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Multilinear transference of Fourier and
Schur multipliers acting on
noncommutative Lp-spaces

Martijn Caspers, Amudhan Krishnaswamy-Usha, and Gerrit Vos
Abstract. Let G be a locally compact unimodular group, and let ϕ be some function of n variables
on G. To such a ϕ, one can associate a multilinear Fourier multiplier, which acts on some n-fold
product of the noncommutative Lp-spaces of the group von Neumann algebra. One may also define
an associated Schur multiplier, which acts on an n-fold product of Schatten classes Sp(L2(G)). We
generalize well-known transference results from the linear case to the multilinear case. In particular,
we show that the so-called “multiplicatively bounded (p1 , . . . , pn)-norm” of a multilinear Schur
multiplier is bounded above by the corresponding multiplicatively bounded norm of the Fourier
multiplier, with equality whenever the group is amenable. Furthermore, we prove that the bilinear
Hilbert transform is not bounded as a vector-valued map Lp1(R, Sp1) × Lp2(R, Sp2) → L1(R, S1),
whenever p1 and p2 are such that 1

p1
+ 1

p2
= 1. A similar result holds for certain Calderón–Zygmund-

type operators. This is in contrast to the nonvector-valued Euclidean case.

1 Introduction

In recent years, the analysis of Fourier multipliers on noncommutative Lp-spaces
has seen a rapid development. In particular, several multiplier theorems have been
established for the noncommutative Lp-spaces of a group von Neumann algebra (see,
e.g., [CCP22, CGPTb, JMP14, MeRi17, MRX22, PRS22]). Here, the symbol of the
multiplier is a function on a locally compact group and the multiplier acts on the
noncommutative Lp-space. In particular, the group plays the role of the frequency
side.

In several of these approaches, Schur multipliers are used to estimate the bounds of
Fourier multipliers and vice versa. For instance, upper bounds on the norms of Fourier
multipliers in terms of Schur multipliers play a crucial role in [PRS22]. Conversely,
transference from Fourier to Schur multipliers was used by Pisier [Pi98] to provide
examples of bounded multipliers on Lp-spaces that are not completely bounded.
In [LaSa11], analogous transference techniques were used to provide examples of
noncommutative Lp-spaces without the completely bounded approximation property.
Furthermore, the use of multilinear Schur multipliers and operator integrals led to
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several surprising results such as the resolution of Koplienko’s conjecture on higher-
order spectral shift [PSS13] (see also [PSST17]).

Bożejko and Fendler proved the following in [BoFe84]. Let G be a locally compact
group. Let ϕ ∈ Cb(G) and set ϕ̃(s, t) = ϕ(st−1), s, t ∈ G. Then the Schur multiplier
Mϕ̃ ∶ B(L2(G)) → B(L2(G)) is bounded if and only if it is completely bounded if and
only if the Fourier multiplier Tϕ ∶ LG → LG is completely bounded.

Several papers have treated the extension of the Bożejko–Fendler result to non-
commutative Lp-spaces. In particular, in [NeRi11], Neuwirth and Ricard proved for a
discrete group G that

∥Mϕ̃ ∶ Sp(L2(G)) → Sp(L2(G))∥cb ≤ ∥Tϕ ∶ Lp(LG) → Lp(LG)∥cb .

If G is moreover amenable, then this is an equality. The same result was then obtained
for G a locally compact group in [CaSa15]. An analogous result was obtained for
actions and crossed products by González-Perez [Gon18], and in an ad hoc way in
the bilinear discrete setting, a similar result was obtained for the discrete Heisenberg
group in [CJKM, Section 7].

The purpose of this paper is to prove transference results for Fourier and Schur
multipliers in the multilinear setting for arbitrary unimodular locally compact groups.
We confine ourselves to the unimodular setting for reasons further discussed in
Remark 4.4.

Now, we describe in more detail the contents of the paper. Our first main result
(Theorem 3.1) is the following multilinear extension of [CaSa15, Theorem 4.2]. The
definition of (p1 , . . . , pn)-multiplicatively bounded maps is given in Section 2.7. If
n = 1, then we are in the linear case and by a well-known theorem of Pisier [Pi98] a
map is “p-multiplicatively bounded” if and only if it is completely bounded as a map
on the Lp-space with the natural operator space structure that was also introduced in
[Pi98].

Theorem A Let G be a locally compact second countable unimodular group, and let
1 ≤ p ≤ ∞, 1 < p1 , . . . , pn ≤ ∞ be such that p−1 = ∑n

i=1 p−1
i . Let ϕ ∈ Cb(G×n) and set

ϕ̃ ∈ Cb(G×n+1) by

ϕ̃(s0 , . . . , sn) = ϕ(s0s−1
1 , s1s−1

2 , . . . , sn−1s−1
n ), s i ∈ G .(1.1)

If ϕ is the symbol of a (p1 , . . . , pn)-multiplicatively bounded Fourier multiplier Tϕ of G,
then ϕ̃ is the symbol of a (p1 , . . . , pn)-multiplicatively bounded Schur multiplier Mϕ̃ of
G. Moreover,

∥Mϕ̃ ∶ Sp1(L2(G)) × ⋅ ⋅ ⋅ × Spn(L2(G)) → Sp(L2(G))∥(p1 , . . . , pn)−mb

≤ ∥Tϕ ∶ Lp1(LG) × ⋅ ⋅ ⋅ × Lpn(LG) → Lp(LG)∥(p1 , . . . , pn)−mb .

Note that in the linear (unimodular, second countable) case of n = 1, this result is
actually a strengthening of [CaSa15, Theorem 4.2]. Namely, the symbol here is only
assumed to define an Lp-Fourier multiplier at a single exponent p, whereas [CaSa15,
Theorem 4.2] requires that the multiplier is (completely) bounded for all 1 ≤ p ≤ ∞
simultaneously. The current proof takes a different route and uses results that appeared
after [CaSa15] in the papers [CJKM, CPPR15, CPR18].
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For transference in the other direction, we need our group G to be amenable,
just as in [CaSa15, NeRi11]. In fact, amenability is a necessary requirement for our
proof strategy (see [CaSa15, Theorem 2.1]). The following is our second main result
(Corollary 4.2). Note here the strict bounds 1 < p < ∞, caused by the requirement that
the maps iq from Theorem 4.1 are complete isometries.

Theorem B Let G be a locally compact unimodular amenable group, and let 1 <
p, p1 , . . . , pn < ∞ be such that p−1 = ∑n

i=1 p−1
i . Let ϕ ∈ Cb(G×n) and define ϕ̃ as in

(1.1). If ϕ̃ is the symbol of a (p1 , . . . , pn)-bounded (resp. multiplicatively bounded)
Schur multiplier, then ϕ is the symbol of a (p1 , . . . , pn)-bounded (resp. multiplicatively
bounded) Fourier multiplier. Moreover,

∥Tϕ∥(p1 , . . . , pn) ≤ ∥Mϕ̃∥(p1 , . . . , pn) , ∥Tϕ∥(p1 , . . . , pn)−mb ≤ ∥Mϕ̃∥(p1 , . . . , pn)−mb ,

with equality in the (p1 , . . . , pn)-mb norm when G is second countable.

The proof is a multilinear version of the ultraproduct techniques from [CaSa15,
Theorem 5.2] and [NeRi11].

In the final section, which can mostly be read separately from the rest of the paper,
we consider the case of vector-valued bilinear Fourier multipliers on R. Lacey and
Thiele have shown in [LaTh99] that the bilinear Hilbert transform is bounded from
Lp1(R) × Lp2(R) → Lp(R), when 2

3 < p < ∞ and 1
p =

1
p1
+ 1

p2
. The vector-valued

bilinear Hilbert transform is bounded as a map from

Lp1(R, Sq1) × Lp2(R, Sq2) → Lp(R, Sq)

whenever 1 < 1
max{q ,q′} +

1
max{q1 ,q′1}

+ 1
max{q2 ,q′2}

, as shown by Amenta and Uraltsev
in [AmUr20] and Di Plinio et al. in [DMLV22]. In particular, this class does not
include Hölder combinations of q i . We show that this result does not extend to the
case when p i = q i , p = q = 1, using a transference method similar to the ones used in
earlier sections. To be precise, we prove the following result (Theorem 5.2).

Theorem C Let 1 < p1 , p2 < ∞ be such that 1
p1
+ 1

p2
= 1 and set h(s, t) = χ≥0(s − t).

There exists an absolute constant C > 0 such that, for every N ∈ N≥1, we have

∥T(N)h ∶ Lp1(R, SN
p1
) × Lp2(R, SN

p2
) → L1(R, SN

1 )∥ > C log(N).

Additionally, we show a similar result for Calderón–Zygmund operators. Here,
Grafakos and Torres [GrTo02] have shown that for a class of Calderón–Zygmund
operators, we have boundedness L1 × L1 → L 1

2 ,∞ in the Euclidean case. Later, a vector-
valued extension was obtained in [DLMV20]. Here, for a class of Calderón–Zygmund
operators, the boundedness of the vector-valued map was obtained for Lp1 × Lp2 → Lp
with 1 < p, p1 , p2 < ∞ and 1

p =
1
p1
+ 1

p2
. Theorem 5.3 shows that the latter result cannot

be extended to the case when p = 1.
The structure of this paper is as follows. In Section 2, we treat the necessary pre-

liminaries and establish the definitions of multilinear Fourier and Schur multipliers.
We also look briefly at transference in the case that p i = ∞ for all i. In Section 3, we
prove the transference from Fourier to Schur multipliers for general p i ; the other
direction for amenable G is proved in Section 4. Finally, in Section 5, we give the
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counterexamples for the vector-valued bilinear Hilbert transform and Calderón–
Zygmund operators.

2 Preliminaries

2.1 Notational conventions

Ndenotes the natural numbers starting from 0, andN≥1 denotesN/{0}. Mn ∶= Mn(C)
denotes the complex n × n matrices. We denote B(H) for the bounded operators on a
Hilbert space H. We denote by Est , 1 ≤ s, t ≤ n, the matrix units of Mn . Likewise, Est ,
s, t ∈ F denote the matrix units of B(�2(F)) whenever F is a finite set. We also use 1F
to denote the indicator function on the set F.

2.2 Locally compact groups

Let G be a locally compact group, which we assume to be unimodular with Haar
measure μG (see Remark 4.4). Integration against the Haar measure is denoted
by ∫ ⋅ ds. For 1 ≤ p < ∞, we let Lp(G) be the p-integrable functions with norm
determined by ∥ f ∥p

p = ∫ ∣ f (s)∣pds. Cc(G)denotes the continuous and compactly sup-
ported functions on G. L1(G) is a ∗-algebra with multiplication given by convolution
( f ∗ g)(t) = ∫ f (s)g(s−1 t)ds and involution given by f ∗(s) = f (s−1). λ denotes the
left regular representation of G on L2(G), i.e., (λs f )(t) = f (s−1 t). λ also determines
a representation of L1(G) by the strongly convergent integral λ( f ) = ∫ f (s)λsds. The
Fourier algebra [Eym64] is defined as

A(G) ∶= L2(G) ∗ L2(G) = {s ↦ ⟨λs ξ, η⟩ ∣ ξ, η ∈ L2(G)}.(2.1)

Set the group von Neumann algebra

LG = {λs ∣ s ∈ G}′′ = {λ( f ) ∣ f ∈ L1(G)}′′ .

It comes equipped with a natural weight φ called the Plancherel weight that is given,
for x ∈ LG, by

φ(x∗x) = { ∥ f ∥2
2 , if ∃ f ∈ L2(G) s.t. ∀ξ ∈ Cc(G) ∶ xξ = f ∗ ξ,

∞, otherwise.

φ is tracial since (in fact if and only if) G is unimodular, i.e., φ(x∗x) = φ(xx∗).

2.3 Noncommutative Lp-spaces

Let Lp(LG) denote the noncommutative Lp-space associated with LG and the
Plancherel weight φ. Since φ is a trace, this space can be viewed as the completion
of the set of elements in LG with finite ∥.∥Lp(LG) norm:

Lp(LG) = {x ∈ LG ∶ ∥x∥Lp(LG) = φ(∣x∣p)1/p < ∞}
∥.∥L p(LG)

.

Let Cc(G) ⋆ Cc(G) denote the span of the set of functions of the form f1 ∗ f2 , f i ∈
Cc(G). Then λ(Cc(G) ⋆ Cc(G)) is dense in Lp(LG) for every 1 ≤ p < ∞ and is weak*
dense in L∞(LG) = LG.
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2.4 Multilinear Fourier multipliers

Let ϕ ∈ Cb(G×n). The Fourier multiplier Tϕ associated with the symbol ϕ is the
multilinear map defined for λ( f i), f i ∈ Cc(G) ⋆ Cc(G) by

Tϕ(λ( f1), . . . , λ( fn)) = ∫
G×n

ϕ(t1 , . . . , tn) f1(t1) . . . fn(tn)λ(t1 . . . tn)dt1 . . . dtn .

Let 1 ≤ p1 , . . . , pn , p < ∞ with p−1 = ∑i p−1
i . Assume that Tϕ maps λ(Cc(G) ⋆

Cc(G)) × ⋅ ⋅ ⋅ × λ(Cc(G) ∗ Cc(G)) into Lp(LG). Equip the ith copy of λ(Cc(G) ⋆
Cc(G)) with the ∥.∥Lpi (LG) topology. If Tϕ is a continuous multilinear map with
respect to the above topologies, we extend Tϕ to a map Lp1(LG) × ⋅ ⋅ ⋅ × Lpn(LG) →
Lp(LG). By mild abuse of notation, we also denote this map by Tϕ , and call it the
(p1 , . . . , pn)-Fourier multiplier associated with ϕ. When some or all of the p i , p are
equal to ∞, we equip the corresponding copy of λ(Cc(G) ⋆ Cc(G)) with the norm
topology from C∗λ(G), and replace Lp i (LG) by C∗λ(G).

By a closed graph argument, Tϕ is then a bounded multilinear map, and we denote
its norm by ∥Tϕ∥(p1 , . . . , pn).

2.5 Schatten p-operators

For 1 ≤ p < ∞, let Sp(H) denote the Schatten p-operators on a Hilbert space H
consisting of all x ∈ B(H) such that ∥x∥Sp ∶= Tr(∣x∣p)1/p < ∞ where Tr is the usual
trace on B(H). S∞(H) denotes the compact operators on H. For 1 ≤ p ≤ q ≤ ∞, we
have the dense inclusions Sp(H) ⊆ Sq(H).

Again, let G be a unimodular locally compact group. For F ⊂ G a relatively compact
set with positive measure, let PF ∶ L2(G) → L2(F) be the orthogonal projection.
Then, for 1 ≤ p ≤ ∞, and x ∈ L2p(LG), xPF defines an operator in S2p(L2(G)) (see
[CaSa15, Proposition 3.1]). For x ∈ Lp(LG) with polar decomposition x = u∣x∣, we
will abusively denote by PF xPF the operator (∣x∣1/2u∗PF)∗∣x∣1/2PF , which lies in
Sp(L2(G)) whenever x ∈ Lp(LG). We will additionally use the fact that the map

x ↦ μG(F)−1/pPF xPF

defines a contraction from Lp(LG) to Sp(L2(G)) [CaSa15, Theorem 5.1].
Let E be an operator space. For N ∈ N≥1, and 1 ≤ p ≤ ∞, SN

p [E]will denote the space
MN(E) equipped with the “operator-valued Schatten p-norm.” When E = C, this is the
Schatten p-class associated with a Hilbert space of dimension n, or equivalently, the
noncommutative Lp-space associated with MN equipped with the normalized trace,
and is denoted by just SN

p . When p = ∞, the norm on Sp[E] is the operator space norm
on MN(E); for p = 1, this is the projective operator space norm on SN

1 ⊗ E. The rest are
constructed via interpolation. The particulars will not be used in what follows; we refer
to [Pi98] for the details. If E is the noncommutative Lp-space associated with some
tracial von Neumann algebra M, SN

p [E] can be identified with the noncommutative
Lp-space corresponding to MN ⊗M.
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2.6 Multilinear Schur multipliers

Let X be some measure space. We identify S2(L2(X)) linearly and isometrically
with the integral operators given by kernels in L2(X × X). This way A ∈ L2(X × X)
corresponds to (Aξ)(t) = ∫ A(t, s)ξ(s)ds. Throughout what follows, we will make
no distinction between a Hilbert–Schmidt operator on L2(X) and its kernel in
L2(X × X).

For ϕ ∈ L∞(X×n+1), the associated Schur multiplier is the multilinear map
S2(L2(X)) × ⋅ ⋅ ⋅ × S2(L2(X)) → S2(L2(X)) determined by

Mϕ(A1 , . . . , An)(t0 , tn)

= ∫
X×n−1

ϕ(t0 , . . . , tn)A1(t0 , t1)A2(t1 , t2) . . . An(tn−1 , tn)dt1 . . . dtn−1 .

That Mϕ indeed takes values in S2(L2(X)), or rather L2(X × X), is an easy application
of the Cauchy–Schwarz inequality, as we show here in the case of n = 2:

∬
X2
∣∫

X
ϕ(r, s, t)A(r, s)B(s, t)ds∣ 2drdt

≤ ∥ϕ∥2
∞∫

X
∫

X
(∫

X
∣A(r, s)∣2ds) dr (∫

X
∣B(s, t)∣2ds) dt

= ∥ϕ∥2
∞∥A∥2

2∥B∥2
2 .

The case of higher-order n is similar to [PSST17, Lemma 2.1].
Let 1 ≤ p, p1 , . . . , pn ≤ ∞, with p−1 = ∑n

i=1 p−1
i . Consider the restriction of Mϕ

where its ith input is restricted to S2(L2(X)) ∩ Sp i (L2(X)). If the resulting restriction
takes values in Sp(L2(X)) and has a bounded extension to Sp1(L2(X)) × ⋅ ⋅ ⋅ ×
Spn(L2(X)), its extension, also denoted by Mϕ , is called the (p1 , . . . , pn)-Schur
multiplier.

2.7 Norms for multilinear maps

If E1 , . . . , En , E are Banach spaces and T ∶ E1 × ⋅ ⋅ ⋅ × En → E is a multilinear map, we
recall that ∥T∥ is the quantity supx i∈E i ,∥x i∥=1 ∥T(x1 , . . . , xn)∥.

If E1 , . . . , En , E are operator spaces, T is a multilinear map, and N ∈ N≥1, the
multiplicative amplification of T refers to the map

T(N) ∶ MN(E1) × ⋅ ⋅ ⋅ × MN(En) → MN(E),(2.2)

which sends x i = α i ⊗ v i where α i ∈ MN , v i ∈ E i , to (α1 . . . αn) ⊗ T(v1 , . . . , vn). T(N)
is viewed as a multilinear map on the space MN(E i), which is equipped with the
matrix norm from the operator space structure of E i . We say T is multiplicatively
bounded if ∥T∥mb = supN ∥T(N)∥ < ∞.

Let 1 ≤ p, p1 , . . . , pn ≤ ∞with p−1 = ∑n
i=1 p−1

i . Generalizing a definition by [Xu06],
we will say a multilinear map T ∶ E1 × ⋅ ⋅ ⋅ × En → E is (p1 , . . . , pn)-multiplicatively
bounded if the multiplicative extensions

T(N) ∶= T(N)p1 , . . . , pn ∶ SN
p1
[E1] × ⋅ ⋅ ⋅ × SN

pn
[En] → SN

p [E]
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have uniformly bounded norms. The (p1 , . . . , pn)-multiplicatively bounded norm of
T is then supN ∥T(N)∥. It is denoted by ∥T∥(p1 , . . . , pn)−mb .

Remark 2.1 It is unclear if this definition of (p1 , . . . , pn)-multiplicative boundedness
corresponds to complete boundedness of some linear map on some appropriate tensor
product of the E i ’s. In the special case that the range space isC and n = 2, such a tensor
product has been constructed in [Xu06, Remark 2.7]. However, this tensor norm does
not seem to admit a natural operator space structure, nor does it seem to work in the
multilinear case.

The norms of multilinear Schur multipliers are determined by the restriction of
the symbol to finite sets. This is the multilinear version of [LaSa11, Theorem 1.19] and
[CaSa15, Theorem 3.1].

Theorem 2.2 Let μ be a Radon measure on a locally compact space X, and let ϕ ∶
Xn+1 → C be a continuous function. Let K > 0. The following are equivalent for 1 ≤
p1 , . . . , pn , p ≤ ∞:

(i) ϕ defines a bounded Schur multiplier Sp1(L2(X)) × ⋅ ⋅ ⋅ × Spn(L2(X)) →
Sp(L2(X)) with norm less than K.

(ii) For every σ-finite measurable subset X0 in X, ϕ restricts to a bounded Schur mul-
tiplier Sp1(L2(X0)) × ⋅ ⋅ ⋅ × Spn(L2(X0)) → Sp(L2(X0)) with norm less than K.

(iii) For any finite subset F = {s1 , . . . , sN} ⊂ X belonging to the support of μ, the symbol
ϕ∣F×(n+1) defines a bounded Schur multiplier Sp1(�2(F)) × ⋅ ⋅ ⋅ × Sp2(�2(F)) →
Sp(�2(F)) with norm less than K.

The same equivalence is true for the (p1 , . . . , pn) − mb norms.

Proof (i) ⇒ (ii) is trivial. The implication (ii) ⇒ (i) remains exactly the same as
in [CaSa15, Theorem 3.1] except for the fact that we have to take x i ∈ Sp i (L2(X))
and take into account the support projections of x1 , x∗1 , . . . , xn , x∗n when choosing
X0. The equivalence (ii) ⇔ (iii) is mutatis mutandis the same as in [LaSa11, The-
orem 1.19]. For the (p1 , . . . , pn) − mb norms, we apply the theorem on the space
XN = X × {1, . . . , N} and function ϕN((s0 , i0), . . . , (sn , in)) = ϕ(s0 , . . . , sn) and use
the isometric identifications

Sq(L2(XN)) ≅ Sq(L2(X) ⊗C
N) ≅ SN

q (Sq(L2(X)))

and the fact that under these identifications, we have

M(N)ϕ (x1 , . . . , xn) = MϕN (x1 , . . . , xn), x i ∈ SN
p i
(Sp i (L2(X))). ∎

2.8 Transference for p i = ∞

Let G be a locally compact group which in this subsection is not required to be uni-
modular. The following Proposition 2.3 (based on [EfRu90, Theorem 4.1]) was proved
in [ToTu10, Theorem 5.5]. This is a multilinear version of the Bożejko–Fendler result
[BoFe84], and it yields a transference result between Fourier and Schur multipliers for
the case p1 = ⋅ ⋅ ⋅ = pn = ∞. We give a proof of the ‘if ’ direction that is slightly different
from [ToTu10] by using the transference techniques from Theorem 3.1, which simplify
in the current setup.
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Proposition 2.3 For ϕ ∈ Cb(G×n), set

ϕ̃(s0 , . . . , sn) = ϕ(s0s−1
1 , s1s−2

2 , . . . , sn−1s−1
n ), s i ∈ G .

Then Mϕ̃ is multiplicatively bounded on S∞(L2(G))×n → S∞(L2(G)) iff Tϕ defines a
multiplicatively bounded multilinear map on LG×n → LG. In this case, we have

∥Tϕ∥mb = ∥Mϕ̃∥mb .

Proof of the “if ” direction Assume that Tϕ is multiplicatively bounded. Let F ⊆ G be
finite with ∣F∣ = N . Let ps ∈ B(�2(F)) be the projection on the one-dimensional space
spanned by the delta function δs . Let ϕ̃F ∶= ϕ̃∣F×n+1 . By Theorem 2.2 (using that ϕ is
continuous), it suffices to prove that

Mϕ̃F
∶ B(�2(F))×n → B(�2(F))

and its matrix amplifications are bounded by ∥Tϕ∥mb . Define the unitary U =
∑s∈F ps ⊗ λs ∈ B(�2(F)) ⊗LG and the isometry

π ∶ B(�2(F)) → B(�2(F)) ⊗LG , π(x) = U(x ⊗ id)U∗.

Note that π satisfies π(Est) = Est ⊗ λst−1 . For s0 , . . . , sn ∈ F,

π(Mϕ̃F
(Es0 s1 , Es1 s2 , . . . , Esn−1 sn)) = π(ϕ̃(s0 , . . . , sn)Es0 sn)

= ϕ(s0s−1
1 , . . . , sn−1s−1

n )Es0 sn ⊗ λs0 s−1
n

,

whereas

T(N)ϕ (π(Es0 s1), . . . , π(Esn−1 sn)) = T(N)ϕ (Es0 s1 ⊗ λ−1
s0 s1

, . . . , Esn−1 sn ⊗ λsn−1 s−1
n
)

= Es0 sn ⊗ Tϕ(λs0 s−1
1

, . . . , λsn−1 s−1
n
)

= ϕ(s0s−1
1 , . . . , sn−1s−1

n )Es0 sn ⊗ λs0 s−1
n

.

It follows that T(N)ϕ ○ π×n = π ○ Mϕ̃F
. This implies that

∥Mϕ̃F
∥ = ∥π ○ Mϕ̃F

∥ = ∥T(N)ϕ ○ π∥ ≤ ∥T(N)ϕ ∥ ≤ ∥Tϕ∥mb .

By taking matrix amplifications, we prove similarly that ∥Mϕ̃F
∥mb ≤ ∥Tϕ∥mb . ∎

Remark 2.4 A multilinear map on the product of some operator spaces is mul-
tiplicatively bounded iff its linearization is completely bounded as a map on the
corresponding Haagerup tensor product. However, as [JTT09, Lemma 3.3] shows, for
Schur multipliers Mϕ̃ on S∞(L2(G))×n , just boundedness on the Haagerup tensor
product is sufficient to guarantee that Mϕ̃ is multiplicatively bounded. Note that even
in the linear case, when p < ∞, it is unknown whether a bounded Schur multiplier on
Sp(L2(R)) is necessarily completely bounded unless ϕ has continuous symbol (we
refer to [Pi98, Conjecture 8.1.12], [LaSa11, Theorem 1.19], and [CaWi19]).

3 Transference from Fourier to Schur multipliers

Let G be a locally compact group, which is again assumed to be unimodular. We
will prove that symbols of (p1 , . . . , pn)-Fourier multipliers are also symbols of
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(p1 , . . . , pn)-Schur multipliers using a multilinear transference method. This yields
a multilinear version of [CaSa15, Theorem 4.2]. We stipulate that in the proofs of
[CaSa15, Section 4], the transference is carried out for rational exponents p. In order
to treat the general multilinear case, we present an alternative proof that transfers
multipliers directly for every real exponent p ∈ [1,∞). In fact, this gives an improve-
ment of [CaSa15, Theorem 4.2], which is stated under the stronger assumption that
the multiplier acts boundedly on the Fourier algebra (equivalently is a p-multiplier
at p = 1). The fundamental difference in the proof is that we base ourselves on the
methods from [CPPR15, Claim B, p. 24] and [CJKM, Lemma 4.6].

As before, for ϕ ∈ Cb(G×n), we set ϕ̃ ∈ Cb(G×n+1) by

ϕ̃(s0 , . . . , sn) = ϕ(s0s−1
1 , s1s−1

2 , . . . , sn−1s−1
n ), s i ∈ G .

Theorem 3.1 Let G be a locally compact, second-countable, unimodular group, and
let 1 ≤ p ≤ ∞, 1 < p1 , . . . , pn ≤ ∞ be such that p−1 = ∑n

i=1 p−1
i . Let ϕ ∈ Cb(G×n) be the

symbol of a (p1 , . . . , pn)-multiplicatively bounded Fourier multiplier of G. Then ϕ̃ is the
symbol of a (p1 , . . . , pn)-multiplicatively bounded Schur multiplier of G. Moreover,

∥Mϕ̃ ∶ Sp1(L2(G)) × ⋅ ⋅ ⋅ × Spn(L2(G)) → Sp(L2(G))∥(p1 , . . . , pn)−mb

≤ ∥Tϕ ∶ Lp1(LG) × ⋅ ⋅ ⋅ × Lpn(LG) → Lp(LG)∥(p1 , . . . , pn)−mb .

Proof Let F ⊆ G be finite. Consider the Hilbert space �2(F), and for s ∈ F, let ps
be the orthogonal projection onto the one-dimensional space spanned by the delta
function δs . By Theorem 2.2, it suffices to show that the norm of

Mϕ̃ ∶ Sp1(�2(F)) × ⋅ ⋅ ⋅ × Spn(�2(F)) → Sp(�2(F))

and its matrix amplifications are bounded by ∥Tϕ∥(p1 , . . . , pn)−mb .
The proof requires the introduction of coordinatewise convolutions as follows. Fix

functions φk ∈ A(G) such that φk ≥ 0, ∥φk∥L1(G) = 1 and such that the support of φk
shrinks to the identity of G; from (2.1), it is clear that such functions exist. Then, for
any function ϕ ∈ Cb(G×n), we set

ϕk(s1 , . . . , sn)

∶=∫
G×n

ϕ(t−1
1 s1 t2 , t−1

2 s2 t3 , . . . , t−1
n−2sn−2 tn−1 , t−1

n−1sn−1 , sn t−1
n )

⎛
⎝

n
∏
j=1

φk(t j)
⎞
⎠

dt1 . . . dtn .

(3.1)

For the particular case n = 1, this expression becomes by definition

ϕk(s) ∶=∫
G

ϕ(st−1)φk(t)dt = ∫
G

ϕ(t−1)φk(ts)dt.

Let (Uα)α be a symmetric neighborhood basis of the identity of G consisting of
relatively compact sets. Set

kα = ∣Uα ∣−
1
2 λ(1Uα),

with polar decomposition kα = uα hα . Then kα is an element in L2(LG) with ∥kα∥2 =
1. Consequently, h2/q

α is in Lq(LG) for 1 ≤ q < ∞ with ∥h2/q
α ∥ = 1. In case q = ∞ by
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mild abuse of notation, we set h2/q
α = 1. Set the unitary

U = ∑
s∈F

ps ⊗ λs ∈ B(�2(F)) ⊗LG .

Now, let a i ∈ Sp i (�2(F)). Since ϕk converges to ϕ pointwise, we have

Mϕ̃(a1 , . . . , an) = lim
k

Mϕ̃k
(a1 , . . . , an).

So, with N = ∣F∣,

∥Mϕ̃(a1 , . . . , an)∥S N
p
= lim

k
lim sup

α
∥Mϕ̃k

(a1 , . . . , an)⊗h
2
p
α ∥S N

p ⊗Lp(LG)

= lim
k

lim sup
α

∥U(Mϕ̃k
(a1 , . . . , an) ⊗ h

2
p
α )U∗∥S N

p ⊗Lp(LG)

≤ A+ B,

(3.2)

where

A = lim sup
k

lim sup
α

∥T(N)ϕk
(U(a1 ⊗ h

2
p1
α )U∗, . . . , U(an ⊗ h

2
pn
α )U∗)∥S N

p ⊗Lp(LG),

B = lim sup
k

lim sup
α

∥T(N)ϕk
(U(a1 ⊗ h

2
p1
α )U∗ , . . . , U(an ⊗ h

2
pn
α )U∗)−

U(Mϕ̃k
(a1 , . . . , an) ⊗ h

2
p
α )U∗∥S N

p ⊗Lp(LG) .

(3.3)

Below, we prove that B = 0. Therefore,

∥Mϕ̃(a1 , . . . , an)∥S N
p

≤ lim sup
k

lim sup
α
∥T(N)

ϕk
(U(a1 ⊗ h

2
p1
α )U∗ , . . . , U(an ⊗ h

2
pn
α )U∗)∥S N

p ⊗Lp(LG)

≤ lim sup
k

lim sup
α
∥T(N)

ϕk
∥∥U(a1 ⊗ h

2
p1
α )U∗∥S N

p1⊗Lp1 (LG) . . . ∥U(an ⊗ h
2

pn
α )U∗∥S N

pn⊗Lpn (LG)

= lim sup
k
∥T(N)

ϕk
∥∥a1∥S N

p1
. . . ∥an∥S N

pn
,

(3.4)

where the norm of T(N)ϕk
is understood as in (2.2) for the map Tϕk ∶ Lp1(LG) ×

⋅ ⋅ ⋅ × Lpn(LG) → Lp(LG). By [CJKM, Lemma 4.3] and the fact that ∥φk∥L1(G) = 1,
it follows then that ∥T(N)ϕk

∥ ≤ ∥T(N)ϕ ∥. Hence,

∥Mϕ̃(a1 , . . . , an)∥S N
p
≤ ∥T(N)ϕ ∥∥a1∥S N

p1
. . . ∥an∥S N

pn
.(3.5)

This finishes the proof. The multiplicatively bounded case follows by taking matrix
amplifications.

Now, let us prove that the last term in (3.2) goes to 0. By the triangle inequality, it
suffices to prove that the limits of the following terms are 0. For r0 , . . . , rn ∈ F with
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matrix units Er i ,r i+1 ,

T(N)
ϕk
(U(Er0 ,r1 ⊗ h

2
p1

α )U∗ , . . . , U(Ern−1 ,rn ⊗ h
2

pn
α )U∗) −U(Mϕ̃k

(Er0 ,r1 , . . . , Ern−1 ,rn) ⊗ h
2
p

α )U∗

= Er0 ,rn ⊗ (Tϕk (λr0 h
2

p1
α λ∗r1 , . . . , λrn−1 h

2
pn

α λ∗rn) − ϕk(r0r−1
1 , . . . , rn−1r−1

n )λr0 h
2
p

α λ∗rn) .

(3.6)

Applying the transformation formula [CJKM, Lemma 4.3] to the Tϕk term,

Tϕk(λr0 h
2

p1
α λ∗r1

, . . . , λrn−1 h
2

pn
α λ∗rn

) = λr0 Tϕk(r0 ⋅ r−1
1 , . . . ,rn−1 ⋅ r−1

n )(h
2

p1
α , . . . , h

2
pn
α )λ∗rn

.

Taking the norm of the expression in equation (3.6),

∥(3.6)∥S N
p ⊗Lp(LG)(3.7)

= ∥Tϕk(r0 ⋅ r−1
1 , . . . ,rn−1 ⋅ r−1

n )(h
2

p1
α , . . . , h

2
pn
α ) − ϕk(r0r−1

1 , . . . , rn−1r−1
n )h

2
p
α ∥Lp(LG).

We now claim that limk lim supα of this expression yields 0, by almost identical
arguments as those used in [CJKM, Lemma 4.6]. Since we have a couple of differences,
namely that we have a translated function ϕk(r0 ⋅ r−1

1 , . . . , rn−1 ⋅ r−1
n ) and we do

not use the small almost invariant neighborhoods (SAIN) condition (see [CPPR15,
Definition 3.1]), we spell out some of the details here.

Let ζ ∶ G → R≥0 be a continuous compactly supported positive definite function in
A(G) with ζ(e) = 1, so that Tζ is contractive. For 1 ≤ j ≤ n, let ζ j(s) = ζ(r−1

j−1sr j) and
let ϕ(ζ1 , . . . , ζn)(s1 , . . . , sn) = ϕ(s1 , . . . , sn)ζ1(s1) . . . ζn(sn). Then
∥Tϕk(r0 ⋅ r−1

1 , . . . ,rn−1 ⋅ r−1
n )
(h

2
p1

α , . . . , h
2

pn
α ) − ϕk(r0 r−1

1 , . . . , rn−1 r−1
n )h

2
p

α ∥Lp(LG)

≤ ∥((ϕ(ζ1 , . . . , ζn))k(r0 r−1
1 , . . . , rn−1 r−1

n ) − ϕk(r0 r−1
1 , . . . , rn−1 r−1

n )) h
2
p

α ∥Lp(LG)

+ ∥T(ϕ(ζ1 , . . . ,ζn))k(r0 ⋅ r−1
1 , . . . ,rn−1 ⋅ r−1

n )
(h

2
p1

α , . . . , h
2

pn
α ) − (ϕ(ζ1 , . . . , ζn))k(r0 r−1

1 , . . . , rn−1 r−1
n )h

2
p

α ∥Lp(LG)

+ ∥T(ϕ(ζ1 , . . . ,ζn))k(r0 ⋅ r−1
1 , . . . ,rn−1 ⋅ r−1

n )
(h

2
p1

α , . . . , h
2

pn
α ) − Tϕk(r0 ⋅ r−1

1 , . . . ,rn−1 ⋅ r−1
n )
(h

2
p1

α , . . . , h
2

pn
α )∥Lp(LG)

= Ak ,α + Bk ,α + Ck ,α .

The terms Ak ,α , Bk ,α , and Ck ,α should be compared to the terms occurring in [CJKM,
equation (4.7)]. Since φk have support shrinking to e, and ζ j(r j−1r−1

j ) = 1, it follows
that limk Ak ,α = 0.

For fixed t1 , . . . , tn ∈ G, define

Cα(t1 , . . . , tn) ∶= ∥Tϕ−ϕ(ζ1 , . . . ,ζn)(t−1
1 r0 ⋅ r−1

1 t2 , . . . ,t−1
n−1 rn−2 ⋅ r−1

n−1 ,rn−1 ⋅ r−1
n t−1

n )
(h

2
p1
α , . . . , h

2
pn
α )∥Lp(LG) ,

and for 1 ≤ j ≤ n − 2,

y j,α = λt−1
j r j−1 h

2
p j
α λr−1

j t j+1 ,

yn−1,α = λt−1
n−1 rn−2 h

2
pn−1
α λr−1

n−1
,

yn ,α = λrn−1 h
2

pn
α λr−1

n t−1
n

.
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By the same arguments as in [CJKM, Lemma 4.6, after equation (4.8)], we get, for
1 ≤ j ≤ n − 2,

lim
α
∥(Tζ j − id)(y j,α)∥Lp j (LG) =∣ζ(r−1

j−1 t−1
j r j−1r−1

j t j+1 t j) − 1∣,

lim
α
∥(Tζn−1 − id)(yn−1,α)∥Lpn−1 (LG) =∣ζ(r−1

n−2 t−1
n−1rn−2) − 1∣,

lim
α
∥(Tζn − id)(yn ,α)∥Lpn (LG) =∣ζ(r−1

n t−1
n rn) − 1∣.

(3.8)

Crucially, here we require this argument from [CJKM, Lemma 4.6, after equation
(4.8)] only for x j = 1. Hence, we do not require the use of [CJKM, Lemma 3.15], which
uses the SAIN condition. Furthermore, note that in this case, the above equalities are
trivially true when p j = ∞ (as h2/p j

α = 1 in that case), so we do not require the use of
[CJKM, Proposition 3.9], which holds only for 1 < p j < ∞. Integrating Cα(t1 , . . . , tn)
against ∏n

j=1 φk(t j), we can show that limk lim supα Ck ,α = 0, just as in [CJKM,
Lemma 4.6].

To show that limk limα Bk ,α = 0, we only note the modifications from [CJKM,
Lemma 4.6]. As before, x j = 1 in the proof of [CJKM, Lemma 4.6]. The operators Tj
appearing in that proof are to be replaced with Tφk(r j−1 ⋅ r−1

j t j) for 1 ≤ j ≤ n − 1 and Tn

is Tφk(tn rn−1 ⋅ r−1
n ). Since all x j are 1, the term S j+1(x j+1S j+2(x j+2 . . . Sn−1(xn−1) . . .)) in

the definition of R j,V that appears in [CJKM, Lemma 4.6] is now just the scalar
n−1
∏

i= j+1
φk(r i−1r−1

i t i).

Now, in equation (4.13) of [CJKM], the commutator terms vanish, as one of the terms
in every case is a scalar. Additionally, since the S̃ j in the estimate for the first summand
in equation (4.14) of [CJKM] is a scalar, we can once more avoid [CJKM, Lemma 3.15]
and the SAIN condition. Once again, note that since x j = 1, the proof remains valid
even when some of the p j = ∞. ∎
Remark 3.2 Theorem 3.1 assumes G to be second-countable since its proof relies on
[CJKM], which assumes second countability.

Remark 3.3 Fix 1 ≤ i ≤ n. In case p i = p = 1 and p j = ∞ for all 1 ≤ j ≤ n, i /= j, we do
not know whether Theorem 3.1 holds. The reason is that we do not know whether the
limits (3.8) (at index i) hold and neither do we know if the two further applications of
Proposition 3.9 in [CJKM, Proof of Lemma 4.6] hold.

4 Amenable groups: transference from Schur to Fourier multipliers

Recall [BHV08, Section G] that G is amenable iff it satisfies the Følner condition:
for any ε > 0 and any compact set K ⊆ G, there exists a compact set F with nonzero
measure such that μG(s .FΔF)

μG(F) < ε for all s ∈ K. Here, Δ is the symmetric difference. This
allows us to construct a net F(ε ,K) of such Følner sets using the ordering (ε1 , K1) ≤
(ε2 , K2) if ε1 ≥ ε2 , K1 ⊆ K2.

Theorem 4.1 Let G be a locally compact, unimodular, amenable group, and let 1 ≤
p, p1 , . . . , pn ≤ ∞ be such that p−1 = ∑n

i=1 p−1
i . Let ϕ ∈ Cb(G×n) be such that ϕ̃ is the
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symbol of a (p1 , . . . , pn)-Schur multiplier of G. Then there is an ultrafilter U on a
set I and there are complete contractions (resp. complete isometries if 1 < q < ∞) iq ∶
Lq(LG) → ∏U Sq(L2(G)) such that, for all f i , f ∈ Cc(G) ⋆ Cc(G),

⟨ip(Tϕ(x1 , . . . , xn)), ip′(y∗)⟩p, p′ = ⟨(Mϕ̃(ip1 ,α(x1), . . . , ipn ,α(xn)))α∈I
, ip′(y∗)⟩

p, p′
,

(4.1)

where xi = λ( f i), y = λ( f ), and 1
p′ +

1
p = 1. In a similar way, the matrix amplifications

of iq intertwine the multiplicative amplifications of the Fourier and Schur multipliers.

Proof Let Fα , α ∈ I be a Følner net for G, where I is the index set consisting of
pairs (ε, K) for ε > 0, K ⊆ G compact. It has the ordering as described above. Let
Pα = PFα be the projection onto L2(Fα). Let U be an ultrafilter refining the net I, and
consider the map ip ∶ Lp(LG) → ∏U Sp(L2(G)) defined by ip(x) = (ip,α(x))α∈I =
( 1

μG(Fα)1/p Pα xPα)α∈I . From [CaSa15, Theorem 5.1], ip is a complete contraction (and
even a complete isometry for 1 < p < ∞ [CaSa15, Theorem 5.2]); here, the Følner
condition is used.

Fix α and let f ∈ Cc(G) ∗ Cc(G). We first observe that by [CaSa15, Theorem 5.1]
applied to the bounded operator x = λ( f ) we have PFα λ( f )PFα ∈ Sq(L2(G)) for all
1 ≤ q ≤ ∞ and the kernel of this operator is given by the function

(s, t) ↦ 1Fα(s) f (st−1)1Fα(t).

So we have
Mϕ̃(ip1 ,α(x1), . . . , ipn ,α(xn))(t0 , tn)

= 1
μG(Fα)1/p 1Fα (t0)1Fα (tn)∫

F×n−1
α

ϕ(t0 t−1
1 , . . . , tn−1 t−1

n ) f1(t0 t−1
1 ) . . . fn(tn−1 t−1

n )dt1 . . . dtn−1 .

Moreover, after some change of variables, we see that PFα Tϕ(x1 , . . . , xn)PFα is given
by the kernel

(t0 , tn)

↦ 1Fα(t0)∫
G×n−1

ϕ(t0 t−1
1 , . . . , tn−1 t−1

n ) f1(t0 t−1
1 ) . . . fn(tn−1 t−1

n )1F(tn)dt1 . . . dtn−1 .

Let Φ denote the function

Φ(t0 , . . . , tn) = ϕ(t0 t−1
1 , . . . , tn−1 t−1

n ) f1(t0 t−1
1 ) . . . fn(tn−1 t−1

n ) f (tn t−1
0 ),

and let Ψα be defined by

Ψα(t0 , . . . , tn) = 1Fα(t0)1Fα(tn) − 1F×n+1
α

(t0 , . . . , tn).

Let K be some compact set such that supp( f j), supp( f ) ⊆ K. Let t0 , . . . , tn be
such that both Φ(t0 , . . . , tn) and Ψα(t0 , . . . , tn) are nonzero. Since Ψα(t0 , . . . , tn) is
nonzero, we must have t0 , tn ∈ Fα and t1 , . . . , tn−1 ∉ Fα . Since Φ(t0 , . . . , tn) is nonzero,
there are k1 , . . . , kn ∈ K such that tn−1 = kn tn , tn−2 = kn−1kn tn , . . . , t0 = k1 . . . kn tn .
Hence, we find that tn belongs to the set

Fα ∩ Fα .(k1 . . . kn)−1/ (Fα .(k2 . . . kn)−1 ∪ ⋅ ⋅ ⋅ ∪ Fα .k−1
n ) .
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Using these facts, along with some change of variables, we get

∣⟨ip,α(Tϕ(x1 , . . . , xn)), ip′ ,α(y∗)⟩p, p′ − ⟨Mϕ̃(ip1 ,α(x1), . . . , ipn ,α(xn)), ip′ ,α(y∗)⟩p, p′ ∣

= ∣ 1
μG(Fα) ∫Gn+1

Φ(t0 , . . . , tn)Ψα(t0 , . . . , tn)dt0 . . . dtn∣

= ∣ 1
μG(Fα) ∫Kn ∫G

Φ(k1 . . . kn tn , . . . , kn tn , tn)Ψα(k1 . . . kn tn , . . . , kn tn , tn)dk1 . . . dkndtn∣

≤ ∥Φ∥∞ ∫
Kn

1
μG(Fα)

μG

× (Fα ∩ (Fα .(k1 . . . kn)−1) ∩ (Fα .(k2 . . . kn)−1)c ∩ . . . ∩ (Fα .(kn)−1)c) dk1 . . . dkn

≤ ∥Φ∥∞ ∫
Kn

1
μG(Fα)

μG (Fα ∩ (Fα .(kn)−1)c) dk1 . . . dkn .

(4.2)

Using the ordering described earlier, if the index α ≥ (ε × (∥Φ∥∞μG(Kn))−1 , K−1),
then the Følner condition implies that (4.2) is less than ε, and hence equation (4.1) is
true.

A direct modification of this argument now shows that the ip also intertwine
the multiplicative amplifications of the Fourier and Schur multipliers. That is, for
β i ∈ SN

p i
, β ∈ SN

p′ , we have

⟨id⊗ip(T(N)ϕ (β1 ⊗ x1 , . . . , βn ⊗ xn)), id⊗ip′(β ⊗ y∗)⟩p, p′ =

⟨(M(N)
ϕ̃

(id⊗ip1 ,α(β1 ⊗ x1), . . . , id⊗ipn ,α(βn ⊗ xn)))
α

, id⊗ip′(β ⊗ y∗)⟩ .

(4.3)

∎

Combining this with Theorem 3.1, we get the multilinear version of [CaSa15,
Corollary 5.3]

Corollary 4.2 Let 1 < p, p1 , . . . , pn < ∞ be such that p−1 = ∑n
i=1 p−1

i . Let ϕ ∈ Cb(G×n)
and assume that G is amenable. If ϕ̃ is the symbol of a (p1 , . . . , pn)-bounded (resp.
multiplicatively bounded) Schur multiplier, then ϕ is the symbol of a (p1 , . . . , pn)-
bounded (resp. multiplicatively bounded) Fourier multiplier. Moreover,

∥Tϕ∥(p1 , . . . , pn) ≤ ∥Mϕ̃∥(p1 , . . . , pn), ∥Tϕ∥(p1 , . . . , pn)−mb ≤ ∥Mϕ̃∥(p1 , . . . , pn)−mb ,

with equality in the (p1 , . . . , pn)-mb norm when G is second-countable.

Proof For 1 < p < ∞, ip is a (complete) isometry. Hence, for x i as in the hypothesis
of Theorem 4.1, we get

∥Tϕ(x1 , . . . , xn)∥Lp(LG)

= ∥ip ○ Tϕ(x1 , . . . , xn)∥Lp(LG) = ∥Mϕ̃(ip1(x1), . . . , ipn(xn))∥Lp(LG)

≤ ∥Mϕ̃∥(p1 , . . . pn)
n
∏
i=1
∥x i∥Lpi (LG).
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For 1 < p i < ∞, such x i are norm-dense in Lp i (LG), so we get the bound on
∥Tϕ∥(p1 , . . . , pn). The multiplicatively bounded version follows similarly, with the other
inequality coming from Theorem 3.1. ∎

Let H ≤ G be a subgroup. Clearly, from Theorem 2.2, the restriction of ϕ to H also
determines a bounded Schur multiplier, with

∥Mϕ̃∣H∥(p1 , . . . , pn) ≤ ∥Mϕ̃∥(p1 , . . . , pn).

Combining this observation with Corollary 4.2 gives us the multiplicatively bounded
version of the multilinear de Leeuw restriction theorem [CJKM, Theorem 4.5] for
amenable discrete subgroups of second-countable groups. Note that the SAIN con-
dition used in [CJKM, Theorem 4.5] is implicit here since the subgroup is amenable.

Corollary 4.3 Let G be a locally compact, unimodular, second-countable group,
and let 1 < p, p1 , . . . , pn < ∞ with p−1 = ∑i p−1

i . Let ϕ ∈ Cb(G×n) be a symbol of a
(p1 , . . . , pn)-multiplicatively bounded Fourier multiplier. If H is an amenable discrete
subgroup of G, then we have

∥Tϕ∣H∥(p1 , . . . , pn)−mb ≤ ∥Tϕ∥(p1 , . . . , pn)−mb .

Remark 4.4 We now discuss some difficulties one encounters when modifying the
above methods to the nonunimodular case, meaning that the Plancherel weight φ is
no longer a trace. In this case, λ(Cc(G) ⋆ Cc(G)) is no longer a common dense subset
of the Lp(LG). Rather, we have embeddings ηt , p ∶ λ(Cc(G) ⋆ Cc(G)) → Lp(LG)
with dense image given by λ( f ) ↦ Δ(1−t)/p λ( f )Δt/p , where 0 ≤ t ≤ 1 and Δ is the
multiplication operator with the modular function, which we denote also by Δ (see
[Ter81, Ter82] for details).

This raises the question how to define the (p1 , . . . , pn)-Fourier multiplier. A pos-
sible choice would be to take some t ∈ [0, 1] and define

Tϕ(ηt , p1(x1), . . . , ηt , pn(xn)) = ηt , p(Tϕ(x1 , . . . , xn)).

However, with this definition, the intertwining property in the ultralimit of (4.2) will
no longer hold. This can be illustrated by considering the case n = 2 and ϕ(x , y) =
ϕ1(x)ϕ2(y). In order for the intertwining property to hold, the Fourier multiplier
would have to satisfy

Tϕ(ηt , p1(x1), ηt , p2(x2)) = Tϕ1(ηt , p1(x1))Tϕ2(ηt , p2(x2)),

where on the right-hand side we use the linear definition of the Fourier multiplier from
[CaSa15]. This is not the case with the above definition. As a consequence, we no longer
have nice relations between nested linear Fourier multipliers and multilinear Fourier
multipliers, as in [CJKM, Lemma 4.4]. As the proof of the multilinear restriction
theorem in [CJKM] repeatedly uses such formulae, it is also unclear if these de Leeuw-
type theorems are still valid in the nonunimodular case.
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5 Domain of the completely bounded bilinear Hilbert transform
and Calderón–Zygmund operators

In this final section, we prove a result about nonboundedness of the bilinear Hilbert
transform based on our multilinear transference techniques. We prove an analogous
result for examples of Calderón–Zygmund operators. This shows that the main results
from [AmUr20, DMLV22] about Lp-boundedness of certain Fourier multipliers
cannot be extended to range spaces with p ≤ 1. This is in contrast with the Euclidean
(nonvector-valued) case.

5.1 Lower bounds for the vector-valued bilinear Hilbert transform

For 0 < p < ∞, let SN
p = Sp(CN) be the Schatten Lp-space associated with linear

operators on C
N . For 0 < p < 1, we have that SN

p is a quasi-Banach space satisfying
the quasi-triangle inequality:

∥x + y∥p ≤ 2
1
p−1(∥x∥p + ∥y∥p), x , y ∈ SN

p .

We set

h(ξ1 , ξ2) = χ≥0(ξ1 − ξ2), ξ1 , ξ2 ∈ R.

The first statement of the following theorem is the main result of [LaTh99], and the
latter statement of this theorem for 1 < p < ∞ was proved in [AmUr20, DMLV22].

Theorem 5.1 For every 1 < q1 , q2 , q, p1 , p2 < ∞, 2
3 < p < ∞ with 1

p =
1
p1
+ 1

p2
and

N ∈ N≥1, there exists a bounded linear map

T(N)h ∶ Lp1(R, SN
q1
) × Lp2(R, SN

q2
) → Lp(R, SN

q ),(5.1)

which is determined by

T(N)h ( f1 , f2)(s) = ∫
R
∫
R

f̂1(ξ1) f̂2(ξ2)h(ξ1 , ξ2)e i s(ξ1+ξ2)dξ1dξ2 ,

where s ∈ R and f i , i = 1, 2 are functions in Lp i (R, SN
q i
) whose Fourier transforms f̂ i

are continuous compactly supported functions R→ SN
q i

. If 1 < p ∶= ( 1
p1
+ 1

p2
)−1 < ∞ and

1
max{q ,q′} +

1
max{q1 ,q′1}

+ 1
max{q2 ,q′2}

> 1, we have that this operator is moreover uniformly
bounded in N.

Note that the map T(N)h as defined above coincides with the multiplicative ampli-
fication of the map Th ∶= T(1)h as defined in Section 2.7, so this notation is consistent.

Our aim is to show that the results of [AmUr20, DMLV22] cannot be extended
to the case p i = q i , q = p = 1 = 1

p1
+ 1

p2
; i.e., the bound of (5.1) is not uniform in N. In

particular, we show that the bound can be estimated from below by C log(N) for some
constant C independent of N.

For a function ϕ ∶ R2 → C, we recall the definition

ϕ̃(λ0 , λ1 , λ2) = ϕ(λ0 − λ1 , λ1 − λ2), λ i ∈ R.
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Theorem 5.2 Let 1 < p1 , p2 < ∞ be such that 1
p1
+ 1

p2
= 1. There exists an absolute

constant C > 0 such that, for every N ∈ N≥1, we have

Ap1 , p2 ,N ∶= ∥T(N)h ∶ Lp1(R, SN
p1
) × Lp2(R, SN

p2
) → L1(R, SN

1 )∥ > C log(N).

Proof In the proof, let ZN = [−N , N] ∩Z. We may naturally identify S2N+1
p with

Sp(�2(ZN)). Let φ ∈ Cc(R), φ ≥ 0 be such that φ(t) = φ(−t), t ∈ R, ∥φ∥L1(G) = 1 and
its support is contained in [− 1

2 , 1
2 ]. Set, for s1 , s2 ∈ R,

H(s1 , s2) = ∫
R

h(s1 + t,−t + s2)φ(t)dt.

Then H is continuous and H equals h on Z ×Z. As a consequence of [CJKM, Lemma
4.3], we find

∥T(2N+1)
H ∶ Lp1(R, S2N+1

p1
) × Lp2(R, S2N+1

p2
) → L1(R, S2N+1

1 )∥ ≤ Ap1 , p2 ,2N+1 .

By the multilinear De Leeuw restriction theorem [CJKM, Theorem C], we have

∥T(2N+1)
H∣Z×Z ∶ Lp1(T, S2N+1

p1
) × Lp2(T, S2N+1

p2
) → L1(T, S2N+1

1 )∥ ≤ Ap1 , p2 ,2N+1 .(5.2)

Let ζ l(z) = z l , z ∈ T, l ∈ Z. Set the unitary U = ∑N
l=−N p l ⊗ ζ l and for any 1 < p < ∞

the isometric map

πp ∶ S2N+1
p → S2N+1

p ⊗ Lp(T) ∶ x ↦ U(x ⊗ 1)U∗ .

Then,

T(2N+1)
H∣Z×Z ○ (πp1 × πp2) = πp ○ MH̃∣ZN×ZN

.

This together with (5.2) implies that

∥MH̃∣ZN×ZN
∶ S2N+1

p1
× S2N+1

p2
→ S2N+1

1 ∥ ≤ Ap1 , p2 ,2N+1 .(5.3)

Now, set H j(s, t) = H̃∣Z×Z(s, j, t), s, t ∈ Z. Note that

H j(s, t) = χ≥0(s + t − 2 j).

By [PSST17, Theorem 2.3], we find that

max
−N≤ j≤N

∥MH j ∶ S2N+1
1 → S2N+1

1 ∥ ≤ ∥M(N)
H̃∣ZN×ZN

∶ S2N+1
p1

× S2N+1
p2

→ S2N+1
1 ∥.(5.4)

For j = 0, we have that MH j is the triangular truncation map and therefore by [Dav88,
Proof of Lemma 10] (apply MH0 to the matrix consisting of only 1’s) there is a constant
C > 0 such that

C log(2N + 1) ≤ ∥MH0 ∶ S2N+1
1 → S2N+1

1 ∥.(5.5)

Combining (5.3)–(5.5) yields the result for 2N + 1. Since the norm of T(N)h is increasing
in N, the result for even N also follows. ∎
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5.2 Lower bounds for Calderón–Zygmund operators

The aim of this section is to show a result similar to Theorem 5.2 for Calderón–
Zygmund operators by considering an example. This shows that the results from
[DLMV20] cannot be extended to the case where the range space is p = 1. This is in
contrast with the commutative situation where Grafakos and Torres [GrTo02] have
shown boundedness of a class of Calderón–Zygmund operators with natural size and
smoothness conditions as maps Lp × ⋅ ⋅ ⋅ × Lp → Lp/n for p ∈ (1,∞).

Consider any symbol m that is smooth on R
2/{0}, homogeneous, and which is

determined on one of the quadrants by

m(s, t) = s
s − t

, s ∈ R>0 , t ∈ R<0 .(5.6)

Here, homogeneous means that m(λs, λt) = m(s, t), s, t ∈ R, λ > 0. We assume more-
over that m is regulated at 0, by which we mean that

m(0) = π−1r−2 ∫∥(t1 ,t2)∥2≤r
m(t1 , t2)dt1dt2 , r > 0.

As m is homogeneous, this expression is independent of r. This type of symbol m is
important as it occurs naturally in the analysis of divided difference functions; for
instance, it plays a crucial role in [CSZ21].

Theorem 5.3 Let 1 < p1 , p2 < ∞ be such that 1
p1
+ 1

p2
= 1. There exists an absolute

constant C > 0 such that

Bp1 , p2 ,N ∶= ∥T(N)m ∶ Lp1(R, SN
p1
) × Lp2(R, SN

p2
) → L1(R, SN

1 )∥ > C log(N).

Proof By [Dav88, Lemma 10] (and the proof of [Dav88, Corollary 11]), there exist
constants 0 = λ0 < λ1 < ⋅ ⋅ ⋅ < λN such that the function

ϕ(i , j) =
λ i − λ j

λ i + λ j
, 1 ≤ i , j ≤ N ,

is the symbol of a linear Schur multiplier Mϕ ∶ SN
1 → SN

1 whose norm is at least
C log(N) for some absolute constant C > 0. Without loss of generality, we may assume
that λ i ∈ K−1

N Z for some KN ∈ N≥1 by an approximation argument. Then, in this
proof, let ΛN = {λ0 , λ1 , . . . , λN}. We may naturally identify SN+1

p with Sp(�2(ΛN))
by identifying E i , j with Eλ i ,λ j . We proceed as in the proof of Theorem 5.2.

For λ ∈ K−1
N Z, let pλ be the orthogonal projection of �2(K−1

N Z) onto Cδλ . Further-
more, for λ ∈ K−1

N Z, set ζλ ∶ T→ C by ζλ(z) = zKN λ , θ ∈ R. This way every z ∈ T deter-
mines a representation λ ↦ ζλ(z) of K−1

N Z and this identifies T with the Pontrjagin
dual of K−1

N Z. Set the unitary U = ∑λ∈ΛN
pλ ⊗ ζλ and for any 1 < p < ∞ the isometric

map

πp ∶ SN+1
p → SN+1

p ⊗ Lp(T) ∶ x ↦ U(x ⊗ 1)U∗ .

For r > 0, consider the function

mr(s1 , s2) =
1

πr2 ∫∥(s1−t1 ,s2−t2)∥2≤r
m(t1 , t2)dt1dt2 .
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This function is continuous and bounded, and hence we may apply the bilinear De
Leeuw restriction theorem [CJKM, Theorem C] to get

∥T(N+1)
mr ∣(K−1

N Z)2
∶ Lp1(T, SN+1

p1
) × Lp2(T, SN+1

p2
) → L1(T, SN+1

1 )∥

≤ ∥T(N+1)
mr

∶ Lp1(R, SN+1
p1

) × Lp2(R, SN+1
p2

) → L1(R, SN+1
1 )∥.

(5.7)

Since mr ∣(K−1
N Z)2 converges to m∣(K−1

N Z)2 pointwise, we obtain (by considering the
action of the multiplier on functions with finite frequency support)

lim
r↘0

∥T(N+1)
mr ∣(K−1

N Z)2
∶ Lp1(T, SN+1

p1
) × Lp2(T, SN+1

p2
) → L1(T, SN+1

1 )∥

= ∥T(N+1)
m∣
(K−1

N Z)2
∶ Lp1(T, SN+1

p1
) × Lp2(T, SN+1

p2
) → L1(T, SN+1

1 )∥.
(5.8)

Furthermore, viewing mr as a convolution of m with an L1(R2) function, from
[CJKM, Lemma 4.3],

∥T(N+1)
mr

∶ Lp1(R, SN+1
p1

) × Lp2(R, SN+1
p2

) → L1(R, SN+1
1 )∥

≤ ∥T(N+1)
m ∶ Lp1(R, SN+1

p1
) × Lp2(R, SN+1

p2
) → L1(R, SN+1

1 )∥ = Bp1 , p2 ,N .
(5.9)

Combining the estimates (5.7)–(5.9), we find that

∥T(N+1)
m∣
(K−1

N Z)2
∶ Lp1(T, SN+1

p1
) × Lp2(T, SN+1

p2
) → L1(T, SN+1

1 )∥ ≤ Bp1 , p2 ,N .(5.10)

We view m̃∣ΛN×ΛN×ΛN as the symbol of a Schur multiplier Mm̃∣ΛN×ΛN×ΛN
∶ SN+1

p1
×

SN+1
p2

→ SN+1
1 . Then,

T(N+1)
m∣K−1

N Z

○ (πp1 × πp2) = πp ○ Mm̃∣ΛN×ΛN×ΛN
.

It follows with (5.10) that

∥Mm̃∣ΛN×ΛN×ΛN
∶ SN+1

p1
× SN+1

p2
→ SN+1

1 ∥

≤∥T(N+1)
m∣K−1

N Z

∶ Lp1(T, SN+1
p1

) × Lp2(T, SN+1
p2

) → L1(T, SN+1
p )∥ ≤ Bp1 , p2 ,N+1 .

(5.11)

By [PSST17, Theorem 2.3], we find that

∥Mm̃∣ΛN×ΛN×ΛN ( ⋅ ,0 ⋅ ) ∶ SN+1
1 → SN+1

1 ∥ ≤ ∥Mm̃∣ΛN×ΛN×ΛN
∶ SN+1

p1
× SN+1

p2
→ SN+1

p ∥.(5.12)

Now, for s, t ∈ R>0, we find

m̃(s, 0, t) = m(s − 0, 0 − t) = s
s + t

= 1
2
(1 + s − t

s + t
) = 1

2
(1 + ϕ(s, t)).

It follows therefore by the first paragraph that for some constant C > 0,

C log(N) ≤ ∥Mm̃∣ΛN×ΛN×ΛN ( ⋅ ,0 ⋅ ) ∶ SN+1
1 → SN+1

1 ∥.

The combination of the latter estimate with (5.11) yields the result. ∎

Remark 5.4 In [GrTo02] it is shown that for a natural class of Calderón–Zygmund
operators, the associated convolution operator is bounded as a map L1 × L1 → L 1

2 ,∞
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as well as Lp1 × Lp2 → Lp with 1
p =

1
p1
+ 1

p2
and 1

2 < p < ∞, 1 < p1 , p2 < ∞. This applies
in particular to the map Tm with symbol m as in (5.6) (see [GrTo02, Proposition 6]).
Our example shows that this result does not extend to the vector-valued setting in case
1
2 < p ≤ 1. On the other hand, affirmative results in case 1 < p < ∞ and 1

p =
1
p1
+ 1

p2

were obtained in [DLMV20]. The question remains open whether a weak L1-bound
Lp1 × Lp2 → L1,∞ , 1

p1
+ 1

p2
= 1 holds, even in the case p1 = p2 = 2.
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