apk + \ 

That 

[A{Ap ~ 2)b] =£p* + i 
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follows from (19); and (18) then shows that 

[Aj, (rs + p - 2)b\ ^ #* + 1 for; â s - 1. 

In proving (23) it remains to consider the term [Ap
s, (rs + p - 2)b\. But 

now, from (22), we get that 

[Ap, (rs + p - 2)b] g < [Ap
2, (p - 2)6], 

...,[A"s-\Ap ~ 2)b],[Ap\(p - 2)b] >. 

From our induction hypothesis in (20) together with (18) we see that 

[Ap, (rs+p- 2)b] g A"k + \ 

This completes the proof of (23). 
Thus to finally complete the proof of (20) and so of the theorem, we 

only need the following familiar type of lemma: 

LEMMA. If[Ap
s, mb] îâ Ap when m ^ 2, then 

[Ap
s, (m - \)b] ^ Apk+\ 

Proof. For every a in As, 

[a, (m - \)b]p[a, mbYl} 

...[a,(rn+p- 3)b]p [a, (m + p - 2)b] = 1. 

As usual the hypotheses of the lemma give that all factors other than the 
first and last are in Ap , and we have to show the same for the last. 
Taking p-th roots in the hypothesis, we get 

[As,mb] ^ {AvA\,APl...) 

thus 

[As,(m +p- 2)b]^ ([AU(P ~ 2)b], 

[Ap
2, (p - 2 )H [A?1, (p ~ 2)b]). 

From (24), (19) and (18) we see that 

[As, (m + p - 2)b] ^ Ap" + '. 

Thus 

[As, (m - \)b]p S Apk+l 

and the lemma is proved. 

Combined with (23), this establishes that 

[As, bf ë Apk + \ 

This completes the proof that [A, b]p = 1, and we want finally to show 
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that G has class c â rx + 2. Since [A, b] has exponent /?, we have that 

then [A, 2b] ^ [v4j, b] since ^ is central, and indeed 

[A,(rx + 2)fc] ^ [Al9(rx + 1)0]. 

But [Ax, rxb] ^ 4̂P from (1), so it is central, and we have that 

[A,(rx +2)b] ^[Ax,(rx + \)b] = 1. 

So G is of class at most rx + 2, as claimed. Note that the case rx = 0 
causes no problems, for then v4j = 1 and [^, b] = Ap so that [A, b] is 
central. 

5. Extensions of /̂ -groups: general countable A, Before considering 
countable />-groups in full generality we show that we can confine 
attention to reduced groups. 

THEOREM 5.1. Let A be an abelian p-group with divisible part D, let 

A = D X R and suppose that B is a non-divisible nilpotent p-group. Then 

Jf(A, B) if and only if the rank r of D is at most p - 2 andJf(R, B). 

Proof KJf{A, £ ) , then^XD, B) and^CR, B). Since B is non-divisible, 
it has Cp as image and s o ^ ( D , Cp). The result of [4] used earlier, together 
with the fact that D is central in every extension of D by C shows that 
r ^ p - 2. 

Conversely, suppose that r = p — 2 and that JV(R, B). Then D has no 
^-automorphisms and thus every extension of D by B is central and so 
nilpotent of class at most 2. Since D is characteristic in A, A/D = R and 
both JT(D, B) and JT(R, B) it follows from 2.7 that JT(A, B) as 
required. 

Next we need a result in abelian group theory that allows us to pull out 
a large part of a basic subgroup of an abelian group as a direct factor. It is 
probably known since it is of some interest in abelian group theory, but we 
can find no reference to it in the literature. Fuchs [3] is a good reference 
for general facts about abelian groups. 

THEOREM 5.2. Let A be a countable reduced abelian p-group of infinite 
exponent with basic subgroup L. Suppose that L = X X Y, where Y has 
infinite exponent. Then A has a direct factor isomorphic with X. 

Proof. First we introduce notation for the Ulm sequence of A. We define 
a transfinitely continued descending series of characteristic subgroups 

A =A{0) ^A^ â . . . ^ < ° > â . . . 

of A as follows. Firstly 
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Ail) = n A"". 
n = \ 

Suppose that all A^ with f$ < a have been defined. If a is a limit ordinal 
we put 

if a = 0 + 1, then 

A(a) = ^ ( 0 

Since A is reduced there is a least ordinal r such that A^ = 1, called £//ra 
(y/?£ of A. The factor groups 

,4a = A{a)/A{a+X) fora < T 

are the Ulm factors of A, while the well-ordered sequence 

A0,AX, A2,...9Aa>'- (a < T) 

is the Ulm sequence of A. 
Note that all Ulm factors except possibly a "last" one are of infinite 

exponent, and being countable abelian ^-groups with no elements 
of infinite height, are direct products of cyclic /^-groups. In particular 
A/AS ^ = Ax is such a direct product and we are going to show now that 
the canonical map p\A^> Ax maps L isomorphically onto a basic subgroup 
of A j . This will give in fact L = A x since A x is isomorphic to every one of 
its basic subgroups. The fact that Lp is basic in Ax is a routine calculation. 
But p is injective on L since for b e L, bp = 1 gives 

oo , 

b e n Ap . 
k=\ 

But L is pure and so 
oo , 

b e n Z/> = 1, 
A = l 

thus completing the proof that L = Av 

The hypotheses give that 4̂ j = X X y. Consider now the sequence of 
groups 

y, 4̂2» ^ 3 ' • • • 

in which the first group in the Ulm sequence of A is replaced by Y. By 
Zippin's theorem [3] there exists a group C with this new sequence as its 
Ulm sequence. It follows that X X C has 

X X y, ^ 2 , y43, . . . 

as its Ulm sequence, that is, it has the same Ulm sequence as A. By Ulm's 
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theorem, A = X X C, and the theorem is established. 

Note that we have not proved (nor can we prove) that X is itself a direct 
factor of A. Fortunately, we do not need to. Moreoever, we do not know if 
the result is true for uncountable A. 

We now have the main theorem for countable A and finite B. The proof 
is long and not quite routine. 

THEOREM 5.3. Let A be a countable abelian p-group of infinite exponent 
with divisible part D of rank r, and basic subgroup L\ let B be a non-trivial 
finite p-group. Then JV{A, B) if and only if r ^ p — 2 and L is eventually 
sparse. 

Proof Suppose ih&ijV(A, B). Writing^ = D X R, with R reduced, we 
have seen in Theorem 5.1 that r ^ p — 2 and ^V(R, B). But a basic 
subgroup of R is a basic subgroup of A; and we suppose that L is not 
eventually sparse. Then clearly L can be split as a direct product X X Y 
where Y is of infinite exponent and X is a non-sparse direct product of 
cyclic groups. By Theorem 5.2, R and hence A has a direct factor 
isomorphic to X. Now Example 4.1 shows that there is a non-nilpotent 
extension oiXby Cp and thus —rjy(A, C ). But B is finite so that^T(i4, B) 
implies Jf{A, C ), a contradiction. 

Conversely suppose that r ^ p — 2 and that L is eventually sparse. 
Theorem 5.1 tells us that we may assume that A is reduced. We have 
already seen in Theorem 4.2 that if A is a sparse direct product of cyclic 
groups and B = C , every extension of A by B is nilpotent of class c = /?, 
indeed that c = rx +2 where rx is the rank of the homocyclic factor of 
exponent/?. To get full generality in the theorem we simply strengthen the 
proof step by step. 

Step 1. If A is a sparse direct product of cyclic p-groups and b is an 
automorphism of A of order p}\ then the split extension (A, b) is of class at 
most p + p2 4- . . . + pn and b acts as an automorphism of order dividing 
p"-] on Ap. 

Proof The case n = 1 has been established in Theorem 4.2. Induct on n. 
Suppose that the result is true when n = k and let b be an automorphism 
of order pk + x on A. Then bp has order/?* on A and so by induction order 
at most pk~x on Ap. Thus b has order at most pk on Ap, which is part of 
what we want. Now (A/Ap, bAp) is nilpotent of class at most/?A + 1 since 
A /Ap has exponent p and bAp has order at most pk + ]. Thus 

[A,pk + lb] ë Ap. 

But Ap is sparse and b has order at most pk on Ap, so by induction we 
have 

[Ap,(p -V p1 + . . . + pk)b] = 1. 

https://doi.org/10.4153/CJM-1986-050-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-050-9


NILPOTENT EXTENSIONS 1047 

Combining these two results we have 

[A, (p + p2 + . . . + pk + ])b] = 1, 

as required. 

Step 2. If A is a countable reduced abelian p-group with sparse basic 
subgroup L, and b is an automorphism of A of order pn, then (A, b) is 
nilpotent of class c = p + p2 + . . . + pn and b acts as an automorphism of 
order dividing p"~l on Ap. 

Proof The hard part here is to do the case n = 1. The rest then proceeds 
by an easy induction. So let n = 1. Recall the notation for the Ulm 
sequence in the proof of Theorem 5.2. We know that L is isomorphic with 
the first Ulm factor A/A^l\ We induct on the Ulm type r of A. When 
T = 1 we have A = L so that A is a sparse direct product of cyclic groups 
and the result is given by Step 1. Suppose the result holds for groups of 
Ulm type less than r. 

Since L = A/A^\ the hypotheses carry over to the groups A/A^. Thus 
for all a < T, (A/A^a\ b) has class c ^ p and b acts trivially on Ap/A^a\ 
Thus 

[A, bf ^ A{a) for all a < r. 

If T is a limit ordinal we have 

l = A{r) = n v4(a) 

so that [A, b]p = 1 and Lemma 4.2.1 gives what we want. If on the other 
hand T = X + 1, the situation is more complicated and we show first 
(A, b) has class at most/? + 1. 

Suppose first that A^ ) has finite exponent, pe say. Then (A^ \ b) is 
nilpotent, so that as 

[A,pb] ^ A{X\ 

(A, b) is nilpotent. By Lemma 4.2.1 some power ApS of A is centralized by 
b and thus so is A^ K Thus 

[A, (p + l)b] = 1 

and (A, b) is of class at most/? 4- 1, as claimed. In general AS ) is a direct 
product of cyclic groups, so that 

n A^pn = 1. 

However what we just showed gives that 

(A/A°W, bA^o") 

is of class at most p + 1 for all n, so that 
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yp+2( (A, b) ) ^ n n i A^" = 1 

and (A, b) is of class at most p 4- 1 in all cases. 
However, we have to reduce this/? 4- 1 top, and we proceed as follows. 

First we show that b centralizes Ap . For all a in A we have 

(") 

1 = [A,pb]p[a, (p + \)b]\2' • • • [a, (2p - \)b], 

so that [a, pb]p = 1. However this gives that 
(P) ( " ) 

(*) 1 = [a, bf[a, 2b]P^2' ...[<>AP- W ^ - 1 ' 
so that commutation (p — 2) times with b gives 

[a, (p - \)bf = 1, 

and the last term of (*) drops out. Repeating this commutation process we 
successively eliminate the last factor of (*) until we reach the conclusion 
that 

[a, bf = \ for all a. 

In other words, 

[Ap\ b] = 1. 

Since L = A/AS ) we know from Theorem 4.2 that (A/A^ \ b) has class 
at most rx + 2 where rx is the rank of the homocyclic component L, of 
exponent/». Thus 

[A, (r, + 2)/?] ^ A{]) ^ ^ 2 

so that 

[A, (r, + 3)6] = 1. 

If rj + 3 = p we are done. Otherwise rx + 2 ^ /? so that, as L is sparse, 
r, + r2 = p — 2; so rj = p — 2 and r2 = 0. Thus L2 = 0. From properties 
of basic subgroups there is a decomposition of A as 

A = Lx X L2X K. 

where a basic subgroup of K begins with a homocyclic component of 
exponent at least p3. Since L2 = 0 here, this decomposition gives 

AIA^ = L , ^ " / ^ " X Jt4< ,V^ ( , ); 

the fact that the two factors intersect trivially follows since Lx has no 
elements of infinite height. Since L = A/A^ is sparse with KA^/A{X) 

having its homocyclic components of exponent at least p3 and b acts as an 
automorphism on A/A{ \ it follows from Step 1 that [v4/^4(1), bA(])] is of 
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exponent /?, and hence that 

[A/A^\ bA{l)] =g LXA{X)/A^ X KP2A{X)/A^\ 

that is, 

[A,b] ^ LxA
p\ 

Thus [A, 2ft] ^ [L], ft] since b centralizes Ap . But [L1? ft] is elementary 
abelian and has rank at most rx. Thus so is [A, 2b] and so, since it is 
ft-invariant, 

[A, (r, + 2)/)] = 1. 

So [A,pb] = 1 and Step 2 is complete in the case n = 1; and as we said at 
the beginning, the rest of the proof is straightforward. 

Step 3. Let A be a countable reduced abelian p-group with eventually 
sparse basic subgroup L, and let b be an automorphism of order pn on A. Then 
{A, ft) is nilpotent of class 

c ^ p + p2 + . . . + pn + mpn - (m - \)pn~K 

where m is such that L is sparse after exponent pm. 

Proof Write L = Y X K where Y = Lx X . . . X Lm, so that ^ is sparse. 
Further, set U = Qm(A). Then A = 7 X ^ , and ^ has AT as basic 
subgroup, and 

A/U = Ax/Qm(Ax). 

But a basic subgroup of A maps epimorphically to one of A/U, so that 
A/U has sparse basic subgroup (it is isomorphic with K/Çlm{K) ). Also A is 
reduced and U has finite exponent, so A/U is reduced. By Step 2 we can 
conclude that (A/U , ft) has class at most/? + p2 + . . . + /?". So 

[>M/> + />2 + ••• + />")*] ^ K(A)-
But (S2W(^4), ft) has class at most mpn — (m — \)p"~~l, and the result 
follows. 

Step 4. We can now complete the proof of the full theorem. We have 
that A is a countable, reduced abelian ^-group with eventually sparse basic 
subgroup L and B is a finite /?-group. Let G be a split extension of A by B; 
we must show that G is nilpotent. Suppose that L is sparse after exponent 
pm and that B has exponent/?". From Step 3, each subgroup (A, ft) with ft 
in B is nilpotent of class depending only on/7, m, n. Hence [A, ft] has finite 
exponent depending only on /?, m, « (Lemma 4.2.1), and [A, B] has 
finite exponent. However, B is nilpotent and G/A = Z?, so that y^G) = A 
for some k and further yA + 1(G) ^ [.4, 5] since v4 is abelian. Thus yA + 1(G) 
has finite exponent and G acts on yA + 1(G) as a finite /?-group, so that G is 
nilpotent and the proof of Theorem 5.3 is complete. 
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Finally, we deal with the case where A is countable and B is infinite and 
non-divisible. Set Bah = BIB'. 

THEOREM 5.4. Let A be a countable abelian p-group of infinite exponent 
and B an infinite non-divisible nilpotent p-group. Suppose A = D X R where 
D is divisible of rank r and R reduced and let L be a basic subgroup of A. 

(i) Let R be finite. Then Jf(A, B) if and only if r Ê p — 2. 
(ii) Let R be infinite. Then JV(A, B) if and only if r ^ p — 2, L is thin and 

eventually sparse and Bah = E X M where E has finite exponent and M is 
divisible. 

Proof. Part (i) is an immediate consequence of Theorems 5.1 and 
3.1. and so we turn to (ii). If ^V(A, B) we see from Theorem 5.1 that 
r â p — 2 and Jf{R, B). Moreover, L can be taken as a basic subgroup of 
R and since JV(R, B) it follows from Theorem 2.8 that L must be thin. 
Otherwise R would have as direct factor an infinite homocyclic group, 
namely some Ln. Note that R must have infinite exponent here and so 
L does also. Next B is not divisible, so has C as an image. Thus 
JV(R, C ) and we see from Theorem 5.3 that L is eventually sparse. Now 
let Bab = E X M where E is reduced and M divisible. We claim that E has 
finite exponent. Assume not. Since E maps onto its basic subgroup, it 
follows that B has a homomorphic image K isomorphic with the restricted 
direct product 

C X Cp2 X . . . X Cpn X . . . . 

Further JV(R, K). Since L has infinite exponent, we can write L = X X Y, 
where both X and Y are of infinite exponent. By Theorem 5.2, ̂  = 1 X 5 " 
for some S and we see that ^V(X, K). However, ^V(X, K) is false in this 
situation, for the following reason. For any n > 1 the group 

V„ = (x,y\xp" = yp"~l = 1, xv = x1+/?> 

has class n, and obviously it is possible to make an extension of X by K 
containing Vn for infinitely many n. This completes the proof of (ii) in one 
direction. 

We begin the proof of the converse by considering the case where B is 
reduced. 

LEMMA. If B is an infinite reduced nilpotent p-group and Bah = E X M 
where E has finite exponent and M is divisible, then B has finite exponent 
(and therefore M = 1). 

Proof. We have E = FIB' and M = N/Bf for suitable F, N. From a 
result of Zaleskii [7], F' = B' and F is a basic subgroup of B (in his 
terminology). Since FIF' has finite exponent, so does F. Zaleskii also 
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showed in [7] that B = FZ where Z is the center of B. With bars denoting 
images mod B', we have Bah = FZ and thus Z is a direct product of a 
group of finite exponent and a divisible group. But a basic subgroup K of 
Z maps to one of Z, so that K has finite exponent, and also so does Bf. 
Thus Z has finite exponent and finally B does. 

Assume now that B is reduced in the statement of Theorem 5.4. Because 
of Theorem 5.1, we may assume that A is reduced. 

Case 1. A is a direct product of cyclic groups. 
Then A = L and so A is thin and eventually sparse. Let the exponent of 

B bepe. Then from Theorem 5.3 we see that the split extension (A, b) has 
class depending only on A and/?*7, for each b in B. Thus by Lemma 4.2.1, 
there exists a positive integer k such that [A, b]p = 1 for all b in B. 
Thus 

[A,B] ^ Qk(A). 

With Ai denoting the i-th homocyclic factor of A, we have 

Qk(A) ^ (Ax,A,..-,A2k-x,Apk)\ 

that is, [A, B] ^ HApk for a finite group H. With G = (A, B), the split 
extension, we have 

y,(G) Si [A, B] 

for some /. So the image of Y/(G) in G/Ap is a finite/?-group, which means 
that 

[Y/CG), mB] ^ ^ for some m ^ 1. 

Thus y / + w + 1 (G) = 1 since 5 fixes the elements of Ap . 

Case 2. 1̂ is not a direct product of cyclic groups. 
Then A/AS * is such a product, and from Case 1 we have that 

G = (A/A(l\ B) 

is nilpotent. Thus 

yc(G) = A^ ) for some c. 

Theorem 5.3 now gives that there exists a k ^ 0 such that 

[A, b]pk = 1 for all b in B. 

So 

y c(G) ^ A{X) ^ Apk 

and as B fixes all elements of Ap , 

y f + i (G) = 1-

If B is not reduced, its divisible part C is central and it is easy to see that 
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B/C is reduced. Furthermore (B/C)ab is still a direct product of a group of 
finite exponent and a divisible group. Since L is thin, C acts trivially on A 
by Theorem 3.4. Hence every homomorphism B —> Aut A factors through 
a map B/C -> Aut A. But </T(v4, B/C) from above, and so JT(A, B). This 
completes the proof of Theorem 5.4. 

Remarks. For these concluding remarks A remains an abelian /?-group 
and B a nilpotent />-group. We have now classified all pairs A, B with B 
divisible for which JV(A, B). Further, when B is non-divisible we have 
classified all A, B with A countable or of finite exponent for which 
Jf{A, B). There remains the case where A is uncountable, of infinite 
exponent and B is non-divisible. From our previous work there are many 
obvious necessary conditions IOXJV(A, B), for example, restrictions on the 
structure of countable direct factors of A. Again because of Theorem 5.1 
the divisible part of A must have rank at most p — 2 and one can restrict 
attention to the case where A is reduced. Let L be a basic subgroup of such 
an A and let B be infinite and non-divisible. Again from (2.8) we see that L 
must be thin and since, as is well-known, the cardinality \A\ of A is at most 
\L\ ° we conclude that \A\ ^ 2 °. In other words, if B is infinite, 
non-divisible and \A\ exceeds 2 °, then —* Jf{A, B). For the case where B is 
a finite, non-trivial /7-group recall that ^V(A, B) implies ^V(A, C ) . 
Consider the special case where A is the torsion subgroup of an 
unrestricted product of cyclic groups. Here a basic subgroup of A is the 
restricted direct product of those same cyclic groups and again it must be 
eventually sparse. Otherwise the automorphism constructed in Example 
4.1 could clearly be extended to A, thereby giving rise to a non-nilpotent 
extension of A by C Whether eventual sparseness is sufficient for 
Jf(A, C ) in this special case we do not know. 
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