ON THE AVERAGE DISTANCE PROPERTY IN FINITE DIMENSIONAL REAL BANACH SPACES

Reinhard Wolf

The average distance Theorem of Gross implies that for each N-dimensional real Banach space $E(N \geqslant 2)$ there is a unique positive real number $r(E)$ with the following property: for each positive integer n and for all (not necessarily distinct) $x_{1}, x_{2}, \ldots, x_{n}$ in E with $\left\|x_{1}\right\|=\left\|x_{2}\right\|=\ldots=\left\|x_{n}\right\|=1$, there exists an x in E with $\|x\|=1$ such that

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-x\right\|=r(E)
$$

In this paper we prove that if E has a 1-unconditional basis then $r(E) \leqslant 2-(1 / N)$ and equality holds if and only if E is isometrically isomorphic to \mathbb{R}^{n} equipped with the usual 1-norm.

1. Introduction

In 1964 Gross published the following surprising result:
Theorem. Let (X, d) be a compact connected metric space. Then there is a unique positive real number $r(X, d)$ with the following property: for each positive integer n and for all (not necessarily distinct) $x_{1}, x_{2}, \ldots, x_{n}$ in X, there exists an x in X such that

$$
\frac{1}{n} \sum_{i=1}^{n} d\left(x_{i}, x\right)=r(X, d)
$$

For a proof of this Theorem see [2]. A survey of contributions to this topic is given in [1].

Remark 1.

(a) In the situation of Gross's Theorem we say that (X, d) has the average distance property with rendezvous number $r(X, d)$.
(b) Graham Elton first generalised Gross's Theorem in the following sense (for a proof see [1]):
Let (X, d) be a compact connected metric space and $M^{1}(X)$ be the set of

[^0]all regular Borel probability measures on X, then $r(X, d)$ is the unique positive real number with the following property: for each $\mu \in M^{1}(X)$ there exists an x in X such that
$$
\int_{X} d(x, y) d \mu(y)=r(X, d)
$$

Moreover there are μ, ν in $M^{1}(X)$ with

$$
\int_{X} d(x, y) d \nu(y) \leqslant r(X, d) \leqslant \int_{X} d(x, y) d \mu(y)
$$

for all x in X.
(c) $(D(X)) / 2 \leqslant r(X, d)<D(X)$, with $D(X)$ the diameter of X. For a proof see Theorem 2 in [2].

2. BASIC definitions and notation

For a real Banach space E let $S=\{x \in E \mid\|x\|=1\}$ denote the unit sphere of E. For $n \in \mathbb{N}, 1 \leqslant p \leqslant \infty$ let $\ell^{p}(n)$ denote \mathbb{R}^{n} with the usual p-norm.

Recall that an n-dimensional real Banach space E has a 1 -unconditional basis a_{1}, \ldots, a_{n} in E if

$$
\left\|\sum_{i=1}^{n} \alpha_{i} a_{i}\right\|=\left\|\sum_{i=1}^{n}\left|\alpha_{i}\right| a_{i}\right\|, \quad \text { for all } \alpha_{1}, \ldots, \alpha_{n} \text { in } \mathbb{R}
$$

This is equivalent to

$$
\left\|\sum_{i=1}^{n} \alpha_{i} a_{i}\right\| \leqslant\left\|\sum_{i=1}^{n} \beta_{i} a_{i}\right\|,
$$

for all $\alpha_{1}, \beta_{1}, \ldots, \alpha_{n}, \beta_{n}$ in \mathbb{R} with $\left|\alpha_{i}\right| \leqslant\left|\beta_{i}\right|$ for all $i=1,2, \ldots, n$.
It is easy to see a_{1}, \ldots, a_{n} is a 1 -unconditional basis of E if and only if $\left(a_{1}\right) /\left(\left\|a_{1}\right\|\right), \ldots,\left(a_{n}\right) /\left(\left\|a_{n}\right\|\right)$ is a 1 -unconditional basis of E.

Simple arguments show that if a_{1}, \ldots, a_{n} is a 1 -unconditional basis of E, then its dual basis $f_{1}, \ldots, f_{n} \in E^{\prime}\left(f_{i}\left(a_{j}\right)=\delta_{j}^{i}\right)$ is a 1-unconditional basis of E^{\prime}, the dual space of E and moreover both of them are Auerbach bases:

$$
\max _{i}\left|\alpha_{i}\right| \leqslant\left\|\sum_{i=1}^{n} \alpha_{i} a_{i}\right\| \leqslant \sum_{i=1}^{n}\left|\alpha_{i}\right|, \max _{i}\left|\beta_{i}\right| \leqslant\left\|\sum_{i=1}^{n} \beta_{i} f_{i}\right\| \leqslant \sum_{i=1}^{n}\left|\beta_{i}\right|
$$

for all $\alpha_{1}, \beta_{1}, \ldots, \alpha_{n}, \beta_{n}$ in \mathbb{R}.

For $x=\sum_{i=1}^{n} \alpha_{i} a_{i}$ in E and $f=\sum_{i=1}^{n} \beta_{i} f_{i}$ in E^{\prime} we simply write $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $f=\left[\beta_{1}, \ldots, \beta_{n}\right]$.

In [4] it is said that a real Banach space E of arbitrary dimension has the average distance property with rendezvous number $r(E)$ if Gross's Theorem holds for the unit sphere S of E equipped with the norm induced metric:
There is a unique positive real number (called $r(E)$) such that: for each n in \mathbb{N} and for all (not necessarily distinct) $x_{1}, x_{2}, \ldots, x_{n}$ in S there exists an x in S such that

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-x\right\|=r(E)
$$

Remark 2. Each n-dimensional real Banach space ($n \geqslant 2$) has the average distance property, since in this case S is compact and connected. For example in [3] Morris and Nickolas proved that

$$
r\left(\ell^{2}(n)\right)=\frac{2^{n-1}\left[\Gamma\left(\frac{n}{2}\right)\right]^{2}}{\sqrt{\pi} \Gamma\left(\frac{2 n-1}{2}\right)}, \quad \text { for all } n \geqslant 2
$$

In [4] it is shown that

$$
r\left(\ell^{1}(n)\right)=2-\frac{1}{n}, \quad r\left(\ell^{\infty}(n)\right)=\frac{3}{2}, \quad \text { for all } n \geqslant 2
$$

Looking at infinite dimensional real Banach spaces we have for example:
The Hilbert space ℓ^{2} of absolutely square summable real sequences has the average distance property with rendezvous number $\sqrt{2}\left(=\lim _{n \rightarrow \infty} r\left(\ell^{2}(n)\right)\right)$, and ℓ^{1} the space of all absolutely summable real sequences fails to have the desired property. (For a more detailed discussion see [4]).

3. The results

In [4] it is proved that $r(E) \leqslant 3 / 2$ for all 2-dimensional real Banach spaces E, and $r(E)=3 / 2$ if and only if E is isometrically isomorphic to $\ell^{1}(2)$.

Further it is conjectured that $r(E) \leqslant 2-1 / n$ holds for all n-dimensional real Banach spaces E with $n \geqslant 2$.

In this paper we give a proof of $r(E) \leqslant 2-1 / n$ in the case when E has a 1unconditional basis. The proof is based on the following

Theorem 1. Let E be a real n-dimensional Banach space ($n \geqslant 2$) with a 1 unconditional basis $a_{1}, \ldots, a_{n}\left(\left\|a_{1}\right\|=\ldots=\left\|a_{n}\right\|=1\right)$. Then we have

$$
\frac{1}{2 n} \sum_{i=1}^{n}\left\|x-a_{i}\right\|+\left\|x+a_{i}\right\| \leqslant 1+\frac{n-1}{n}\|x\|
$$

for all x in E with $\|x\| \leqslant 1$.
From this we obtain
Theorem 2. Let E be a real n-dimensional Banach space ($n \geqslant 2$) with a 1 unconditional basis $a_{1}, \ldots, a_{n}\left(\left\|a_{1}\right\|=\ldots=\left\|a_{n}\right\|=1\right)$. Then we have

$$
r(E) \leqslant 2-\frac{1}{n}
$$

moreover $r(E)=2-1 / n$ if and only if E is isometrically isomorphic to $\ell^{1}(n)$.
Remark 3. (a) The inequality established in Theorem 1 is sharp in the following sense: For each E there is at least one x (for example $x=0$), such that equality holds. It is easy to check that for $E=\ell^{1}(n)$ equality holds for all x with $\|x\| \leqslant 1$.

Furthermore in general the assumption a_{1}, \ldots, a_{n} is a 1 -unconditional basis of E cannot be replaced by a weaker condition, for example a_{1}, \ldots, a_{n} being an Auerbach basis of E :
Let $E=\ell^{\infty}(3), a_{1}=(-1,1,1), a_{2}=(1,-1,1), a_{3}=(1,1,-1)$.
It is easy to see that a_{1}, a_{2}, a_{3} forms an Auerbach basis of $\ell^{\infty}(3)$ and

$$
\frac{1}{6} \sum_{i=1}^{3}\left\|x-a_{i}\right\|+\left\|x+a_{i}\right\|=2>1+\frac{2}{3} \cdot 1 \text { for } x=(1,1,1)
$$

(b) Since the proof of Theorem 2 is based on the proof of Theorem 1, the condition that E has a 1-unconditional basis is rather more technical than essential for obtaining the upper bound $r(E) \leqslant 2-1 / n$. So the question remains:
Is it true that

$$
r(E) \leqslant 2-\frac{1}{n}
$$

for all n-dimensional real Banach spaces $E(n \geqslant 2)$?

4. The proofs

The following Lemma collects some simple consequences of E having a 1-unconditional basis:

Lemma 1. Let E be an n-dimensional real Banach space with a 1 -unconditional basis $a_{1}, \ldots, a_{n}\left(\left\|a_{1}\right\|=\ldots=\left\|a_{n}\right\|=1\right)$. Then we have
(1) If there is an $x=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ in E such that $\lambda_{i} \neq 0$ for all $i=$ $1,2, \ldots, n$ and $\|x\|=\left|\lambda_{1}\right|+\ldots+\left|\lambda_{n}\right|$, then we have

$$
\left\|\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\|=\left|\alpha_{1}\right|+\ldots+\left|\alpha_{n}\right|
$$

for all $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{R}.
(2) If $\|(1,1, \ldots, 1)\|=1$, we have

$$
\left\|\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\|=\max _{i}\left|\alpha_{i}\right|
$$

for all $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{R}.
(3) Let $n=3$ and $\|(1,1,0)\|=\|(0,1,1)\|=1$ and $\|(1,1,1)\|=2$. Then we have

$$
\left\|\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right\|=\max \left(\left|\alpha_{1}\right|+\left|\alpha_{3}\right|,\left|\alpha_{2}\right|\right)
$$

for all $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in \mathbb{R}.
(4) Let $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in E such that $0 \leqslant \alpha_{i} \leqslant 1 / 2$ for some $1 \leqslant i \leqslant n$. Then we have

$$
\left\|x-a_{i}\right\| \leqslant 1+\|x\|-2 \alpha_{i}
$$

Proof: (1) By assumption and the Hahn-Banach Theorem we get $\|[1,1, \ldots, 1]\|=$ $1\left([1,1, \ldots, 1] \in E^{\prime}\right)$. Therefore we have $\left|\alpha_{1}\right|+\ldots+\left|\alpha_{n}\right| \leqslant\left\|\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\| \leqslant$ $\left|\alpha_{1}\right|+\ldots+\left|\alpha_{n}\right|$, for all $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{R}.
(2) $\max _{i}\left|\alpha_{i}\right| \leqslant\left\|\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\| \leqslant \max _{i}\left|\alpha_{i}\| \|(1,1, \ldots, 1) \|=\max _{i}\right| \alpha_{i} \mid$, for all $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{R}.
(3) From $\|(1,1,0)\|=\|(0,1,1)\|=1$ it follows that $\beta_{1}+\beta_{2} \leqslant 1$ and $\beta_{2}+\beta_{3} \leqslant 1$ for all $\left[\beta_{1}, \beta_{2}, \beta_{3}\right] \in E^{\prime}$ with $\left\|\left[\beta_{1}, \beta_{2}, \beta_{3}\right]\right\|=1$. By the Hahn-Banach Theorem there is a $f \in E^{\prime},\|f\|=1$ such that $f((1,1,1))=2$. Therefore we have $f=[1,0,1]$. So $\left\|\left(\alpha_{1}, 0, \alpha_{3}\right)\right\|=\left|\alpha_{1}\right|+\left|\alpha_{3}\right|$ for all α_{1}, α_{3} in \mathbb{R}. From this and part (2) it remains to show that

$$
\left\|\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right\|=\max \left(\alpha_{1}+\alpha_{3}, \alpha_{2}\right) \text { for all } \alpha_{1}, \alpha_{2}, \alpha_{3}>0
$$

If $\alpha_{1}+\alpha_{3} \geqslant \alpha_{2}$ we get $\left\|\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right\| \leqslant\left\|\left(\alpha_{1}, \alpha_{1}, 0\right)\right\|+\left\|\left(0, \alpha_{3}, \alpha_{3}\right)\right\|=\alpha_{1}+\alpha_{3}$ by part (2).

If $\alpha_{1}+\alpha_{3}<\alpha_{2}$ we get $\left\|\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right\| \leqslant \alpha_{2}\left\|\left(\left(\alpha_{1}\right) /\left(\alpha_{1}+\alpha_{3}\right),\left(\alpha_{1}\right) /\left(\alpha_{1}+\alpha_{3}\right), 0\right)\right\|+$ $\alpha_{2}\left\|\left(0,\left(\alpha_{3}\right) /\left(\alpha_{1}+\alpha_{3}\right),\left(\alpha_{3}\right) /\left(\alpha_{1}+\alpha_{3}\right)\right)\right\|=\alpha_{2}$ by part (2).

On the other hand $\left\|\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right\| \geqslant\left\|\left(\alpha_{1}, 0, \alpha_{3}\right)\right\|=\alpha_{1}+\alpha_{3}$ and of course $\left\|\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right\| \geqslant \alpha_{2}$.
(4) $\left\|x-a_{i}\right\|=\left\|\left(\alpha_{1}, \ldots, 1-\alpha_{i}, \ldots, \alpha_{n}\right)\right\| \leqslant\left(1-2 \alpha_{i}\right)\left\|a_{i}\right\|+\|x\|=1+\|x\|-$ $2 \alpha_{i}$.

Proof of Theorem 1: Let $f(x)=(1 /(2 n)) \sum_{i=1}^{n}\left\|x-a_{i}\right\|+\left\|x+a_{i}\right\|$ for all x in E. It is easy to see that $f\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=f\left(\left(\left|\alpha_{1}\right|, \ldots,\left|\alpha_{n}\right|\right)\right)$ for all $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{R}.

Since $\left\|x-a_{i}\right\|,\left\|x+a_{i}\right\| \leqslant 1+\|x\|$ for all x in E and all $i=1,2, \ldots, n$, it remains to show that $S\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right) \leqslant n+(n-2)\|x\|$ for $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in E with $\|x\| \leqslant 1$ and $\alpha_{1}, \ldots, \alpha_{n} \geqslant 0$, where $S\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$ is defined as $S\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=$ $\left\|\left(1-\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right\|+\ldots+\left\|\left(\alpha_{1}, \alpha_{2}, \ldots, 1-\alpha_{n}\right)\right\|$.

Now let $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in $E,\|x\| \leqslant 1$ and $\alpha_{1}, \ldots, \alpha_{n} \geqslant 0$. Note that $\|x\| \leqslant 1$ implies $\alpha_{1}, \ldots, \alpha_{n} \leqslant 1$.

Let $\tau=\alpha_{1}+\ldots+\alpha_{n}$ and $s=S\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$. We consider five cases:
(1) $\tau=\|x\|$

By the triangle inequality we get $s \leqslant n(1+\tau)-2 \tau=n+(n-2)\|x\|$.
(2) $\tau>\|x\|$
(a) There are at least three coordinates of x greater or equal to $1 / 2$. Without loss of generality let $\alpha_{1}, \alpha_{2}, \alpha_{3} \geqslant 1 / 2$.

Then we have $\left\|x-a_{i}\right\| \leqslant\|x\|$ since $1-\alpha_{i} \leqslant \alpha_{i}$ for $i=1,2,3$. So we get $s \leqslant 3\|x\|+(n-3)(1+\|x\|) \leqslant n-1+(n-2)\|x\|$, since $\|x\| \leqslant 1$. Therefore $s<$ $n+(n-2)\|x\|$.
(b) Without loss of generality let $\alpha_{1}, \alpha_{2} \geqslant 1 / 2$ and $\alpha_{3}, \ldots, \alpha_{n}<1 / 2$.

Since $\left(1-\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\sum_{i=2}^{n}\left(2 \alpha_{i}-\left(\alpha_{i}\right) /\left(\alpha_{1}\right)\right) a_{i}+\left(1 /\left(\alpha_{1}\right)-1\right) x$ we get $\left\|\left(1-\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right\| \leqslant \sum_{i=2}^{n} \alpha_{i}\left(2-1 /\left(\alpha_{1}\right)\right)+\left(1 /\left(\alpha_{1}\right)-1\right)\|x\|$ and therefore

$$
\left\|\left(1-\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right\| \leqslant 2\left(\tau-\alpha_{1}\right)-\frac{\tau-\alpha_{1}}{\alpha_{1}}+\left(\frac{1}{\alpha_{1}}-1\right)\|x\|
$$

The same argument leads to

$$
\left\|\left(\alpha_{1}, 1-\alpha_{2}, \ldots, \alpha_{n}\right)\right\| \leqslant 2\left(\tau-\alpha_{2}\right)-\frac{\tau-\alpha_{2}}{\alpha_{2}}+\left(\frac{1}{\alpha_{2}}-1\right)\|x\| .
$$

Hence we get

$$
s \leqslant 4 \tau-2\left(\alpha_{1}+\alpha_{2}\right)-\frac{\tau-\alpha_{1}}{\alpha_{1}}-\frac{\tau-\alpha_{2}}{\alpha_{2}}+\left(\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}-2\right)\|x\|+\sum_{i=3}^{n} 1+\|x\|-2 \alpha_{i}
$$

by Lemma 1 part (4). Therefore

$$
\begin{aligned}
s & \leqslant 2 \tau+(n-4)\|x\|+n-(\tau-\|x\|)\left(\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}\right) \\
& \leqslant 2 \tau+(n-4)\|x\|+n-(\tau-\|x\|) 2=n+(n-2)\|x\| .
\end{aligned}
$$

(c) Without loss of generality let $\alpha_{1} \geqslant 1 / 2$ and $\alpha_{2}, \ldots, \alpha_{n}<1 / 2$.

The proof of case (2)(b) shows that

$$
\left\|\left(1-\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right\| \leqslant 2\left(\tau-\alpha_{1}\right)-\frac{\tau-\alpha_{1}}{\alpha_{1}}+\left(\frac{1}{\alpha_{1}}-1\right)\|x\| .
$$

So by Lemma 1 part (4) we get

$$
\begin{aligned}
s & \leqslant 2\left(\tau-\alpha_{1}\right)-\frac{\tau-\alpha_{1}}{\alpha_{1}}+\left(\frac{1}{\alpha_{1}}-1\right)\|x\|+\sum_{i=2}^{n} 1+\|x\|-2 \alpha_{i} \\
& =n+(n-2)\|x\|-(\tau-\|x\|) \frac{1}{\alpha_{1}}<n+(n-2)\|x\| .
\end{aligned}
$$

(d) $\alpha_{1}, \ldots, \alpha_{n}<1 / 2$.

By Lemma 1 part (4) we get

$$
s \leqslant(1+\|x\|) n-2 \tau<n+(n-2)\|x\| .
$$

Now let $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in S. We say that x is of Type I if $\left|\alpha_{1}\right|+\ldots+\left|\alpha_{n}\right|=1$. If there are i_{1}, i_{2} in $\{1,2, \ldots, n\}$, such that $i_{1} \neq i_{2},\left|\alpha_{i_{1}}\right|=\left|\alpha_{i_{2}}\right|=1$ and $\alpha_{i}=0$ for all i in $\{1,2, \ldots, n\} \backslash\left\{i_{1}, i_{2}\right\}$, we say that x is of Type II.

Furthermore $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a typical element of Type I if $\alpha_{1}, \ldots, \alpha_{k}>0$, $\alpha_{k+1}=\ldots=\alpha_{n}=0$ for some $1 \leqslant k \leqslant n$ and $\alpha_{1}+\ldots+\alpha_{n}=1$.

A typical element of Type II is the vector ($1,1,0, \ldots, 0$). We formulate the second part of the following Lemma for typical elements of Type I and Type II. By renumbering the indices and changing the signs of the coordinates you get the analogous results for arbitrary elements of Type I and Type II.

Lemma 2. Let f be defined as in the proof of Theorem 1 and let $A=\{x \in S \mid$ $f(x)=2-1 / n\}$. Then we have
(1) x in A implies x is of Type I or Type II.
(2) x in A is of Type I implies

$$
\left\|\left(\beta_{1}, \ldots, \beta_{k}, 0, \ldots, 0\right)\right\|=\sum_{i=1}^{k}\left|\beta_{i}\right|
$$

and

$$
\left\|\left(\beta_{1}, \ldots, \beta_{k}, 0, \ldots, 0, \beta_{j}, 0, \ldots, 0\right)\right\|=\sum_{i=1}^{k}\left|\beta_{i}\right|+\left|\beta_{j}\right|
$$

for all $\beta_{1}, \ldots, \beta_{k}, \beta_{j}$ in \mathbb{R} and all $k+1 \leqslant j \leqslant n$, for $x=\left(\alpha_{1}, \ldots, \alpha_{k}, 0, \ldots, 0\right)$ a typical element of Type I.
(3) x in A and x is of Type II implies

$$
\left\|\left(\beta_{1}, \beta_{2}, 0, \ldots, 0\right)\right\|=\max \left(\left|\beta_{1}\right|,\left|\beta_{2}\right|\right)
$$

for all β_{1}, β_{2} in \mathbb{R} and

$$
\|(1,1,1,0, \ldots, 0)\|=\ldots=\|(1,1,0, \ldots, 0,1)\|=2
$$

for $x=(1,1,0, \ldots, 0)$ a typical element of Type II.
Proof: Let $x=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in A. Since $f\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=f\left(\left(\left|\alpha_{1}\right|, \ldots,\left|\alpha_{n}\right|\right)\right)$ for all $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{R} we can assume without loss of generality that $\alpha_{1}, \ldots, \alpha_{n} \geqslant 0$.
(1) Note that Theorem 1 implies $f(y) \leqslant 2-1 / n$ for all y in S. A detailed look at the proof shows that equality on S is attained only in case (1) and case (2)(b). Case (1) leads to the fact that x is of Type I. The estimates in case (2)(b) lead to $\alpha_{1}=\alpha_{2}=1$. It remains to show that $\alpha_{3}=\ldots=\alpha_{n}=0$.

The proof of Theorem 1 and x in A imply $\sum_{i=1}^{n}\left\|x-a_{i}\right\|=2 n-2$. Since $\left\|x-a_{1}\right\|$, $\left\|x-a_{2}\right\| \leqslant 1$ we get $\left\|x-a_{1}\right\|=\left\|x-a_{2}\right\|=1$ and $\left\|x-a_{i}\right\|=2$ for all $i=3, \ldots, n$. Lemma 1 part (4) implies $\left\|x-a_{i}\right\| \leqslant 2-2 \alpha_{i}$ for all $i=3, \ldots, n$. Therefore $\alpha_{s}=$ $\ldots=\alpha_{n}=0$.
(2) The proof of Theorem 1 and x in A again imply $\sum_{i=1}^{n}\left\|x-a_{i}\right\|=2 n-2$ and $\left\|x+a_{i}\right\|=2$ for all $i=1,2, \ldots, n$. The assumptions on x and Lemma 1 part (1) verify the assertions.
(3) Since $x=(1,1,0, \ldots, 0)$ in S and $\left\|x+a_{i}\right\|=2$ for $i=1,2, \ldots, 3$ (x in A and the proof of Theorem 1 once again) we are done by Lemma 1 part (2).

Proof of Theorem 2: Let f be defined as in the proof of Theorem 1. By Gross's Theorem there is an x in S such that $f(x)=r(E)$. By Theorem 1 we have $f(x) \leqslant 2-1 / n$ and therefore $r(E) \leqslant 2-1 / n$. It is easy to check that for $E=\ell^{1}(n)$ we have $f(x)=1+((n-1) / n)\|x\|$ for all x in $\ell^{1}(n)$ with $\|x\| \leqslant 1$. Hence we get $f(x)=2-1 / n$ for all x in S and by Gross's Theorem $r\left(\ell^{1}(n)\right)=2-1 / n$.

Now let E be an arbitrary n-dimensional real Banach space with a 1-unconditional basis a_{1}, \ldots, a_{n} in S and $r(E)=2-1 / n$. It remains to show that E is isometrically isomorphic to $\ell^{1}(n)$. In [4] it is shown that $r(E)=3 / 2$ implies that E is isometrically isomorphic to $\ell^{1}(2)$ for all 2-dimensional real Banach spaces E. So we can assume that $n \geqslant 3$.

By Remark 1 part (b) there is a regular Borel probability measure μ on S such that

$$
\int_{S}\|x-y\| d \mu(y) \geqslant 2-\frac{1}{n} \text { for all } x \text { in } S
$$

By definition of f we get

$$
\int_{S} f(y) d \mu(y) \geqslant 2-\frac{1}{n}
$$

As in Lemma 2 let $A=\{y \in S \mid f(y)=2-1 / n\}$. By Theorem 1 we have $f(y) \leqslant 2-1 / n$ for all y in S, and therefore we get $\mu(A)=1$. Lemma 2 part (1) quaranteed that $A=B \cup C$ where B consists of Type I elements of A and C consists of Type II elements of A. Of course we have $B \cap C=\emptyset$.

Case 1. $\mu(C)=0$.
Take some $\varepsilon>0$ such that $\|(\varepsilon, \ldots, \varepsilon)\|=1$ and let $z=(\varepsilon, \ldots, \varepsilon)$. Furthermore let

$$
g(y)=\frac{\|z-y\|+\|z+y\|}{2} \text { for all } y \text { in } S .
$$

If $\varepsilon \geqslant 1 / 2$ it follows that $\left\|z-a_{i}\right\| \leqslant\|z\|=1$ for all $i=1,2, \ldots, n$. So we have $g\left(a_{i}\right), g\left(-a_{i}\right) \leqslant 3 / 2$ for all $i=1,2, \ldots, n$. Since g is a convex function and Type I elements are included in the convex hull of $a_{1},-a_{1}, \ldots, a_{n},-a_{n}$ we have $g(b) \leqslant 3 / 2$ for all b in B. Since

$$
\int_{B} g(y) d \mu(y) \geqslant 2-\frac{1}{n}
$$

we get a contradiction to $n \geqslant 3$. So it follows that

$$
\varepsilon<\frac{1}{2}
$$

By Lemma 1 part (4) we have $\left\|z-a_{i}\right\| \leqslant 2-2 \varepsilon$ for all $i=1,2, \ldots, n$ and therefore $g(b) \leqslant 2-\varepsilon$ for all b in B. Hence $\varepsilon \leqslant 1 / n$. Since $1=\|z\| \leqslant n \varepsilon$, we get $\varepsilon=1 / n$. Now Lemma 1 part (1) quarantees that E is isometrically isomorphic to $\ell^{1}(n)$.

Case 2. $\mu(C)>0$.
Assume that there are two elements $c_{1}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $c_{2}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ in C, such that there are i_{1}, i_{2}, i_{3} in $\{1,2, \ldots, n\}$ with $\left|\alpha_{i_{1}}\right|=\left|\beta_{i_{1}}\right|=1,\left|\alpha_{i_{2}}\right|=\left|\beta_{i_{3}}\right|=$ $1,\left|\alpha_{i_{3}}\right|=\left|\beta_{i_{2}}\right|=0$ and $\left|\alpha_{i}\right|=\left|\beta_{i}\right|=0$ for all i in $\{1,2, \ldots, n\} \backslash\left\{i_{1}, i_{2}, i_{3}\right\}$. Without loss of generality let $c_{1}=(1,1,0, \ldots, 0)$ and $c_{2}=(0,1,1,0, \ldots, 0)$. Lemma 2 part (3) and Lemma 1 part (3) imply that

$$
\left\|\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 0, \ldots, 0\right)\right\|=\max \left(\left|\alpha_{1}\right|+\left|\alpha_{3}\right|,\left|\alpha_{2}\right|\right)
$$

for all $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in \mathbb{R}.
Now define $d_{1}=(1 / 2,0,1 / 2,0, \ldots, 0), d_{2}=a_{2}, d_{3}=(-1 / 2,0,1 / 2,0, \ldots, 0)$ and $d_{i}=a_{i}$ for all $i=4, \ldots, n$.

Furthermore let

$$
h(y)=\frac{1}{2 n} \sum_{i=1}^{n}\left\|y-d_{i}\right\|+\left\|y+d_{i}\right\| \text { for all } y \text { in } S .
$$

Note that $h\left(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=h\left(\left(\left|\alpha_{1}\right|, \ldots,\left|\alpha_{n}\right|\right)\right)$ for all $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbb{R}.
Easy calculations show that $h\left(a_{1}\right), h\left(a_{2}\right), h\left(a_{3}\right) \leqslant 2-2 / n$ and $h\left(a_{i}\right) \leqslant 2-1 / n$ for all $i=4,5, \ldots, n$. Therefore we get $h(b) \leqslant 2-1 / n$ for all b in B. Moreover it follows immediately that $h\left(c_{1}\right), h\left(c_{2}\right) \leqslant 2-3 / 2 n$. It is easy to check that $h(c) \leqslant$ $2-1 / n$ for all c in C. (Note that C is finite and $(1,0,1,0, \ldots, 0)$ is not in C since $\|(1,0,1,0, \ldots, 0)\|=2$.)

For example let

$$
\begin{aligned}
& c=(1,0,0,1,0, \ldots, 0): \\
& \left\|c-d_{1}\right\|=\left\|\left(\frac{1}{2}, 0, \frac{1}{2}, 1,0, \ldots, 0\right)\right\| \leqslant\left\|\left(\frac{1}{2}, 0,0,1,0, \ldots, 0\right)\right\|+\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

by Lemma 2 part (3).
An analogous estimation leads to $\left\|c+d_{3}\right\| \leqslant 3 / 2$, so we have

$$
h(c) \leqslant \frac{1}{2 n}\left(\frac{3}{2}+2+2+2+2+\frac{3}{2}+1+2+4(n-4)\right)=2-\frac{1}{n} .
$$

Summing up we have

$$
h(a) \leqslant 2-\frac{1}{n} \text { for all } a \text { in } A
$$

and

$$
h\left(\left(\sigma_{1}, \sigma_{2}, 0, \ldots, 0\right)\right), h\left(\left(0, \sigma_{1}, \sigma_{2}, 0, \ldots, 0\right)\right) \leqslant 2-\frac{3}{2 n}
$$

for all $\left|\sigma_{1}\right|=\left|\sigma_{2}\right|=1$.
Since d_{1}, \ldots, d_{n} in S we get

$$
\int_{A} h(y) d \mu(y) \geqslant 2-\frac{1}{n}
$$

and therefore $\mu\left(\left\{\left(\sigma_{1}, \sigma_{2}, 0, \ldots, 0\right),\left(0, \sigma_{1}, \sigma_{2}, 0, \ldots, 0\right),\left|\sigma_{1}\right|=\left|\sigma_{2}\right|=1\right\}\right)=0$.
Therefore, and since Lemma 2 part (2), (3) quarantees that each b in B and c in C have no coordinate unequal to zero in common, we can assume without loss of generality that

$$
C=\left\{\sigma_{1} a_{1}+\sigma_{2} a_{2}, \sigma_{1} a_{3}+\sigma_{2} a_{4}, \ldots, \sigma_{1} a_{2 k-1}+\sigma_{2} a_{2 k},\left|\sigma_{1}\right|=\left|\sigma_{2}\right|=1\right\}
$$

for some $1 \leqslant k \leqslant n / 2$ and that B is included in the subspace generated by $a_{2 k+1}, \ldots, a_{n}$.

For convenience let $x_{1}=a_{1}, y_{1}=a_{2}, \ldots, x_{k}=a_{2 k-1}, y_{k}=a_{2 k}, z_{1}=$ $a_{2 k+1}, \ldots, z_{s}=a_{n} ; s=n-2 k$. Furthermore let E_{1} be the subspace generated by $x_{1}, y_{1}, \ldots, x_{k}, y_{k}$ and E_{2} be the subspace generated by $z_{1}, \ldots, z_{\varepsilon}$ and

$$
S_{1}=\left\{x \in E_{1} \mid\|x\|=1\right\}, \quad S_{2}=\left\{x \in E_{2} \mid\|x\|=1\right\}
$$

Since $C=A \cap S_{1}$ and $B=A \cap S_{2}$ we have $\mu(C)=\mu\left(S_{1}\right)$ and $\mu(B)=\mu\left(S_{2}\right)$.
Our next aim is to show that $\mu(C)=(2 k) / n$. We consider two cases:
(i) $\mu(B)=0$.

Since $1=\mu(A)=\mu(C)=\mu\left(S_{1}\right)$ we get

$$
\int_{S_{1}}\|x-y\| d \mu(y) \geqslant 2-\frac{1}{n} \text { for all } x \text { in } S .
$$

By Remark 1 part (b) there is some x in S_{1} such that

$$
\int_{S_{1}}\|x-y\| d \mu(y)=r\left(E_{1}\right)
$$

Now Theorem 1 implies $r\left(E_{1}\right) \leqslant 2-1 /(2 k)$, and therefore we get $n=2 k$. Hence $\mu(C)=\mu(A)=1=(2 k) / n$.
(ii) $\mu(B)>0$.

$$
\int_{A}\|x-y\| d \mu(y) \geqslant 2-\frac{1}{n} \text { for all } x \text { in } S
$$

implies

$$
\mu(C) \int_{S_{1}}\|x-y\| d \frac{\mu}{\mu(C)}(y)+\mu(B) \int_{S_{2}}\|x-y\| d \frac{\mu}{\mu(B)}(y) \geqslant 2-\frac{1}{n}
$$

for all x in S.
By Remark 1 part (b) and Theorem 1 we get some x_{1} in S_{1} such that

$$
\int_{S_{1}}\left\|x_{1}-y\right\| d \frac{\mu}{\mu(C)}(y)=r\left(E_{1}\right) \leqslant 2-\frac{1}{2 k} .
$$

The same argument leads to some x_{2} in S_{2} such that

$$
\int_{S_{2}}\left\|x_{2}-y\right\| d \frac{\mu}{\mu(B)}(y)=r\left(E_{2}\right) \leqslant 2-\frac{1}{s}, \quad \text { if } s \geqslant 2
$$

If $s=1$ we have

$$
\min \left(\int_{S_{2}}\left\|z_{1}-y\right\| d \frac{\mu}{\mu(B)}(y), \int_{S_{2}}\left\|z_{1}+y\right\| d \frac{\mu}{\mu(B)}(y)\right) \leqslant 1=2-\frac{1}{s}
$$

since $S_{2}=\left\{z_{1},-z_{1}\right\}$ implies $\mu /(\mu(B))=\lambda \delta_{z_{1}}+(1-\lambda) \delta_{-z_{1}}$ for some $0 \leqslant \lambda \leqslant 1$, where δ_{x} denotes the measure concentrated on x.

Now for $x=x_{1}$ and $x=x_{2}\left(z_{1},-z_{1}\right)$ in

$$
\int_{A}\|x-y\| d \mu(y)
$$

we obtain $(2-1 /(2 k)) \mu(C)+2 \mu(B)$ and $2 \mu(C)+(2-1 / s) \mu(B)$ are greater or equal to $2-1 / n$. Since $1=\mu(A)=\mu(B)+\mu(C)$ it follows immediately that

$$
\mu(C)=\frac{2 k}{n}
$$

Now assume that there is some x in S such that

$$
\int_{S_{1}}\|x-y\| d \frac{\mu}{\mu(C)}(y)<2-\frac{1}{2 k}
$$

Then we get

$$
\left(2-\frac{1}{2 k}\right) \mu(C)+2 \mu(B)>2-\frac{1}{n}
$$

which is a contradiction to

$$
\mu(C)=\frac{2 k}{n}\left(\mu(B)=\frac{s}{n}, n=2 k+s\right)
$$

Hence

$$
\int_{S_{1}}\|x-y\| d \frac{\mu}{\mu(C)}(y)=\int_{C}\|x-y\| d \frac{\mu}{\mu(C)}(y) \geqslant 2-\frac{1}{2 k}
$$

for all x in S.
Since C is finite, there are some $\lambda_{c} \geqslant 0, \sum_{c \in C} \lambda_{c}=1$ such that

$$
\sum_{c \in C} \lambda_{c}\|x-c\|=\int_{C}\|x-y\| d \frac{\mu}{\mu(C)}(y) \geqslant 2-\frac{1}{2 k} \text { for all } x \text { in } S .
$$

Note that $\left\|c-c^{\prime}\right\|=2$ for all $c \neq c^{\prime}, c$ and c^{\prime} in C by Lemma 2 part (3). So by $\sum_{c \in C} \lambda_{c}\left\|c^{\prime}-c\right\| \geqslant 2-1 /(2 k)$ for all c^{\prime} in C and $|C|=4 k$, we obtain $\lambda_{c}=1 /(4 k)$ for all c in C.

Summing up we get

$$
\frac{1}{2 n} \sum_{c \in C}\|x-c\|+\frac{s}{n} \int_{B}\|x-y\| d \mu(y) \geqslant 2-\frac{1}{n} \text { for all } x \text { in } S .
$$

Let $\bar{C}=\left\{x_{1}+y_{1}, x_{1}-y_{1}, \ldots, x_{k}+y_{k}, x_{k}-y_{k}\right\}$ then we obtain formula (${ }^{*}$):

$$
\begin{equation*}
\frac{1}{2 n} \sum_{c \in \bar{C}}\|x-c\|+\|x+c\|+\frac{s}{2 n} \int_{B}\|x-y\|+\|x+y\| d \mu(y) \geqslant 2-\frac{1}{n} \tag{*}
\end{equation*}
$$

for all x in S.
Now let $V=\left\{\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right),\left|\sigma_{1}\right|=\ldots=\left|\sigma_{k}\right|=1\right\}$ and identify V with the set of all vertices of the k-dimensional cubic graph Q_{k}. Remember that two vertices of Q_{k} are neighbours in Q_{k} if and only if their coordinates differ in exactly one position. For each σ in V find some $\varepsilon_{\sigma}>0$, such that

$$
x_{\sigma}=\varepsilon_{\sigma} \sum_{i=1}^{k}\left(\sigma_{i}+1\right) x_{i}-\left(\sigma_{i}-1\right) y_{i}+\varepsilon_{\sigma} \sum_{i=1}^{s} z_{i}
$$

is in S. In the case $s=0$ leave the second sum. Since $\left\|x_{\sigma}\right\|=1$ we get $2 \varepsilon_{\sigma} \leqslant 1 \leqslant$ $(2 k+s) \varepsilon_{\sigma}$ and therefore $1 / n \leqslant \varepsilon_{\sigma} \leqslant 1 / 2$.

Find σ_{0} in V such that $\min _{\sigma \in V} \varepsilon_{\sigma}=\varepsilon_{\sigma_{0}}$. Without loss of generaligy (transpose x_{i} and y_{i}) we can assume that $\sigma_{0}=(1,1, \ldots, 1)$.

Let $\sigma_{1}, \ldots, \sigma_{k}$ be the neighbours of σ_{0}. Since

$$
\begin{aligned}
& \left(1-2 \varepsilon_{\sigma_{0}}, 1,2 \varepsilon_{\sigma_{0}}, 0, \ldots, 2 \varepsilon_{\sigma_{0}}, 0, \varepsilon_{\sigma_{0}}, \ldots, \varepsilon_{\sigma_{0}}\right) \\
& \quad=\left(1-2 \varepsilon_{\sigma_{0}}\right)\left(x_{1}+y_{1}\right)+\frac{\varepsilon_{\sigma_{0}}}{\varepsilon_{\sigma_{1}}} x_{\sigma_{1}}
\end{aligned}
$$

we get

$$
\left\|x_{1}+y_{1}-x_{\sigma_{0}}\right\| \leqslant 1-2 \varepsilon_{\sigma_{0}}+\frac{\varepsilon_{\sigma_{0}}}{\varepsilon_{\sigma_{1}}}
$$

A similar argument leads to
and

$$
\left\|x_{i}+y_{i}-x_{\sigma_{0}}\right\| \leqslant 1-2 \varepsilon_{\sigma_{0}}+\frac{\varepsilon_{\sigma_{0}}}{\varepsilon_{\sigma_{i}}}
$$

$$
\left\|x_{i}-y_{i}-x_{\sigma_{0}}\right\| \leqslant 1-2 \varepsilon_{\sigma_{0}}+\frac{\varepsilon_{\sigma_{0}}}{\varepsilon_{\sigma_{i}}}
$$

for all $i=1,2, \ldots, k$.

Since $\varepsilon_{\sigma} \leqslant 1 / 2$ for all σ in V we get by Lemma 1 part (4)

$$
\left\|x_{\sigma_{0}}-z_{i}\right\| \leqslant 2-2 \varepsilon_{\sigma_{0}}
$$

for all $i=1,2, \ldots, s$.
Now for $x=x_{\sigma_{0}}$ in formula (${ }^{*}$) we obtain

$$
2-\frac{1}{n} \leqslant \frac{1}{2 n} \sum_{i=1}^{k} 2\left(1-2 \varepsilon_{\sigma_{0}}+\frac{\varepsilon_{\sigma_{0}}}{\varepsilon_{\sigma_{i}}}+2\right)+\frac{s}{2 n}\left(2-2 \varepsilon_{\sigma_{0}}+2\right)
$$

Since $\varepsilon_{\sigma_{i}} \geqslant \varepsilon_{\sigma_{0}}$ for all $i=1,2, \ldots, k$, we get

$$
2-\frac{1}{n} \leqslant 2-\varepsilon_{\sigma_{0}} \leqslant 2-\frac{1}{n} \quad\left(\varepsilon_{\sigma} \geqslant \frac{1}{n} \text { for all } \sigma \text { in } V\right) .
$$

Therefore we get

$$
\frac{1}{n}=\varepsilon_{\sigma_{0}}=\varepsilon_{\sigma_{i}} \text { for all } i=1,2, \ldots, k
$$

Now repeat this calculation for $x=x_{\sigma_{1}}$ in formula (${ }^{*}$). This leads to $1 / n=\varepsilon_{\sigma_{1}}=$ ε_{σ} for all neighbours σ of σ_{1}. Then for $x=x_{\tau}$ for some $\tau \neq \sigma_{0}$ a neighbour of σ_{1} and so on we obtain $\varepsilon_{\sigma}=1 / n$ for all σ in V.

By Lemma 1 part (1) we get

$$
\begin{aligned}
& \left\|\sum_{i=1}^{k} \frac{\alpha_{i}}{2}\left(\sigma_{i}+1\right) x_{i}-\frac{\beta_{i}}{2}\left(\sigma_{i}-1\right) y_{i}+\sum_{i=1}^{\prime} \gamma_{i} z_{i}\right\| \\
& \quad=\sum_{i=1}^{k} \frac{\left|\alpha_{i}\right|}{2}\left|\sigma_{i}+1\right|+\frac{\left|\beta_{i}\right|}{2}\left|\sigma_{i}-1\right|+\sum_{i=1}^{\prime}\left|\gamma_{i}\right|
\end{aligned}
$$

for all $\alpha_{1}, \beta_{1}, \ldots, \alpha_{k}, \beta_{k}, \gamma_{1}, \ldots, \gamma_{s}$ in \mathbb{R} and all σ in V.
Now let $x=\left(\alpha_{1}, \beta_{1}, \ldots, \alpha_{k}, \beta_{k}, \gamma_{1}, \ldots, \gamma_{s}\right)$ be an arbitrary element of E. Choose σ in V such that

$$
\max \left(\left|\alpha_{i}\right|,\left|\beta_{i}\right|\right)=\frac{1}{2}\left(\left|\alpha_{i}\right|\left|\sigma_{i}+1\right|+\left|\beta_{i}\right|\left|\sigma_{i}-1\right|\right)
$$

for all $i=1,2, \ldots, k$.
It follows that

$$
\begin{aligned}
\|x\| & \geqslant\left\|\sum_{i=1}^{k} \frac{\left|\alpha_{i}\right|}{2}\left(\sigma_{i}+1\right) x_{i}-\frac{\left|\beta_{i}\right|}{2}\left(\sigma_{i}-1\right) y_{i}+\sum_{i=1}^{s}\left|\gamma_{i}\right| z_{i}\right\| \\
& =\sum_{i=1}^{k} \max \left(\left|\alpha_{i}\right|,\left|\beta_{i}\right|\right)+\sum_{i=1}^{s}\left|\gamma_{i}\right| .
\end{aligned}
$$

By Lemma 1 part (2) and the triangle inequality we have

$$
\|x\| \leqslant \sum_{i=1}^{k} \max \left(\left|\alpha_{i}\right|,\left|\beta_{i}\right|\right)+\sum_{i=1}^{\dot{s}}\left|\gamma_{i}\right|
$$

and therefore we get

$$
\|x\|=\sum_{i=1}^{k} \max \left(\left|\alpha_{i}\right|,\left|\beta_{i}\right|\right)+\sum_{i=1}^{\dot{c}}\left|\gamma_{i}\right|
$$

Finally define $T: E \rightarrow \ell^{1}(n)$,

$$
\begin{aligned}
& T\left(\sum_{i=1}^{k} \alpha_{i} x_{i}+\beta_{i} y_{i}+\sum_{i=1}^{1} \gamma_{i} z_{i}\right)=\frac{\alpha_{1}+\beta_{1}}{2} e_{1}+\frac{\alpha_{1}-\beta_{1}}{2} e_{2}+\ldots+ \\
& \quad+\frac{\alpha_{k}+\beta_{k}}{2} e_{2 k-1}+\frac{\alpha_{k}-\beta_{k}}{2} e_{k}+\sum_{i=2 k+1}^{n} \gamma_{i} e_{i}
\end{aligned}
$$

where e_{1}, \ldots, e_{n} denote the canonical basis of $\ell^{1}(n)$.
Now it follows that T is an isometry from E to $\ell^{1}(n)$ and so we are done.

References

[1] J. Clearly, S.A. Morris and D. Yost, 'Numerical geometry-numbers for shapes', Amer. Math. Monthly 93 (1986), 260-275.
[2] O. Gross, 'The rendezvous value of a metric space', in Advances in game theory, Annals of Math. Studies 52 (Princeton, 1964), pp. 49-53.
[3] S.A. Morric and P. Nickolas, 'On the average distance property of compact connected metric spaces', Arch. Math. 40 (1983), 459-463.
[4] R. Wolf, 'On the average distance property of spheres in Banach spaces', Arch. Math. 62 (1994), 378-384.

Institute fur Mathematik
Universitat Salzburg
Hellbrunnerstrasse 34
A-5020 Salzburg
Austria

[^0]: Received 28 March 1994
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

