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Abstract

Let Y be a fixed nonempty subset of a set X and let T (X, Y ) denote the semigroup of all total
transformations from X into Y . In 1975, Symons described the automorphisms of T (X, Y ). Three
decades later, Nenthein, Youngkhong and Kemprasit determined its regular elements, and more recently
Sanwong, Singha and Sullivan characterized all maximal and minimal congruences on T (X, Y ). In 2008,
Sanwong and Sommanee determined the largest regular subsemigroup of T (X, Y ) when |Y | 6= 1 and
Y 6= X ; and using this, they described the Green’s relations on T (X, Y ). Here, we use their work to
describe the ideal structure of T (X, Y ). We also correct the proof of the corresponding result for a linear
analogue of T (X, Y ).
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1. Introduction

Let X be a nonempty set and let T (X) denote the semigroup (under composition) of all
total transformations of X . For each α in T (X), we let Xα = ran α denote the range
of α and we define the rank of α to be r(α)= |ran α|. If ∅ 6= Y ⊆ X , we write

T (X, Y )= {α ∈ T (X) : Xα ⊆ Y }.

Clearly T (X, Y ) is a subsemigroup of T (X), and if Y = X then T (X, Y )= T (X).
Also, if |Y | = 1 then T (X, Y ) contains exactly one element: the constant map with
range Y . Hence, throughout the following, we assume that Y is a proper subset of X
with at least two elements.

In [9], Symons described all the automorphisms of T (X, Y ). Several years later,
its regular elements were characterized in [4]. Also, in [6], the authors determined
the largest regular subsemigroup of T (X, Y ) and, using this, they described Green’s
relations on T (X, Y ). More recently, in [5], Sanwong et al. characterized all maximal
and minimal congruences on T (X, Y ).
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290 S. Mendes-Gonçalves and R. P. Sullivan [2]

In [8] Sullivan described Green’s relations and ideals in a linear analogue of
T (X, Y ). Namely, if W is a nonzero proper subspace of a vector space V , we let
T (V, W ) denote the semigroup (under composition) of all linear α : V → V such
that Vα ⊆W . That is, we use the ‘V ’ and ‘W ’ in T (V, W ) to denote the fact that
we are considering linear transformations. By [8, Corollary 12], T (V, W ) is rarely
isomorphic to the semigroup T (U ) of all linear transformations of an arbitrary vector
space U . In addition, whereas T (V, W ) always contains a zero element (namely,
the map V → {0}), the same is not true for T (X, Y ) if |Y | ≥ 2. Hence, these two
semigroups are not isomorphic and so they are worthy of study in their own right.

In Section 4, using the work in [6], we describe the ideal structure of T (X, Y ) and,
as a consequence, we prove that this semigroup is almost never isomorphic to T (Z) for
any set Z . Also, in Section 5, we show how certain algebraic semigroups can be ‘anti-
embedded’ in some T (X, Y ). However, before we present these nonlinear results, we
correct the proof of [8, Theorem 11] which describes all of the ideals of T (V, W ): the
argument we give for this in Section 3 then suggests how to derive the corresponding
result for T (X, Y ).

In effect, this paper completes a project in which Green’s relations and ideals are
determined for semigroups which appear to be related but are almost never isomorphic
or anti-isomorphic: namely, the semigroup T (X, Y ) and its linear analogue T (V, W ),
as well as the semigroups

K (V, W )= {α ∈ T (V ) :W ⊆ ker α},

E(X, σ )= {α ∈ T (X) : σ ⊆ πα},

where σ is a fixed equivalence on X and πα = α ◦ α−1 (see [3, 7]).

2. Green’s relations on T (X, Y)

Throughout this paper, we write idA for the identity transformation on a set A and
we let Ab denote the constant mapping with domain A and range {b}. We also write
A ∪̇ B for the disjoint union of sets A and B. In addition, we adopt the convention
introduced by Clifford and Preston in [1, Vol. 2, p. 241]: that is, if α ∈ T (X) then we
write

α =

(
Ai
xi

)
and take as understood that the subscript i belongs to some (unmentioned) index set I ,
that the abbreviation {xi } denotes {xi : i ∈ I }, and that ran α = {xi } and xiα

−1
= Ai .

Green’s relations on T (X) are well known: if α, β ∈ T (X), then αLβ if and only
if ran α = ran β; αRβ if and only if πα = πβ ; αDβ if and only if r(α)= r(β);
and J =D (see [1, Vol. 1, Lemmas 2.5, 2.6 and 2.8 and Theorem 2.9]). In [6,
Theorem 2.4], the authors determined the largest regular subsemigroup of T (X, Y )
when X 6= Y and |Y | 6= 1: the set F given by

F = {α ∈ T (X, Y ) : Xα ⊆ Yα},
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which is needed to describe Green’s relations on T (X, Y ). This was done by Sanwong
and Sommanee in [6, Theorems 3.2, 3.3, 3.7 and 3.9], and we quote their results for
convenience.

LEMMA 1. Let γ ∈ F and β ∈ T (X, Y ). Then β = λγ for some λ ∈ T (X, Y ) if and
only if ran β ⊆ ran γ . Consequently, if α, β ∈ T (X, Y ), then αLβ in T (X, Y ) if and
only if α = β or (ran α = ran β and α, β ∈ F).

LEMMA 2. If α, β ∈ T (X, Y ), then β = αµ for some µ ∈ T (X, Y ) if and only if
πα ⊆ πβ . Consequently, αRβ in T (X, Y ) if and only if πα = πβ .

LEMMA 3. If α, β ∈ T (X, Y ), then αDβ in T (X, Y ) if and only if πα = πβ or
(r(α)= r(β) and α, β ∈ F).

LEMMA 4. If α, β ∈ T (X, Y ), then β = λαµ for some λ, µ ∈ T (X, Y ) if and only if
r(β)≤ |Yα|. Consequently, αJ β in T (X, Y ) if and only if πα = πβ or r(α)= |Yα| =
|Yβ| = r(β).

By Hall’s theorem [2, Proposition II.4.5], any regular subsemigroup of T (X)
inherits characterizations of its relations L and R from those on T (X). Thus, by
Lemmas 1 and 2, if α, β ∈ F , then αLβ in F if and only if ran α = ran β, and αRβ
in F if and only if πα = πβ .

As observed in [6, Corollary 3.11], J =D on F . In fact, the next result shows that
if α, β ∈ F , then αJ β in F if and only if r(α)= r(β): this is comparable with the
J -relation on T (X).

LEMMA 5. If α, β ∈ F, then β = λαµ for some λ, µ ∈ F if and only if r(β)≤ r(α).
Consequently, αJ β in F if and only if r(α)= r(β).

PROOF. Suppose that β = λαµ for some λ, µ ∈ F . By Lemma 4, r(β)≤ |Yα|.
Since α ∈ F , then Xα ⊆ Yα ⊆ Xα, and so |Yα| = |Xα| = r(α). Thus, r(β)≤ r(α).
Conversely, suppose that the latter holds and let ran β = {bi } and ran α = {ai } ∪̇ {a j },
where {bi } = Yβ = Xβ ⊆ Y and {ai } ∪̇ {a j } = Yα = Xα ⊆ Y . For each i , let biβ

−1
=

Bi and aiα
−1
= Ai , and choose yi ∈ Ai ∩ Y (possible since ai ∈ Yα). Define λ ∈

T (X) by

λ=

(
Bi
yi

)
.

Clearly, Xλ= {yi } ⊆ Y . Since {bi } = Yβ, it follows that Bi ∩ Y 6= ∅ for every i .
Therefore, Yλ= {yi } = Xλ, and hence λ ∈ F . Now fix i0 ∈ I and let Y \ Xα = {ak}

(note that this set may be empty). Write {a j } ∪̇ {ak} ∪̇ (X \ Y )= C and define
µ ∈ T (X) by

µ=

(
ai C
bi bi0

)
.

Then Xµ= Yµ= {bi } ⊆ Y , and so µ ∈ F . Also β = λαµ.
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Next we show that if αJ β in F then r(α)= r(β) (the converse follows from the
first part of this lemma). Suppose that β = λαµ and α = λ′βµ′ for some λ, λ′, µ, µ′ ∈
F1. Then

|Xβ| = |(Xλ)αµ| ≤ |(Xα)µ| ≤ |Xα|,

even if λ= 1 or µ= 1. Similarly, |Xα| ≤ |(Xλ′)βµ′| ≤ |Xβ|, and hence r(α)=
r(β). 2

Although the R-relation on T (X, Y ) can be described just like the corresponding
one on T (X), the other Green’s relations differ substantially from the corresponding
ones on T (X). In particular, from Lemma 4, we conclude that αJ β in T (X, Y )
implies that r(α)= r(β), but the converse does not hold when X 6= Y and |Y | 6= 1. To
see this, choose two distinct elements y1, y2 in Y and write Y = A ∪̇ B, with y1 ∈ A
and y2 ∈ B. Also, let X \ Y = C . Now define α, β ∈ T (X) by

α =

(
A ∪̇ B C

y1 y2

)
, β =

(
A ∪̇ C B

y2 y1

)
.

Clearly, α, β ∈ T (X, Y ) and r(α)= r(β), since ran α = ran β = {y1, y2} ⊆ Y . On the
other hand, |Yα| 6= |Yβ| and πα 6= πβ , and this implies that α and β are not J -related
in T (X, Y ).

In passing, we observe that in [6, Theorem 3.12], the authors proved that if Y
is finite, then D = J on T (X, Y ), but the same does not hold in general (see [6,
Example 3.10]).

3. Ideals in T (V, W)

Before determining all of the ideals in T (X, Y ), we correct the proof of the
corresponding result for T (V, W ) in [8, Theorem 11]. The argument for that result
appeals to [8, Lemma 10] where, using the notation of its proof, {wm} ∪̇ {wn} is
a linearly independent subset of W and u ∈ V \W , so {wm} ∪̇ {u + wn} is linearly
independent in V and each u + wn /∈W . However, it is asserted that dim(Wγ ) <

dim(V γ ) for some γ ∈ T (V, W ), which may be false. For example, (u + w1)−

(u + w2) ∈W if 1, 2 ∈ N (see [8, p. 450]), and this may change the relative di-
mensions of Wγ and V γ . The result in [8, Theorem 11] is correct, but it requires
a different lemma (recall that, as assumed in [8, p. 442], to avoid trivialities, W is a
nonzero proper subspace of V ). In what follows, we use the notation of [8], but change
it slightly to avoid any confusion with our notation in Section 4.

As in [8, p. 442], we let Q = {α ∈ T (V, W ) : Vα ⊆Wα}. By [8, Lemma 1], Q is
the largest regular subsemigroup of T (V, W ).

LEMMA 6. If β ∈ Q and r < dim(Wβ)= s, then there exists λ ∈ T (V, W ) such that
λβ /∈ Q and dim(Wλβ)= r .

PROOF. If β ∈ Q and dim(Wβ)= s ≥ r ′, we can write

β =

(
u p w j
0 w′j

)
,
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where |J | = s. Choose K ∪̇ {1} ⊆ J with |K | = r , let u ∈ V \W , write V = 〈v`〉 ⊕
〈u〉 ⊕ 〈wk〉 where W ⊆ 〈v`〉 ⊕ 〈wk〉, and define λ ∈ T (V, W ) by

λ=

(
v` u wk
0 w1 wk

)
.

Then Wλβ = 〈w′k〉 6= 〈w
′

1〉 ⊕ 〈w
′

k〉 = Vλβ, so λβ /∈ Q and dim(Wλβ)= r . 2

We now prove [8, Theorem 11]: in essence, the only difference between what
follows and the argument for [8, Theorem 11] lies in the choice of the subset 6 of
the ideal I in T (V, W ). For convenience, we recall some notation in [8, p. 448]:
namely, for each 1≤ r ≤ dim W , Tr denotes the set {α ∈ T (V, W ) : r(α) < r}, and if
6 is a nonempty subset of T (V, W ), then

r(6)=min{r : r > dim(Wα) for all α ∈6},

K (6)= {β ∈ T (V, W ) : ker β ⊇ ker α for some α ∈6}.

THEOREM 7. The ideals of T (V, W ) are precisely the sets Tr ∪ K (6) and Tr ′ ∪

K (6), where r = r(6) and 6 is a nonempty subset of T (V, W ).

PROOF. Let I be an ideal of T (V, W ). If I= {0}, we let 6 = I, so r(6)= 1,
T1 = {0}; and, if β ∈ K ({0}) then ker β = V , so β = 0 and thus K ({0})= {0}. That is,
{0} = T1 ∪ K ({0}).

Suppose α ∈ I is nonzero and write

α =

(
u p w j vk
0 w′j wk

)
where W ⊆ 〈u p〉 ⊕ 〈w j 〉 and W ∩ 〈vk〉 = {0}. If J = ∅, then K 6= ∅ and Wα = {0} 6=
〈wk〉 = Vα, so α ∈ I \ Q. On the other hand, if J 6= ∅, choose 1 ∈ J and u ∈ V \W ,
write V = 〈u〉 ⊕ 〈vm〉 where W ⊆ 〈vm〉, and let

λ=

(
vm u
0 w1

)
.

Then Wλα = {0} 6= 〈w′1〉 = Vλα, so λα ∈ I and λα /∈ Q. That is, in each case, if
6 = I \ Q then 6 6= ∅ and we assert that I equals Tr ∪ K (6) or Tr ′ ∪ K (6), where
r = r(6).

First suppose that dim(Wβ) < r for all β ∈ I. In this case, suppose that β ∈ I.
Now, if r(β) < r , then β ∈ Tr and, if dim(Wβ) < r ≤ r(β), then Wβ 6= Vβ, so β ∈6
and hence β ∈ K (6). Thus, in this case, I⊆ Tr ∪ K (6). Conversely, suppose that
β ∈ Tr . If dim(Wα) < r(β) < r for all α ∈6, we contradict the choice of r = r(6).
Therefore, r(β)≤ dim(Wα) for some α ∈6 ⊆ I, and hence β ∈ I by [8, Lemma 4].
Clearly, K (6)⊆ I by [8, Lemma 3], so we conclude that I= Tr ∪ K (6).

Next suppose that r ≤ dim(Wπ) for some π ∈ I. In this case, if Wπ 6= Vπ ,
then π ∈6 and we contradict the choice of r . Hence Wπ = Vπ and thus π ∈ Q,
where r(π)= s ≥ r . Now, if s ≥ r ′, then Lemma 6 says that there exists λ ∈ T (V, W )

such that λπ ∈ I \ Q =6 and dim(Wλπ)= r , which contradicts the choice of r .
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Hence, in this case, r = s and thus π ∈ Tr ′ . Clearly this conclusion holds for any
β ∈ I such that r ≤ dim(Wβ). On the other hand, if β ∈ I and dim(Wβ) < r , then we
have already seen that β ∈ Tr ∪ K (6). So, in this case, I⊆ Tr ′ ∪ K (6). Conversely, if
β ∈ Tr ′ then r(β)≤ r = dim(Wπ) for the same π as before, so β ∈ I by [8, Lemma 4].
Like before, K (6)⊆ I, and we now conclude that I= Tr ′ ∪ K (6). 2

4. Ideals in T (X, Y)

As in Section 3, for each cardinal r , we let r ′ denote the successor of r . It is well
known that the ideals of T (X) are precisely the sets {α ∈ T (X) : r(α) < r}, where
1< r ≤ |X |′, and hence they form a chain under containment. The same is true for the
ideals in F , as we now show.

THEOREM 8. The ideals in F are exactly the sets

Fr = {α ∈ F : r(α) < r},

where 1< r ≤ |Y |′. Moreover, Fr is a principal ideal of F if and only if r is a successor
cardinal.

PROOF. It is easy to see that Fr is nonempty. For, given y ∈ Y , r(X y)= 1< r and so
X y ∈ Fr . Now let α ∈ Fr and β ∈ F . Then αβ, βα ∈ F and

r(αβ)= |Xαβ| ≤ |Xα| = r(α) < r.

Also Xβα ⊆ Xα, and so r(βα)≤ r(α) < r . Therefore αβ, βα ∈ Fr , and hence Fr is
an ideal of F . Conversely, let I be an ideal of F and let r be the least cardinal greater
than r(α) for every α ∈ I (this is possible since the cardinals are well ordered). Then
I⊆ Fr . To see that Fr ⊆ I, let β ∈ Fr . Then there exists α ∈ I such that r(β)≤ r(α);
otherwise, r(α) < r(β) < r for every α ∈ I, and this contradicts our choice of r . By
Lemma 5, r(β)≤ r(α) implies that β = λαµ for some λ, µ ∈ F . Since I is an ideal
of F , β ∈ I, and so Fr = I.

Next we determine all the principal ideals of F . To do this, let r be a successor
cardinal, say r = s′, and choose α ∈ Fr with r(α)= s. If r(β) > s for some β ∈ Fr ,
then r(β)≥ s′ = r , a contradiction. Thus, for every β ∈ Fr , r(β)≤ s = r(α) and, by
Lemma 5, β ∈ J (α), the principal ideal of F generated by α. Hence, Fr ⊆ J (α). Since
the reverse inclusion also holds, Fr is principal. Conversely, suppose that Fr = J (α)
for some α ∈ Fr . Let r(α)= s and assume that s < t < r for some cardinal t . Clearly,
t = r(γ ) for some γ ∈ F (since t < r ≤ |Y |′). By Lemma 5, J (α)⊆ J (γ )⊆ Fr ,
contradicting our supposition. In other words, r is the least cardinal greater than s,
and so r = s′. 2

We proceed to describe the ideals of T (X, Y ). To do this, let 1< r ≤ |Y |′ and write

Tr = {α ∈ T (X, Y ) : r(α) < r}.

Let α ∈ Tr and β ∈ T (X, Y ). Then Xβα ⊆ Xα, and so r(βα)≤ r(α) < r . Also
r(αβ)= |Xαβ| ≤ |Xα| = r(α) < r . Therefore, Tr is an ideal of T (X, Y ).
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Now let S be a nonempty subset of T (X, Y ) and let

r(S)=min{r : |Yα|< r for every α ∈S},

5(S)= {β ∈ T (X, Y ) : πα ⊆ πβ for some α ∈S}.

LEMMA 9. For each nonempty subset S of T (X, Y ), Tr(S) ∪5(S) and Tr(S)′ ∪

5(S) are ideals of T (X, Y ).

PROOF. Given β, µ ∈ T (X, Y ), πβ ⊆ πβµ. Thus, 5(S) is a right ideal of T (X, Y ).
Now, let λ ∈ T (X, Y ) and β ∈5(S). Then πα ⊆ πβ for some α ∈S and, by
Lemma 2, β = αµ for some µ ∈ T (X, Y ). Therefore, since Xλ⊆ Y ,

r(λβ)= |Xλβ| ≤ |Yβ| = |Yαµ| ≤ |Yα|< r(S).

Hence, λβ ∈ Tr(S). By the remark above, Tr(S) is an ideal of T (X, Y ). Thus,
given β ∈ Tr(S) ∪5(S) and λ, µ ∈ T (X, Y )1, we have λβµ ∈ Tr(S) ∪5(S), and
so Tr(S) ∪5(S) is an ideal of T (X, Y ). Since Tr(S)′ is an ideal of T (X, Y ) and
Tr(S) ⊆ Tr(S)′ , it follows that Tr(S)′ ∪5(S) is also an ideal of T (X, Y ). 2

Next we show that the above ideals are the only ones in T (X, Y ). Although the
following argument is similar to the one given for T (V, W ) in Section 3, we provide
most of the details in this nonlinear context. As before, we start with a technical result.

LEMMA 10. If β ∈ F and r < |Yβ| = s, then there exists λ ∈ T (X, Y ) such that
λβ /∈ F and |Yλβ| = r .

PROOF. If β ∈ F and |Yβ| = s ≥ r ′, we can write

β =

(
A j
y′j

)
where |J | = s and Y ∩ A j 6= ∅ for each j . Choose K ∪̇ {1} ⊆ J with |K | = r , and
let yi ∈ Y ∩ Ai for each i ∈ K ∪ {1}. Also, choose 2 ∈ K and write L = K \ {2}
(which may be empty). Finally, choose u ∈ X \ Y , let B = X \ [{u} ∪ {y`}] and define
λ ∈ T (X, Y ) by

λ=

(
B u y`
y2 y1 y`

)
.

Then Yλβ = {y′2} ∪̇ {y
′

`} 6= Xλβ, so λβ /∈ F and |Yλβ| = r . 2

Recall that, as stated in Section 1, Y is a proper subset of X with at least two
elements. We let C(Y ) denote the set of all constants in T (X, Y ) and observe that this
is the smallest ideal of T (X, Y ).

THEOREM 11. The ideals of T (X, Y ) are precisely the sets Tr ∪5(S) and Tr ′ ∪

5(S), where r = r(S) and S is a nonempty subset of T (X, Y ).

PROOF. Let I be an ideal of T (X, Y ). If I= C(Y ), we let S= I, so r(S)= 2 and
T2 = C(Y ); and, if β ∈5(S), then β is constant and thus 5(S)=S. That is,
C(Y )= T2 ∪5(S), where S= C(Y ).
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Suppose that α ∈ I is nonconstant and write

α =

(
A j Ak
y′j y′k

)
where Y ∩ A j 6= ∅ for each j and Y ∩

⋃
Ak = ∅. If K 6= ∅ then Yα = {y′j } 6= Xα,

so α /∈ F . On the other hand, if K = ∅ then |J | ≥ 2. Now choose 1, 2 ∈ J and
yi ∈ Ai ∩ Y for i = 1, 2, let u ∈ X \ Y and define λ ∈ T (X, Y ) by

λ=

(
u X \ {u}
y1 y2

)
.

Then Yλα = {y′2} 6= {y
′

1, y′2} = Xλα, so λα ∈ I and λα /∈ F . That is, in each case, if
S= I \ F then S 6= ∅ and we assert that I equals Tr ∪5(S) or Tr ′ ∪5(S), where
r = r(S).

First suppose that |Yβ|< r for all β ∈ I. In this case, suppose that β ∈ I. Now, if
r(β) < r , then β ∈ Tr and, if |Yβ|< r ≤ r(β), then Yβ 6= Xβ, so β ∈S and hence
β ∈5(S). Thus, in this case, I⊆ Tr ∪5(S). Conversely, suppose that β ∈ Tr . Then,
as in the linear case, r(β)≤ |Yα| for some α ∈S⊆ I, and hence β ∈ I by Lemma 4.
Clearly, 5(S)⊆ I by Lemma 2, so we conclude that I= Tr ∪5(S).

Next suppose that r ≤ |Yγ | for some γ ∈ I. In this case, if Yγ 6= Xγ , then
γ ∈S and we contradict the choice of r . Hence Yγ = Xγ and thus γ ∈ F , where
r(γ )= s ≥ r . Now, if s ≥ r ′, then Lemma 10 says that there exists λ ∈ T (X, Y ) such
that λγ ∈ I \ F =S and |Yλγ | = r , which contradicts the choice of r . Hence, in
this case, r = s and γ ∈ Tr ′ . The rest of the proof proceeds in the same way as for
Theorem 7, so we omit the details. 2

COROLLARY 12. If |Y | ≥ 3, then T (X, Y ) is not isomorphic to T (Z) for any set Z.

PROOF. Suppose that |Y | ≥ 3, write Y as a disjoint union of three sets, say A ∪̇ B ∪̇ C ,
and let y1, y2, y3 ∈ Y be distinct. By our assumption, X \ Y 6= ∅. Define α1, α2 ∈

T (X, Y ) by

α1 =

(
A ∪̇ B C X \ Y

y1 y2 y3

)
, α2 =

(
A B ∪̇ C X \ Y
y1 y2 y3

)
.

Clearly, |Yα1| = 2< 3= |Xα1| and so, if S1 = {α1}, then r(S1)= 3 and α1 ∈ T3 ∪

5(S1) and this is an ideal of T (X, Y ) by Lemma 9. Likewise, if S2 = {α2} then
T3 ∪5(S2) is an ideal of T (X, Y ) and α2 ∈ T3 ∪5(S2). Now, α1 /∈ T3 ∪5(S2)

since r(α1)= 3 and πα2 6⊆ πα1 , so T3 ∪5(S1) 6⊆ T3 ∪5(S2). Similarly, r(α2)= 3
and πα1 6⊆ πα2 imply α2 /∈ T3 ∪5(S1), and hence T3 ∪5(S2) 6⊆ T3 ∪5(S1). In
other words, we have shown that, if |Y | ≥ 3, then T (X, Y ) contains two ideals which
are not comparable under containment, and so it cannot be isomorphic to T (Z) for any
set Z . 2
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It is obvious that, if |X | ≥ 2, then the largest proper ideal of T (X) is {α ∈ T (X) :
r(α) < |X |}. However, to determine the maximal ideals in T (X, Y ), we need a
technical lemma, which we motivate by observing that, for each α ∈ T (X, Y ), |Yα| ≤
|Xα| ≤ |Y |.

LEMMA 13. No proper ideal of T (X, Y ) contains any element γ with |Yγ | = |Xγ | =
|Y |.

PROOF. Let J be an ideal of T (X, Y ) and suppose that there exists γ ∈ J such that
|Yγ | = |Xγ | = |Y |. Given β ∈ T (X, Y ), we have ran β ⊆ Y , and so r(β)≤ |Y | =
|Yγ |. By Lemma 4, β = λγµ for some λ, µ ∈ T (X, Y ), and so β ∈ J. Therefore,
J= T (X, Y ). 2

THEOREM 14. If |Y | = p ≥ 2, then the largest proper ideal of T (X, Y ) is the set
Tp ∪S, where S= {α ∈ T (X, Y ) : |Yα|< |Xα| = p} (which may be empty).

PROOF. First suppose that S= ∅. By the remark before Lemma 9, Tp is an ideal of
T (X, Y ). Clearly, it is a proper ideal and, by Lemma 13, every proper ideal of T (X, Y )
is contained in Tp. Hence, in this case, Tp is the largest proper ideal of T (X, Y ).

If S 6= ∅, then let α ∈S and write Yα = {a j }. Since |Yα|< p = |Xα|, we can
write Xα = {a j } ∪̇ {ai } for some subset {ai } of Y , where |J | + |I | = p. Clearly,
{ai } = Xα \ Yα ⊆ (X \ Y )α, and so |X \ Y | ≥ |I |.

If p is infinite, then |X \ Y | ≥ |I | = p = |Y | and so, for every cardinal q such
that q < p, we can write Y = {ym} ∪̇ {yn} and X \ Y = {xn} ∪̇ {x`}, where |M | = q ,
|N | = p and |L| = |X \ Y |. Choose 1 ∈ M and define β ∈ T (X, Y ) by

β =

(
ym {yn} xn {x`}
ym y1 yn y1

)
.

Since Yβ = {ym} and Xβ = {ym} ∪̇ {yn} = Y , it follows that |Yβ| = q and β ∈S. That
is, for each cardinal q < p, there exists β ∈S with |Yβ| = q and so r(S)= p.

Now suppose that p ≥ 2 is finite and write Y = {y1, . . . , yp−1, yp}. Let X \ Y =
{xk} (nonempty since we assume Y ( X ) and define β ∈ T (X, Y ) by

β =

(
y1 . . . yp−1 yp {xk}

y1 . . . yp−1 y1 yp

)
.

Clearly, p − 1= |Yα|< |Xα| = p, and so r(S)= p.
By Lemma 9, Tp ∪5(S) is an ideal of T (X, Y ). It is not difficult to see that

Tp ∪5(S)= Tp ∪S. For example, clearly, Tp ∪S⊆ Tp ∪5(S). Given β ∈5(S),
then πα ⊆ πβ for some α ∈S. But this implies that p > |Yα| ≥ |Yβ|. If r(β) < p,
then β ∈ Tp. If not, then β ∈S, and the equality follows. Also, if J is a proper ideal of
T (X, Y ) then, by Lemma 13, J⊆ T (X, Y ) \ {α ∈ T (X, Y ) : |Xα| = |Yα| = p}: that
is, J⊆ Tp ∪S and this is the largest proper ideal of T (X, Y ). 2
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EXAMPLE 15. As in the proof of Theorem 14, it is easy to see that if Y is finite,
then S is nonempty. Now suppose |Y | = p ≥ ℵ0 and |X \ Y |< p. Then |X | = p.
Clearly, there exists α ∈ T (X, Y ) such that |Xα| = p. For example, write Y = {y j }

and X = {x j } with |J | = p, and define α ∈ T (X, Y ) by

α =

(
x j
y j

)
.

But, given β ∈ T (X, Y ) with |Xβ| = p, we know that |Yβ| = p (since |(X \ Y )β| ≤
|X \ Y |< p), and so S= ∅ in this case.

5. An embedding problem

It is well known that any semigroup S can be embedded in T (S1), where S1 equals S
with an identity adjoined. This is achieved via the mapping ρ : S→ T (S1), a→ ρa ,
where ρa : S1

→ S1, x→ xa, for each a ∈ S. However, if we want ρ to embed some S
into T (S1, Y ) for some proper subset Y of S1, then we must have Sa ∪ {a} = ran ρa ⊆

Y for all a ∈ S, and hence Y = S. On the other hand, if we do not add an identity to S,
then we need S to be ‘cancellative’ in some way: compare the embedding of a right
cancellative semigroup S into the semigroup of all injective transformations of S in [1,
Vol. 1, Lemma 1.0].

If |Y | ≥ 3, then T = T (X, Y ) is right reductive (see [1, Vol. 1, p. 9]). In fact, it
is S-right-reductive for some nonempty subset S of T : that is, if αγ = βγ for all
γ ∈S, then α = β. For example, let S3 denote the set of all γ ∈ T with the form

γ =

(
A B C
y1 y2 y3

)
where precisely one of A, B and C contains no element of Y . Suppose that α, β ∈ T
and αγ = βγ for all γ ∈S3, and assume that xα = y1 6= y2 = xβ for some x ∈ X .
Now, since |Y | ≥ 3 and there exists u ∈ X \ Y , we can write X = A ∪̇ {y2} ∪̇ {u} and
let

γ =

(
A y2 u
y1 y2 y3

)
∈S3.

Then xαγ = y1 and xβγ = y2, contradicting the supposition. That is, xα = xβ for all
x ∈ X , and thus α = β.

Next recall that T3 = {α ∈ T : r(α) < 3} is an ideal of T , and observe that S2
3 ⊆ T3.

In fact, if we write an arbitrary α ∈ T as

α =

(
A j Ak
y j yk

)
where Y ∩ A j 6= ∅ for each j and Y ∩

⋃
Ak = ∅, then it can be seen that r(αγ )≤ 2

for each γ ∈S3. That is, for each α ∈ T , αS3 ⊆ T3. Consequently, if L =S3 ∪ T3,
then L is a left ideal of T (X, Y ) and αL ⊆ T3 ( L for all α ∈ T .
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With the above in mind, we say that, if M, N are semigroups, then θ : M→ N is
an anti-embedding if θ is injective and (xy)θ = (yθ)(xθ) for all x, y ∈ M . We now
modify the regular anti-representation of a semigroup (see [1, Vol. 1, p. 9]) to anti-
embed certain semigroups into T (X, Y ) for some sets X and Y .

THEOREM 16. Suppose K ⊆ L are left ideals of a semigroup S such that aL ⊆ K for
all a ∈ S. If S is L-right-reductive, then S can be anti-embedded into T (L , K ).

PROOF. Let λ : S→ T (L), a→ λa , where λa : L→ L , x→ ax , for each a ∈ S.
Clearly, λ is well defined (since aL ⊆ L for each a ∈ S) and (ab)λ= (bλ)(aλ) for
all a, b ∈ S. Also, if λa = λb, then ax = bx for all x ∈ L and so a = b by supposition.
In addition, ran λa = aL ⊆ K , so each λa ∈ T (L , K ). 2

The dual of the above result embeds certain semigroups into T (X, Y ) for some
sets X and Y and, for interest, we now state it explicitly. However, we note that if
1< |Y | and Y ( X , then T (X, Y ) is not S-left-reductive for any nonempty subset S
of T ; that is, there exist distinct α, β ∈ T (X, Y ) such that γα = γβ for every γ ∈S.
To see this, choose x1 ∈ X \ Y and distinct y1, y2 ∈ Y , and let α, β ∈ T (X) be such
that x1α = y1, x1β = y2, and xα = y1 = xβ for every x ∈ X \ {x1}. Clearly, α, β
are distinct elements of T (X, Y ) and, since α|Y = β|Y , we have γα = γβ for every
γ ∈S.

THEOREM 17. Suppose that K ⊆ R are right ideals of a semigroup S such that
Ra ⊆ K for all a ∈ S. If S is R-left-reductive, then S can be embedded into T (R, K ).

EXAMPLE 18. We give one example of a semigroup which satisfies the algebraic
conditions of Theorem 16 but differs from every T (X, Y ) with |Y | ≥ 2. Suppose that
X = {a, b, c, d}, and let ab denote the partial transformation with domain {a} and
range {b}. Also let I2 = {α ∈ I (X) : r(α) < 2}: that is, the smallest nonzero ideal of
I (X), the symmetric inverse semigroup on X [1, Vol. 1, p. 29]. Now write

K = I2, L = K ∪

{(
a b
c d

)}
, S = L ∪ {id{c,d}}.

Clearly, S is a semigroup with ∅ as a zero element, and S2
6= {∅} (that is, the operation

on S is nontrivial). Also K ( L , and K , L are left ideals of S such that αL ⊆ K for
all α ∈ S (moreover, αL 6= {∅} for some α ∈ S).

To show that S is L-right-reductive, suppose that abγ = βγ for all γ ∈ L . In
particular, if γ = ba then ab · ba 6= ∅ implies that β · ba 6= ∅, so b ∈ ran β and such β ∈
S cannot have rank two; hence, by comparing domains, we see that β = ab, as required.
Also, if acγ = βγ for all γ ∈ L , then c ∈ ran β and a ∈ dom β; and, if r(β)= 2 then
βdd 6= ∅ for dd ∈ L , whereas ac · dd = ∅. Thus β = ac, as required. Likewise, if
bbγ = βγ for all γ ∈ L , then bb · ba 6= ∅, so b ∈ ran β and we deduce that β = bb.
Similarly, if

(
a b
c d

)
γ = βγ for all γ ∈ L , then c, d ∈ ran β and a, b ∈ dom β, and thus

β must equal
(

a b
c d

)
. Similarly, we can show that if α, β 6= ∅ in S and αγ = βγ for
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all γ ∈ L , then α = β. In addition, it is obvious that ∅γ = βγ for all γ ∈ L precisely
when β = ∅. Finally, recall that T (X, Y ) does not contain a zero if |Y | ≥ 2.
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