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INTERPOLATION BY LINEAR SUMS OF 
HARMONIC MEASURES 

BY 

MARVIN ORTEL(1) 

1. Introduction. Let a be an open arc on the unit circle 

a = {e^'.fa < </> < <£2> ^2*-<£i < 2<7r}, 

and for z=reid, 0 < r < l , let 

1 rfc 1—r2 

(1.1) œ(z; a ) = co(z; cf>l9 cf>2) = — — 2 A. 
lirUx 1—2rcos(f—0)+r 

The function co(z; a) is called the harmonic measure of the arc a with respect to 
the unit disc, (Nevanlinna 2); it is harmonic and bounded in the unit disc and 
possesses (Fatou) boundary values 1 and 0 at interior points of a and the comple
mentary arc /? respectively. In this article, we consider linear sums of the form 

m 

(1.2) S(z) = 2*Mz'>*ù> 

where a1? a2 , . . . , aw are mutually disjoint open arcs on the unit circle and 
Xi> • • • 5 *m a r e complex numbers. If we regard the arcs al5 a 2 , . . . , am as fixed, 
and choose m distinct points zl9.. . , zn in the unit disc, we may be able to find n 
complex numbers yl9... , yn with the property that there are no solutions of the 
system 

m 

(1.3) 2 xMzki a 0 = y*> fc = 1,2, . . . , n. 

This will certainly be the case if m<n, however, the configuration of arcs and 
points may render the solution of (1.3) impossible even when the number of arcs 
is considerably larger than the number of points of interpolation. 

For an example, let <xl5 a 2 , . . . , aw_! («>1) be mutually disjoint open arcs on 
the upper half of the unit circle and let afc+(n_1) be the reflection of cnk in the real 
axis, k=l9 2 , . . . , «—1. If zl9 z 2 , . . . , zn are distinct points on the interval 
(—1,1), then we have a)(zk; az)=co(zfc; aî+(n_D) for k=\9 2 , . . . , n9 and 
7 = 1 , 2 , . . . , w - l . 
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Hence for any numbers xl9 . . . , x2{n_1)9
 w e have 

2(w-l) w-1 

for £ = 1 , 2 , . . . , n. Thus there is some «-tuple of complex numbers (yl9 y2,... , J») 
for which the system 

2(n-l) 
2 *iCo(z&; aj) = yk, k = 1, 2 , . . . , n 

i=i 
has no solution. 

That the above is indeed the extreme example is the content of the following. 

THEOREM 1. Let al9 a2, . . . , a2n_1? (w>l) èe mutually disjoint open arcs on 
the unit circle and let zl9 z2,. . . , znbe disjoint points in | z |< 1. 77ze/2 f/ju J2 , • • • > Jn 
are ««y n complex numbers, there are 2n—l corresponding complex numbers 
xl9 x2, . . . , *2w-i which satisfy 

2n-l 

(1.4) 2, xMzjcl «-Ù = yjc> fc = 1, 2, . . . , n . 

Proof. Let a,={ez'*: 4>\<<f><(f)\} with the available assumption that for some real 
i?0, we have R0<<f>l<<l>2<Ro+2Tr9 for / = 1 , 2, . . . , In— 1. Let zfc=rA.exp(/0fc), 
1 <k<ni we shall show that the matrix 

\kn-2rkcos(dk-t) + rl ' 

possesses n linearly independent columns. 
If P denotes the number of linearly independent columns in (1.5), it is clear that 

P > 1 , so assume that P is strictly less than n. For l<h<P+l, form the determi
nants 

(1.6) Ah = (-l)h+p+1 det (T 2 ' ^ dt). 
i<*^p+i\.W 1—2rfc cos(0fc—*) + ** / 

By a preliminary rearrangment of the matrix (1.5), we may guarantee that AF+1?£0. 
As P<n9 it follows that 

p + i /•*• i r ; 

(1.7) 2 4 h ^—^ ; A = 0 
n=i Jw l—2rhcos(0h—t)+ri 

for 1=1, 2,... , 2/2—1. By the mean-value theorem, we then have 

/ •<WP+I I ~2 \ 
(1.8) 0 = U A — Jdt 

} Us\~i hl-2rhcos(dh--t) + rt' 
P+l 1 , 2 

A-I l -2rAcos(0*-j8 I)+rJ ' 
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where # < & < $ , for l< /<2«—1. 
Thus, the function 

P+l i «2 

(1-9) T(P) = 2 A , , * ^ 2, 

has 2«—1 distinct zeros in (i?0, i?0+27r). From (1.9) we may write 

T(/0 = ™ , 
where N(fi) is a trigonometric polynomial in /3, of degree at most P, and where 
Z>(/?) never vanishes. Since r ( /? j=0 for / = 1, 2 , . . . , In-1, we must have T(p)=0 
for all real /?. 

If P(z) is a polynomial which vanishes at the points zh, \<h<P and satisfies 
P ( z P + 1 ) = l , it is seen that 

Iff J-IT 

which is a contradiction. The conclusion of Theorem 1 follows. 
Theorem 1 remains true if the arcs oĉ  are replaced by sets Et of positive measure 

with £jCa I } l< /<2«—1. In fact, the intermediate value property actually allows 
us to write 

r lp+1 1— r2 \ p+1 

U ^ t , m AM*)dtssmW2A*r 
JtfjH-i 1— 2r / icos(^~ 0 + a 7 A=I 1-

i-HI 
- 2 r , c o s ( ^ - ^ ) + r r 

where exp(//?j) 6 az, l< /<2«—1, in place of (1.8). 

2. Multiply connected regions. The proof of Theorem 1 may be extended to 
give an analogous result for finitely connected regions. 

THEOREM 2. Let O be a region in the complex plane whose boundary consists 
of mutually disjoint Jordan curves I \ , r 2 , . . . , Tm. Let a1? a 2 , . . . , a2u+w)-3> 
(#>1) be mutually disjoint open connected subsets ofV= 2 P = I F P and let co(z; a?) 
be the harmonic measure of'az wftA respect to Q, l<l<2(n+m)—3. Then for any n 
distinct points zl9 z2 , . . . , zn chosen from O and any set of n complex numbers 
yi>y%> • • • )Jn) the system of equations 

2(n+w)-3 

(2.1) 2 *M**; °0 = >>*> (1 < fe < n) 
i=i 

possesses a solution. 

Proof. It may be assumed that the curves I \ , . . . , Ym are analytic. With this 
assumption, it suffices to show, as before, that the matrix 

(||fe;0M<l), (2.2) \\^(zk;t)\dt\, l<k£n 
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\<l<2(n+m)—3 has n linearly independent columns. In (2.2), G(zk; t) is the 
Green's function for O with pole at zk and d/drj denotes the derivative with respect 
to the exterior normal to Q. 

For t G T define 

m pip 

(2.3) P(0=2^(**;0; 
Jfc=l 07] 

we need only show that P(t) may have at most 2(n+rri)—4 zeros on V if it is not 
identically zero on V. Form the Riemann surface R which is the Schotky double 
of O, [1]. Topologically, R is two copies of O with corresponding boundary points 
identified, so R has genus g—m—1. Each function G(zk; t), may be extended 
harmonically to all of R. The function 

(2.4) H ( 0 = ( i ^ G f e o ) , 

is then harmonic on all of R except for at most 2n logarithmic singularities. The 
differential dH=((dHldx)—idH/dy)dt therefore has at most 2(m+n)—4 
zeros on the whole surface R if i / is not constantly zero on R. Ift0 G F, andP(?0)=0, 
then dH(t0)ldx—idH(t0)ldy—0 since the tangential derivative (with respect to F) 
of H(t) is identically zero on V. Thus P(t) may have at most 2(m+n)—4 zeros 
on T if H is not identically zero. If H is identically zero, each Ak must be zero, 
which is made clear by allowing t to approach zk. With this information, the proof 
of Theorem 2 is complete. 

Theorem 2 may stand improvement in the case of high connectivity even if the 
trivial instance of one interpolation point is disregarded. However, Theorem 2 
is best possible for two points of interpolation and arbitrary m. We only describe 
an example for m = « = 2 ; for larger m, the pictures will then be clear. For O, take 
an annulus bounded by circles of radius R>1 and l/R and choose points z1=l 
and z2= —1. Let al5 a2, a3, a4 be the upper and lower semi-circles of \z\=R, 
\z\ = l/R respectively. It is then clear that co(zfc; ocz)=c for k— 1, 2 and / = 1, 2, 3, 4. 
Thus the five arcs called for by Theorem 2 are necessary for unrestricted inter
polation. 

It should be mentioned that Walsh [3, 4] has studied the location of critical 
points of sums such as (1.2) and (2.4). It is evident that existing and further results 
in this area may be readily applied to the problem considered here. The author 
would thank John Fay and Kurt Strebel for helpful conversations on these matters, 
and the National Research Council of Canada for support at Carleton University 
in the Summer of 1973. 
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