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SUMMARY

Three time-series models (regression, decomposition, and Box–Jenkins autoregressive integrated

moving averages) were applied to national surveillance data for campylobacteriosis with the goal

of disease forecasting in three US states. Datasets spanned 1998–2007 for Minnesota and Oregon,

and 1999–2007 for Georgia. Year 2008 was used to validate model results. Mean absolute percent

error, mean square error and coefficient of determination (R2) were the main evaluation fit

statistics. Results showed that decomposition best captured the temporal patterns in disease risk.

Training dataset R2 values were 72.2%, 76.3% and 89.9% and validation year R2 values were

66.2%, 52.6% and 79.9% respectively for Georgia, Oregon and Minnesota. All three techniques

could be utilized to predict monthly risk of infection for Campylobacter sp. However, the

decomposition model provided the fastest, most accurate, user-friendly method. Use of this

model can assist public health personnel in predicting epidemics and developing disease

intervention strategies.
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INTRODUCTION

Campylobacter sp. bacteria are motile, spiral-shaped,

Gram-negative organisms found ubiquitously in the

environment [1, 2]. They have been identified as a

leading cause of human gastroenteritis in developed

nations, surpassing pathogens such as Salmonella sp.

and E. coli [3, 4]. An estimated 1% of the US popu-

lation (2 400 000 persons) are infected annually re-

sulting in 13 000 hospitalizations and 124 deaths

[5]. Campylobacter sp. can be found in the gastro-

intestinal tracts of a wide variety of domestic and wild

animals and birds [6–8]. As a result, establishment of

causative associations between human infection and

contaminated food or water, animal contact and

other environmental sources is a formidable task.

Geographic region, climate patterns, drinking and

recreational water, land use and human behaviour

comprise some of the complex set of determinants

which have been shown to affect the rate of gastro-

intestinal disease [9–15]. The incidence of campylo-

bacteriosis varies seasonally and geographically, and

tends to be highest in summer months, specifically in

temperate climate zones [3, 14, 16, 17]. While the

seasonality of the disease has been well documented

worldwide, extensive studies have not been performed

to predict the future risk of disease in different geo-

graphic regions in the USA. Comparing seasonal

patterns in regions with different environmental
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characteristics may help identify transmission routes

making reliable time-series forecasting of great benefit

to epidemiologists and public health officials [10,

18–20].

A variety of modelling approaches have been ap-

plied to surveillance data over the past 20 years in an

attempt to accurately predict patterns of infectious

diseases [14, 15, 18, 19, 21–29]. Statistical time-series

modelling is appropriate since Campylobacter sp. dis-

ease surveillance data can be aggregated into equally

spaced time intervals, exhibits autocorrelation, trend

and seasonality [27, 30]. The potential for emerging

infectious disease patterns to change in response to

anthropogenic climate and land-use changes warrants

the continual improvement and updating of current

forecasting systems. Technological advances in fore-

casting software and program capability produce

systematic review of methods and their applicability

in the realm of public health. Recent interest in auto-

mated, real-time detection techniques have met with

varying levels of success [28]. Our study incorporates

a univariate methodological approach to forecast

monthly disease risk using campylobacteriosis inci-

dence from three US states.

Finding the most accurate time-series disease risk

model at the state level holds numerous practical im-

plications. Systematic analyses of multiple modelling

techniques aims to create an optimal model to be used

by public health officials with a state-specific, accurate

and user-friendly method for predicting disease risk.

The best model could potentially be implemented by

trained public health professionals. Risk forecasting

could provide public health officials with an early in-

dication of irregularity in disease incidence and act as

an epidemic alert system [18, 24, 27, 31, 32]. Model

application could subsequently result in more efficient

and cost-effective control strategies [33].

The purpose of this study is to evaluate three time-

seriesmodels using data from threeUS states,Georgia,

Oregon and Minnesota, to forecast the monthly risk

of campylobacteriosis one year in advance. We also

aim to determine if current software is capable of ac-

curately simplifying time-series methods for practical

use in the public health arena.

METHODS

Data source and study area description

The data utilized for this project were obtained from

FoodNet, an active surveillance system implemented

in 1996 by the Centers for Disease Control and

Prevention (CDC) [34]. To meet the operational case

definition of campylobacteriosis, samples of either

stool or blood must be laboratory-confirmed as posi-

tive for Campylobacter sp.

Data from Georgia, Oregon and Minnesota were

chosen for completeness and climatic diversity. Both

direct and indirect disease transmission may be af-

fected by weather conditions, therefore, it is import-

ant to predict disease risk for geographically diverse

regions [14]. Oregon experiences temperate climatic

conditions characterized by 9 months of consistent

cloud cover and rain [35]. Regional variation in an-

nual precipitation (50–500 cm) occurs. During the

summer months, July–September, there are about 50

days of clear sky with average daily temperatures be-

tween 30 and 38 xC. Georgia is characterized by a

humid subtropical climate and receives about 114 cm

of annual rain in the middle of the state and 180 cm in

the northeast mountains [36]. Summers are hot and

humid with an average daily temperature of 32 xC.

Minnesota climate is the most extreme, with average

daily temperatures ranging in January between x14

and x11 xC, and between 19 and 23 xC in July [37].

Average annual precipitation is 48 cm in Minnesota’s

northwest region and 86 cm in the southeast. We

hypothesize that climatic differences between states

may affect the characteristics of the campylobacteri-

osis risk curve over the course of the year. Sub-

sequently, this may influence statistical forecasting

methods, as well as prevention and control strategies.

Data preparation

FoodNet surveillance data was aggregated into counts

by month for each state over the study period result-

ing in 108 data points in Georgia and 120 data points

in Oregon and Minnesota, equally spaced over time.

The series lengths are statistically appropriate for the

three time-series methods [38]. To ensure the regional

integrity of the risk estimates, cases identified as travel

related were eliminated from the dataset. The years

1998 (1999 for Georgia) to 2007 were used to model

each time series and the year 2008 was held out of the

dataset for model validation. Data manipulation was

performed in SAS version 9.2 [39]. Risks were deter-

mined using annual population estimates as denomi-

nators obtained from the U.S. Census Bureau [40].

The risk estimates were presented as number of cases/

100 000 persons. The statistical analyses were per-

formed in NCSS-2007 [41]. The forecasting methods
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used were time-series regression, decomposition, and

Box–Jenkins autoregressive integrated moving aver-

ages (ARIMA). Fit statistics and holdout R2 values

were calculated manually. Separate model forecasts

were assessed for each state.

Pattern analysis and outlier identification

Pattern analysis was performed on monthly risk data

using autocorrelation (ACF) and partial autocorre-

lation (PACF) plots. Kruskal–Wallis ANOVA was

performed on monthly medians to verify seasonality

(P<0.05). A simplistic strategy of identifying outliers

as data points 3 S.D. from the mean for time-series

data are invalid since this ignores the autoregressive

or moving average patterns in the data. Instead, the

time-series outliers were identified by fitting a basic

ARIMA model to the data series. The resulting re-

siduals are saved and standardized by the root mean

square error for the ARIMA (1,0,0)(0,1,1). These

standardized residuals are then control charted. Ob-

servations outside 3 S.D. from the mean of zero are

then flagged as outliers in the time-series data. This

outlier identification procedure avoids over-identifi-

cation of outliers in time series [42].

Outbreak information on individual cases is incom-

plete in this dataset. All cases were aggregated by

month regardless of outbreak status. Outliers identi-

fied by control charting were individually checked for

potential outbreak status. No association between

outliermonths and reported outbreak caseswas found.

Time-series modelling techniques

The models were quantitatively evaluated based on

their predictive ability using mean square error

(MSE), MAPE (mean absolute percentage error), R2

on the training data, and a holdout R2 based on 2008

data for all three modelling techniques. Outside of

time-series analysis, most people associate R2 only

with multiple regression. However, there is a pseudo-

R2 that can be computed for any time-series model as

follows:

R2
pseudo=1:0x

Pn

i=1
(yixŷyi)

2

Pn

i=1
(yix�yy)2

: (1)

This pseudo-R2 is simply the sum of the residuals

squared divided by the total sum of squares in the

model. For a holdout R2, the calculation is basically

the same as in equation (1), except that the model

from the training sample is applied to the holdout, the

sample size is only over the holdout, and �yy is the mean

for the holdout time period. In essence, all models can

be evaluated in the same way. Henceforth, all further

comparisons will be addressed simply as R2.

Time-series regression

Ordinary least squares multiple regression models

were evaluated using additive (untransformed) and

multiplicative (logarithm transformation) risks. Pre-

dictors included trend, month, year and trendr
month interactions. Variables were retained if they

improved predictive value (R2), produced globally

significant (P<0.05) models with significant re-

gression coefficients, and lacked collinearity (variance

inflation index <5). The basic time-series regression

model used was additive and shown in equation (2) :

Yt=b0+b1xtrend+
Xp=12

i=2

bidi+et : (2)

This model assumes linear trend and seasonality but

no interaction between the two.

Residual time-series plots were examined for all

models and checked for normality using the Shapiro–

Wilk’s goodness-of-fit for normality. In addition, one

wants to find white noise (no pattern) in the residuals

after fitting a time-series model. Therefore, the

Portmanteau test was used to assess white noise, with

degrees of freedom adjusted according to the number

of predictor variables [38]. This test ensures that the

pattern has been fully extracted from the series and

that the residuals are randomly scattered.

Automatic decomposition

A decomposition macro available in NCSS and other

software was applied [41]. The series was decomposed

into trend, seasonal, cyclic and error components.

The decomposition model that worked best on this

data was multiplicative as shown in equation (3) :

Yt=Tt � St � Ct � Et: (3)

Residual analysis for white noise and normality was

performed as described for time-series regression.

Box–Jenkins ARIMA

The ARIMA modelling was based on the techniques

described by Box & Jenkins in 1976 and further ex-

plained by DeLurgio [38, 43]. The ACF and PACF

plots were used to identify starting orders. Exhaustive
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combinations of autoregressive (AR), moving average

(MA) and differencing parameters were fitted up to the

third order. Orders above three were not attempted

due to the high likelihood of model overspecification.

First-order seasonal differencing resulted in the best

models for all three states and compensated for non-

stationarity in the mean [43]. The best models were

selected after various fit statistics were evaluated.

The best ARIMA model was ARIMA (1,0,0)(0,1,1),

which is captured using backshift operators in

equation (4) :

(1x’1B)(1xB12)Yt=(1xh1B
12) : (4)

Significant (P<0.05) coefficients were retained with

correlations <0.8 between parameter estimates. Re-

sidual analysis, as to normality and white noise, was

performed as described for time-series regression.

RESULTS

Pattern analysis

Monthly risks ranged from 0.236–1.191/100 000 per-

sons (mean 0.593) in Georgia, 0.635–2.895 (mean

1.443) in Oregon and 0.333–4.655 (mean 1.435) in

Minnesota. All three series demonstrate seasonality

(Fig. 1a–c). The vacillating seasonal pattern in the

ACF plots dominates and potentially masks AR and

MA components. The ACF and PACF plots for

Georgia are shown in Figure 2(a, b). The exponential

decay in of the seasonality in the ACF along with the

singular PACF first-order spike is indicative of AR(1).

Further looks at regular and seasonal differencing

hinted at a possible MA(1) for the seasonal com-

ponent. The patterns were not clean, implying other

model possibilities or potential outliers or both.

Outlier identification

Outliers were not identified in Georgia using the

ARIMA control process techniques, therefore, no

further pre-processing or smoothing methods were

applied to the Georgia time series. For the Oregon

series, June 1998 was flagged as an outlier in both the

raw and residual control chart analysis. The mean risk

in June was 2.11/100 000 persons. For the June ob-

servations a running median of five consecutive June

values was chosen to preserve the seasonal effect.

The original outlier value of 2.864/100 000 persons

was replaced with 2.017. The models performed

consistently worse with smoothed data. As a result, all

Oregon forecasting was applied to the original un-

smoothed data.

Control charting of the Minnesota series indicated

that June 1998 was out of range for both control

charting techniques. The data point was above 3 S.D.

from centre. To correct the outlier, a running median

of 5 for consecutive June data was chosen for
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Fig. 1. Risk of campylobacteriosis per 100 000 persons in

(a) Georgia (1999–2007), (b) Oregon (1998–2007) and
(c) Minnesota (1998–2007).
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smoothing. The replacement median risk value of

2.372 (original value 4.65, June mean 2.420) was used

in all further analyses.

Time-series model results and comparisons

The results for the best models identified for each

technique are summarized in Table 1. All ARIMA

and regression models were significant (P<0.05) both

globally and for individual model coefficients. Decom-

position models do not rely on overall model signifi-

cance testing to assess fit.

Regression

The best regression model for all three states was ad-

ditive and contained statistically significant (P<0.05)

trend and monthly estimates. The R2 value in Georgia

was 69.3%, in Oregon 71.0% and in Minnesota

83.5%. In all three states, normality of the residuals

was achieved but not white noise.

Automatic decomposition

The decomposition risk predictions for campylo-

bacteriosis resulted in the highest fit statistics of

the three methods. The R2 value for Georgia was

72.7%, for Oregon 76.3% and for Minnesota 89.9%.

Normality in the residuals was achieved for all three

series. None of these models attained perfect white

noise. The Georgia model was adequate for white

noise only for lags 1 and 2. The Oregon model was

Table 1. Time-series model comparisons for campylobacteriosis risk per 100 000 persons in Georgia (1999–2007),

Oregon and Minnesota (1998–2007)

State Model R2 PRED*

R2

holdout# MSE Normality WN (adequate lags) MAPE

Georgia Regression 0.693, 0.602 0.733 0.014 Yes No (5–7) 0.162
ARIMA (1,0,0)(0,1,1) 0.655 0.757 0.016 No – close Yes 0.197
Decomposition 0.727 0.662 0.011 Yes No (1–2) 0.147

Oregon Regression 0.710, 0.633 0.588 0.073 Yes No (28 on) 0.154
ARIMA (1,0,0)(0,1,1) 0.724 0.620 0.070 No – 2 off Yes 0.177
Decomposition 0.763 0.526 0.053 Yes No 0.145

Minnesota Regression 0.835, 0.792 0.682 0.089 Yes No 0.194
ARIMA (1,0,0)(0,1,1) 0.841 0.599 0.107 No – close Yes – all except lag 1 0.219
Decomposition 0.899 0.799 0.049 Yes No (1, 4, 7–11) 0.156

MSE, Mean square error ; WN, white noise ; MAPE, mean absolute percent error.

* PRED is a prediction R2 value (sometimes referred to as a Press R2).This statistic is used to internally validate the
regression model using jackknife techniques.
# R2 of the 2008 validation sample.
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Fig. 2. (a) Autocorrelation and (b) partial autocorrelation

plots for Georgia campylobacteriosis risk per 100 000 per-
sons.
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inadequate overall. The Minnesota residuals were

adequate for white noise on lag periods 1, 4, and 7–11.

The actual and predicted risk values for the de-

composition validation year (2008) are shown in

Figure 3(a–c). The validation dataset R2 values for

Georgia, Oregon and Minnesota were 66.2%, 52.6%

and 79.9%, respectively.

ARIMA

For all three states the most parsimonious model with

highest R2 value (Georgia 65.5%, Oregon 72.4%,

Minnesota 84.1%) was ARIMA (1,0,0)(0,1,1). Better

R2 values were possible using AR and MA com-

ponents higher than two. However, complex models

tend to over-fit, demonstrate multicollinearity and

frequently do not pass the assumptions of normality

or achieve white noise. The majority of the models

had markedly lower R2 values than decomposition

models, but the ARIMAmodels had a higher holdout

R2, except for Minnesota.

The observed seasonal variation in campylobacteri-

osis identifies the months of June, July and August as

the highest risk months of disease for all three states.

However, the overall shape of the curve differs across

series (Fig. 4). Minnesota’s annual curvature has the

sharpest, narrowest seasonal peak until 2004 at which

time the shape coincides closely with Oregon. The

seasonal peak in Georgia is more rounded and less

severe.

DISCUSSION

The automatic decomposition procedure resulted in a

4–7% improvement in R2 over the best regression and

ARIMA models. Comparing the three methods, de-

composition was the fastest and least technical,

achieved normality in the residuals yet was uniformly

unsuccessful at achieving white noise. Lack of white

noise implies that there is a pattern in the residuals not

accounted for by the model. Residual patterns may

increase model uncertainty. However, good predictive

performance can be achieved without perfect attain-

ment of white noise [22].

The use of ARIMA modelling for disease risk data

is well documented [18, 27, 31, 33, 44]. It was orig-

inally expected that ARIMA methods would be

favoured based on previously published use with sur-

veillance data, versatility and available prediction

intervals [18]. These data show that ARIMA models

were closer to achieving white noise in the residuals

and improved holdout sample fit statistics in Georgia

and Oregon. Compared with automatic decompo-

sition, this method is technically challenging, requir-

ing significant statistical background for appropriate

and accurate implementation. Regression had the

poorest model R2 results. Advantages of regression

include the ease of interpretation, computation of pre-

diction intervals, robust and bootstrapping possibi-

lities. Therefore, this technique should not be ruled

out for risk forecasting of campylobacteriosis. For all

three methods,MSE andMAPEwere comparable and

indicate accurate forecasting. However, fit statistics
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Fig. 3. Validation year (2008) actual (…2…) vs. predicted

(–&–) risk of campyloacteriosis per 100 000 persons in
(a) Georgia, (b) Oregon and (c) Minnesota.
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for decomposition were uniformly better than the

other two methods across states. Furthermore, con-

stant 95% prediction intervals can be manually cal-

culated for decomposition to demonstrate a range in

predicted risk values.

A specific strength of automatic decomposition is

that it produced accurate monthly campylobacteriosis

risk predictions for all three states. A unique charac-

teristic of this technique is that it can be taught

to public health officials with minimal statistical

background. By combining accuracy with ease of use,

improvements in epidemic preparation and timely in-

tervention are attainable at state, regional and

national levels [32].

The distinct seasonal pattern of campylobacteriosis

may suggest climatic or environmental links to the

risk of disease [13, 16, 17]. Climate affects the survival

and reproduction ofCampylobacter sp. in the environ-

ment and on food sources and previous studies have

shown that climatic factors influence disease incidence

over time [14, 25, 45, 46]. Hartnack et al. found sig-

nificant cross-correlations between human incidence,

monthly temperature and rainfall [10]. The study

showed that peak prevalence in human campylo-

bacteriosis preceded that in German broiler flocks,

further implicating environmental vs. foodborne

components to disease risk. Seasonal risk variation

may also be due to human behavioural factors such as

picnics, barbeques and other outdoor activities [9, 30].

Such behaviours may vary depending on the climatic

and socioeconomic constraints of a geographic region.

The timing of seasonal peaks in our study was com-

parable across states. This was in contrast to a recent

study in Scotland which showed that the prominence

of seasonal peak in incidence varied regionally [13].

However, both studies demonstrated differences in

the shape of the seasonal curve by region or state.

Future studies are needed to elucidate the impact of

these factors on disease risk by dividing states into

unique climatic zones for time-series analysis using

environmental variables specific to different geo-

graphic regions.

Considerable variation was observed in validation

data R2 results across models and states. This may be

a reflection of the model’s predictive accuracy, shifts

in disease patterns or reflect irregular values or outliers

in the dataset. In Oregon and Minnesota, aberrant

risk values were evident in 2006 seasonal peaks

(Fig. 4). These data were not flagged by control

charting and were not smoothed prior to the analysis.

The presence of outliers, change points or interven-

tions can alter patterns and invalidate forecasts. We

believe our results would have improved in these

states had 2006 followed the typical seasonal curva-

ture. Second, surveillance systems can underestimate

actual disease risk, and reporting may vary between

states. As a result, predictions based on surveillance

data should be interpreted with caution.

Over the past 20 years active modern surveillance

systems have been implemented in developed nations

that offer more accurate statistical prediction capacity

than was previously possible [29, 32]. Risk data from

surveillance systems can be modelled as a means

of assessing associations between disease risk and

epidemiological factors over time [10, 32]. Detecting

aberrant disease incidence can signal an impending

epidemic [31]. Currently, advanced software offers

forecasting methods that are applicable for use by
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public health officials [18, 27, 28]. These statistical

computing techniques allow interdependence of ob-

servations in both time and space to be incorporated

into epidemiological models. As a result the temporal

structure of risk data may assist epidemiologists in

modelling biological, environmental and behavioural

factors of disease with greater accuracy than the

classical one-dimensional regression framework [47].

As demonstrated in this study, these techniques may

provide health officials with practical, user-friendly

and accurate predictive warning systems based solely

on previous risk data [27]. The models can be im-

plemented and validated monthly for the practical

purpose of predicting the risk of campylobacteriosis.

This information may be useful for public health

professionals in early epidemic alert systems as well as

adding to our knowledge of seasonal disease patterns

over time.
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