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Non-archimedean canonical measures

on abelian varieties

Walter Gubler

Abstract

For a closed d-dimensional subvariety X of an abelian variety A and a canonically
metrized line bundle L on A, Chambert-Loir has introduced measures c1(L|X)∧d on
the Berkovich analytic space associated to A with respect to the discrete valuation
of the ground field. In this paper, we give an explicit description of these canonical
measures in terms of convex geometry. We use a generalization of the tropicalization
related to the Raynaud extension of A and Mumford’s construction. The results have
applications to the equidistribution of small points.

1. Introduction

Let K be a field with a discrete valuation v, valuation ring K◦ and residue field K̃. We denote
the completion of the algebraic closure of the completion of K by K. This algebraically closed
complete field is used for analytic considerations on algebraic varieties defined over K. For the
analytic facts, we refer the reader to § 2.

In non-archimedean analysis, there is no analogue known for the first Chern form of a metrized
line bundle. However, Chambert-Loir [Cha06] has introduced measures c1(L1) ∧ · · · ∧ c1(Ld)
on the Berkovich analytic space Xan associated to a d-dimensional projective variety X. The
analogy to the corresponding forms in differential geometry comes from Arakelov geometry.
These measures are best understood in the case of metrics induced by line bundles L1, . . . ,Ld

on a projective K◦-model X of X, with generic fibres L1, . . . , Ld. In this standard situation
from Arakelov geometry, c1(L1) ∧ · · · ∧ c1(Ld) is a discrete measure on Xan with support and
multiplicities determined by the irreducible components of X̃ and their degrees with respect
to L1, . . . ,Ld. However, the canonical metric on an ample line bundle of an abelian variety A
over K is given by such models only if A has potential good reduction. In general, a variation
of Tate’s limit argument shows that the canonical metric is a uniform limit of roots of model
metrics and hence the corresponding canonical measure is given as a limit of discrete measures.
We recall the theory of Chambert-Loir’s measures in § 3.

We consider an irreducible d-dimensional closed subvariety X of the abelian variety A. Using
the Raynaud extension of A, there are a complete lattice Λ in Rn and a map val :Aan→ Rn/Λ,
where n is the torus rank of A. We call val(Xan) the tropical variety associated to X. This
analytic analogue of tropical algebraic geometry is described in § 4. Let b be the dimension of the
abelian part of good reduction in the Raynaud extension of A and hence dim(A) = b+ n. For a
simplex ∆ in Rn, we denote by δ∆ the Dirac measure in ∆, i.e. the push-forward of the Lebesgue
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W. Gubler

measure on ∆ to Rn/Λ. The main result of this paper is the following explicit description of
canonical measures in terms of convex geometry.

Theorem 1.1. There are rational simplices ∆1, . . . ,∆N in Rn/Λ with the following properties:

(a) for j = 1, . . . , N , we have dim(∆j) ∈ {d− b, . . . , d};
(b) val(Xan) =

⋃N
j=1 ∆j ;

(c) for canonically metrized line bundles L1, . . . , Ld on A, there are rj ∈ R with

val∗(c1(L1|X) ∧ · · · ∧ c1(Ld|X)) =
N∑
j=1

rj · δ∆j
;

(d) if all line bundles in (c) are ample, then rj > 0 for j ∈ {1, . . . , N}.

Erratum. In the preprint version [Gub08b] of this paper, it was claimed that the tropical
variety val(Xan) is of pure dimension. However, the referee has found a gap in the argument (see
Remark 4.16) and so this question remains open. As a consequence, in [Gub08a, Theorem 1.2],
one should omit claiming that the tropical variety is of pure dimension. All other claims remain
valid.

Theorem 1.1 was proved in [Gub07a] for abelian varieties which are totally degenerate at the
place v. This special case is equivalent to b= 0, which makes the arguments easier. In particular,
the tropical variety val(Xan) is of pure dimension d. In the general case, we can still show in
Theorem 4.15 that the tropical variety val(Xan) is a polytopal set with the above properties
(a) and (b). The most serious problem is that the tropical dimension may be strictly smaller
than d. This leads to the unpleasant fact that the canonical measure in Theorem 1.1(c) may have
singular parts in lower dimensions, which is in sharp contrast to the totally degenerate case.

Using a semi-stable alteration, we will give in § 6 an explicit description of the canonical
measure c1(L1|X) ∧ · · · ∧ c1(Ld|X) on Xan in terms of convex geometry. It relies on our study
of Mumford models of A in § 4 and on the properties of the skeleton of the strictly semi-stable
model from the alteration given in § 5. A Mumford model is associated to a rational Λ-periodic
polytopal decomposition of Rn such that the reduction modulo v brings toric varieties and convex
geometry into play. In Theorem 6.12, we show that the support of this canonical measure is a
canonical subset of Xan which does not depend on the choice of the ample line bundles Lj
and which has a canonical piecewise linear structure. Finally, the proof of Theorem 1.1 will be
finished in § 7 and we will show in two examples what these canonical measures can look like.
In the appendix, we study building blocks of strongly non-degenerate strictly pluristable formal
models. This is the background for the generalization of our results in § 5 to such models, which
is required only in the proof of Theorem 6.12.

Theorem 1.1 has the following application to diophantine geometry. Let K be either a number
field or the function field of an irreducible projective variety B of positive dimension over a field k.
In the latter case, we assume that B is regular in codimension one and we count the prime divisors
v of B with multiplicity degc(v) for a fixed ample class c on B. In any case, K satisfies the
product formula and hence we get absolute heights on projective varieties over K (see [BG06]).
In particular, we have the Néron–Tate height ĥ on the abelian variety A with respect to a fixed
ample symmetric line bundle L. Note that ĥ is a positive semi-definite quadratic form on A(K)
and hence defines a semi-distance. By Arakelov geometry, there is an extension of the Néron–Tate
height to all closed subvarieties of A defined over K (see [Gub03]).
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Non-archimedean canonical measures on abelian varieties

Let X be an irreducible d-dimensional closed subvariety of the abelian variety A over K. We
choose a small generic net (Pm)m∈I in X(K). Here, small means

lim
m
ĥ(Pm) =

ĥ(X)
(d+ 1) degL(X)

and generic means that for every proper closed subset Y of X, there is an m0 ∈ I such that
Pm 6∈ Y for all m >m0. The absolute Galois group G := Gal(K/K) acts on X(K) and O(Pm)
denotes the orbit of Pm.

We fix a discrete valuation v on K and we form Xan
v and the tropical variety val(Xan

v ) with
respect to v. We fix an embedding K ↪→Kv to identify A(K) with a subset of Aan

v . On val(Xan
v ),

we consider the discrete probability measures

νm :=
1

|O(Pm)|
·

∑
Pσm∈O(Pm)

δval(Pσm).

Tropical equidistribution theorem. There is a regular probability measure ν on Rn with
support equal to the tropical variety val(Xan

v ) such that νm
w→ ν as a weak limit of Borel measures.

If we endow L with a canonical metric ‖ ‖v, then we have ν = degL(X)−1val∗(c1((L|X , ‖ ‖v))∧d).

Note that this statement is only useful if we have the positivity of ν from the
explicit description in Theorem 1.1. The tropical equidistribution theorem follows from the
equidistribution theorem

1
|O(Pm)|

·
∑

Pσm∈O(Pm)

δPσm
w→ 1

degL(X)
· c1(L|X , ‖ ‖v)

∧d (1)

on Xan
v . For an archimedean place v of a number field K and for a metrized ample line bundle

with positive curvature on a smooth projective variety, the equidistribution (1) was proved by
Szpiro, Ullmo and Zhang [SUZ97]. This was generalized by Yuan [Yua08, Theorem 5.1] to semi-
positively metrized ample line bundles on projective varieties over a number field and also to
non-archimedean places. In [Gub08a, Theorem 1.1], Yuan’s generalization was proved in the
function field case.

The potential applications of the tropical equidistribution theorem are related to the
Bogomolov conjecture. The latter claims that the Néron–Tate height has a positive lower bound
on X(K) outside an explicit exceptional set. In the number field case, the Bogomolov conjecture
was proved by Ullmo [Ull98] for curves and by Zhang [Zha98] in general. The main tool was
the archimedean version of (1). For function fields, the Bogomolov conjecture is still open.
In [Gub07b], it was proved for abelian varieties which are totally degenerate with respect to a
place v. The proof relied on the tropical equidistribution theorem for totally degenerate abelian
varieties [Gub07b, Theorem 5.5]. For an arbitrary abelian variety, it is clear that the tropical
equidistribution theorem cannot imply the Bogomolov conjecture since the dimension of the
tropical variety may decrease. However, it is plausible that it can be used once the case of
abelian varieties with everywhere good reduction is understood.

1.2 Terminology
In A⊂B, A may be equal to B. The complement of A in B is denoted by B\A . The zero is
included in N and in R+.

All occurring rings and algebras are commutative with 1. If A is such a ring, then the group
of multiplicative units is denoted by A×. A variety over a field is a separated reduced scheme of
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finite type over that field. However, a formal analytic variety is not necessarily reduced (see § 2).
For the degree of a map f :X → Y of irreducible varieties, we use either deg(f) or [X : Y ].

Let Y be a variety over a field. Following [Ber99, § 2], we use the following canonical
stratification of Y . We start with Y (0) := Y . For r ∈ N, let Y (r+1) ⊂ Y (r) be the complement
of the set of normal points in Y (r). Since the set of normal points is open and dense, we get a
chain of closed subsets:

Y = Y (0) ) Y (1) ) Y (2) ) · · ·) Y (s) ) Y (s+1) = ∅.

The irreducible components of Y (r)\Y (r+1) are called the strata of Y . The set of strata is denoted
by str(Y ). It is partially ordered by S 6 T if and only if S ⊂ T . A strata subset is a union of
strata. A strata cycle is a cycle whose components are strata subsets.

For m ∈ Zn, let xm := xm1
1 · · · xmnn and |m| :=m1 + · · ·+mn. The standard scalar product of

u, u′ ∈ Rn is denoted by u · u′ := u1u
′
1 + · · ·+ unu

′
n. For the notation used from convex geometry,

we refer the reader to 4.4.

2. Analytic and formal geometry

In this section, we recall results from Berkovich analytic spaces and formal geometry. Our base
field K is algebraically closed with a non-trivial, non-archimedean complete absolute value | |,
valuation ring K◦ and residue field K̃.

2.1 The Tate algebra K〈x1, . . . , xn〉 is the completion of K[x1, . . . , xn] with respect to the Gauss
norm. Its elements are the power series in the variables x1, . . . , xn with coefficients am ∈K such
that |am| → 0 for m1 + · · ·+mn→∞. A K-affinoid algebra A is isomorphic to K〈x1, . . . , xn〉/I
for some ideal I in K〈x1, . . . , xn〉. The maximal spectrum Max(A ) corresponds to the zero set
of I in the closed unit ball Bn := {x ∈Kn |maxj |xj | 6 1}. The supremum semi-norm of A on
Max(A ) is denoted by | |sup. We define

A ◦ := {a ∈A | |a|sup 6 1}, A ◦◦ := {a ∈A | |a|sup < 1}

and the finitely generated reduced K̃-algebra Ã := A ◦/A ◦◦ (see [BGR84]).

2.2 For an affinoid algebra A , the Berkovich spectrum X = M (A ) is the set of semi-norms p
on A with p(ab) = p(a)p(b), p(1) = 1 and p(a) 6 |a|sup for all a, b ∈A . We use the coarsest
topology on X such that the maps p 7→ p(a) are continuous for all a ∈A . The affine K̃-variety
X̃ = Spec(Ã ) is called the reduction of X. The reduction map X → X̃, p 7→ p̃ := {p < 1}/A ◦◦,
is surjective. If Y is an irreducible component of X̃, then there is a unique ξY ∈X with ξ̃Y equal
to the generic point of Y . For details, we refer the reader to Berkovich[Ber90]. Note that our
definition of an affinoid algebra is the same as in [BGR84], but Berkovich calls them strictly
affinoid algebras.

2.3 A rational subdomain of X := M (A ) is defined by

X

(
f
g

)
:= {x ∈X | |fj(x)| 6 |g(x)|, j = 1, . . . , r},
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Non-archimedean canonical measures on abelian varieties

where g, f1, . . . , fr ∈A are without common zero. It is the Berkovich spectrum of the affinoid
algebra

A

〈
f
g

〉
:= K〈x, y1, . . . , yr〉/〈I, g(x)yj − fj | j = 1, . . . , r〉,

where we use the description A = K〈x〉/I from 2.1.
More generally, one defines an affinoid subdomain of X as the Berkovich spectrum of an

affinoid algebra characterized by a certain universal property (see [BGR84, 7.2.2]). By a theorem
of Gerritzen and Grauert, an affinoid subdomain is a finite union of rational domains. For more
details, we refer the reader to [BGR84, ch. 7] and [Ber90, § 2.2].

2.4 An analytic space X over K is given by an atlas of affinoid subdomains U = M (A ). For
the precise definition, we refer the reader to [Ber93, § 1] (where they are called strictly analytic
spaces).

2.5 The formal topology on X = M (A ) is given by the preimages of the open subsets of X̃ with
respect to the reduction map. This quasi-compact topology is generated by affinoid subdomains
and hence we get a canonical ringed space called a formal affinoid variety over K, which we
denote by Spf(A ). By definition, a morphism of affinoid varieties over K is induced by a reverse
homomorphism of the corresponding K-affinoid algebras (see [Bos77] for details).

A formal analytic variety over K is a K-ringed space X which has a locally finite open atlas
of formal affinoid varieties Spf(Ai) over K called a formal affinoid atlas. The generic fibre Xan

(respectively the reduction X̃) is locally given by M (Ai) (respectively Spec(Ãi)). By 2.2, we
get a surjective reduction map Xan→ X̃, x 7→ x̃. For every irreducible component Y , there is a
unique ξY ∈ Xan such that ξ̃Y is the generic point of Y .

2.6 An admissible K◦-algebra is a K◦-algebra A without K◦-torsion isomorphic to
K◦〈x1, . . . , xn〉/I for an ideal I. An admissible formal scheme X over K◦ is a formal scheme
over K◦ which has a locally finite atlas of open subsets Spf(Ai) for admissible K◦-algebras Ai
(see [BL93a, BL93b] for details).

The special fibre X̃ of X is a scheme over K̃ locally given by Spec(Ãi). It is locally of finite
type over K̃ and not necessarily reduced. The latter is in sharp contrast to the reduction of
formal analytic varieties. These categories are related by the following functors.

The formal analytic variety X f−an associated to X is locally given by Spf(Ai) for the
affinoid algebra Ai :=Ai ⊗K◦ K. The canonical morphism (X f−an)˜→ X̃ is finite and surjective
(see [BL86, § 1]).

The generic fibre of X f−an is also called the generic fibre of X and is denoted by X an. Note
that X f−an and X an are equal as a set but X an has a finer topology. Using composition of
the reduction map for X f−an (see 2.5) with the canonical morphism above, we get a surjective
reduction map π : X an→ X̃ .

If X is a formal analytic variety over K given by the formal affinoid atlas Spf(Ai), then the
associated formal scheme Xf−sch is locally given by Spf(A ◦i ).

It is often useful to flip between formal analytic varieties over K and admissible formal
schemes over K◦. This is possible because the functors X →X f−an and X→ Xf−sch give an
equivalence between the category of admissible formal schemes over K◦ with reduced special
fibre and the category of reduced formal analytic varieties over K. Moreover, the canonical map
(X f−an)˜→ X̃ is an isomorphism. For details, see [BL86, § 1] and [Gub97, § 1].
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2.7 For a scheme X of finite type over a subfield K of K, there is an analytic space Xan

over K associated to X. The construction is similar to that for complex varieties. Moreover,
most algebraic properties hold also analytically and, conversely, there is a GAGA principle. For
details, we refer the reader to [Ber90, 3.4].

If X is a flat scheme of finite type over the valuation ring K◦ with generic fibre X, then the
associated formal scheme X̂ over K◦ is obtained by the π-adic completion of X for any π ∈K
with |π|< 1. The special fibre of X̂ is the base change of the special fibre of X to K̃. The generic
fibre X̂ an is an analytic subdomain of Xan such that X̂ an(K) = X (K◦). If X is proper over K◦,
then X̂ an =Xan. For details, we refer the reader to [Gub07a, 2.7].

For convenience of the reader, we summarize here the notational policy of the paper: X
denotes a flat algebraic scheme over K◦, X is used for an admissible formal scheme over K◦
and X denotes a formal analytic variety over K. The generic fibre in any case is usually denoted
by X.

3. Chambert-Loir’s measures

In this section, K denotes an algebraically closed field which is complete with respect to the
non-trivial, non-archimedean absolute value | |. Let K be a subfield of K such that the valuation
v :=−log | | restricts to a discrete valuation on K. We will assume, as in our applications later
on, that varieties are defined over K and we will perform analytic considerations over K using 2.7.

First, we will characterize admissible metrics on a line bundle by their fundamental properties.
As in Arakelov geometry, metrics associated to K◦-models are admissible and we want to include
also canonical metrics on an abelian variety. Then we will recall the basic properties of Chambert-
Loir’s measures with respect to line bundles endowed with admissible metrics. These analogues
of top-dimensional wedge products of first Chern forms were introduced in [Cha06] and later
generalized in [Gub07a].

3.1 We recall some facts about metrics on line bundles. Let X be a proper scheme over K and
let L be a line bundle on X. We consider metrics ‖ ‖, ‖ ‖′ on L which are continuous with
respect to the analytic topology on Lan. Then we have the distance of uniform convergence

d(‖ ‖, ‖ ‖′) := sup
x∈Xan

|log(‖s(x)‖/‖s(x)‖′)|.

The definition is independent of the choice of a non-zero s(x) ∈ Lx.

3.2 A formal K◦-model of X is an admissible formal scheme over K◦ together with an
isomorphism X an ∼=Xan. A formal K◦-model of L on X is a line bundle L on X together
with an isomorphism L an ∼= Lan.

For notational simplicity, we usually ignore the isomorphism between the generic fibre X an

and Xan. We simply identify X an with Xan.
An algebraic model X of X over the discrete valuation ring K◦ of K is a scheme X which is

flat and proper over K◦ and which has generic fibre (isomorphic to) X. We will also use formal
K◦-models for analytic spaces and line bundles in the same sense as above.

Example 3.3. If L is a formal K◦-model of L on X , then the associated formal metric ‖ ‖L
on L is defined in the following way: if U is a formal trivialization of L and if s ∈ Γ(U ,L )
corresponds to γ ∈ OX (U ), then ‖s(x)‖= |γ(x)| on U an. Obviously, ‖ ‖L is continuous and
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independent of the choice of the trivialization. By 2.7, every algebraic model of L over K◦

induces a formal K◦-model and hence an associated formal metric.

Proposition 3.4. For every line bundle L on a proper scheme X over K, there is a set ĝ+
X(L)

of continuous metrics on Lan with the following properties:

(a) if ‖ ‖i is a ĝ+
X(Li)-metric for i= 1, 2, then ‖ ‖1 ⊗ ‖ ‖2 is a ĝ+

X(L1 ⊗ L2)-metric;

(b) for any n ∈ N\{0}, a metric ‖ ‖ on L is a ĝ+
X(L)-metric if and only if ‖ ‖⊗n is a ĝ+

X(L)⊗n-
metric;

(c) if ϕ : Y →X is a morphism of proper schemes over K and ‖ ‖ is a ĝ+
X(L)-metric, then ϕ∗‖ ‖

is a ĝ+
Y (ϕ∗L)-metric;

(d) if ϕ is also surjective and ‖ ‖ is any metric on L such that ϕ∗‖ ‖ is a ĝ+
Y (ϕ∗L)-metric, then

‖ ‖ is a ĝ+
X(L)-metric;

(e) the set ĝ+
X(L) is closed with respect to uniform convergence;

(f) if L is a formal K◦-model of L with numerically effective reduction L̃ , then the associated
formal metric ‖ ‖L is in ĝ+

X(L).

Proof. See [Gub03, Remark 10.3 and Proposition 10.4]. 2

3.5 Taking the intersection over all possible ĝ+
X(L) in Proposition 3.4, we get a smallest set of

continuous metrics on Lan satisfying the properties of Proposition 3.4. Such a metric is called a
semi-positive admissible metric. A (continuous) metric ‖ ‖ on Lan is called an admissible metric
if and only if there is a surjective morphism ϕ :X ′→X of proper schemes over K, line bundles
M , N on X ′ with ϕ∗(L)∼=M ⊗N−1 and semi-positive admissible metrics ‖ ‖1, ‖ ‖2 on M , N
such that ϕ∗‖ ‖= ‖ ‖1/‖ ‖2.

Proposition 3.6. Admissible metrics of line bundles on a proper scheme X over K have the
following properties.

(a) The tensor product of admissible metrics is again admissible.

(b) The dual metric of an admissible metric is admissible.

(c) The pull-back of an admissible metric with respect to a morphism ϕ : Y →X of proper
schemes over K is an admissible metric.

(d) Every formal metric is admissible.

Proof. The base change of a proper surjective morphism is again proper and surjective, which
proves easily (a) and (c). Property (b) is trivial and (d) follows from [Gub03, Proposition 10.4]. 2

Example 3.7. Let L be a line bundle on an abelian variety A over K. We will define a canonical
metric on L and then we will show that it is admissible.

We choose a rigidification ρ of L, i.e. ρ ∈ L0(K)\{0}. We assume first that L is even. Then
the theorem of the cube yields a canonical identification [m]∗(L) = L⊗m

2
of rigidified line bundles

for every m ∈ Z. There is a unique bounded metric ‖ ‖ρ on L such that for all m ∈ Z, we have

[m]∗‖ ‖ρ = ‖ ‖⊗m
2

ρ . In fact, a variation of Tate’s limit argument shows that

‖ ‖ρ = lim
m→∞

[m]∗‖ ‖⊗1/m2

(2)

for every continuous metric ‖ ‖ on Lan (see [BG06, Theorem 10.5.7]). If L is odd, then the same
applies with m2 replaced by m. Since any line bundle on A is the tensor product of an even one
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with an odd one, unique up to 2-torsion, we get a canonical metric ‖ ‖ρ on every rigidified line
bundle (L, ρ) of A.

A metric ‖ ‖ on L is said to be canonical if there is a rigidification ρ of L such that ‖ ‖ is equal
to ‖ ‖ρ. A canonical metric is unique up to positive rational multiples [BG06, Remark 9.5.9] and
we usually denote it by ‖ ‖can. We claim that ‖ ‖can is admissible.

To see this, we assume first that L is ample and even. By Proposition 3.4(f), there is a semi-
positive admissible metric ‖ ‖ on L. Then Proposition 3.4(b) and (2) yield that ‖ ‖can is a
semi-positive admissible metric. If L is just even, then there are ample even line bundles M , N
on A with L∼=M ⊗N−1 and we deduce that ‖ ‖can is admissible from the special case above
and from Proposition 3.6.

If L is odd, then L is algebraically equivalent to 0. By definition, the latter means that we
have K-rational points P and P0 on an irreducible smooth projective curve C over K and a
correspondence E in C ×A such that the line bundle associated to the divisor E([P ]− [P0])
is isomorphic to L. Here, we use E([P ]− [P0]) := (p2)∗(E.p∗1([P ]− [P0])), where pi are the
projections of C ×A. There are semi-stable K◦-models C and A of C and A (for curves, this
is well known and, for abelian varieties, see Examples 7.2 and 7.4). They are defined over the
valuation ring F ◦ of a finite extension F over the completion Kv. More precisely, there are semi-
stable algebraic F ◦-models C and A of CF and AF such that the associated formal schemes over
K◦ are C and A , respectively (see 2.7).

There is a divisor D on C with horizontal part [P ]− [P0] and whose vertical part has rational
coefficients such that the intersection numbers D · Y are 0 for all irreducible components Y of C̃.
There is an F ◦-model Z of C ×A with K◦-morphisms p1 : Z → C and p2 : Z →A (extending the
corresponding projections) such that the correspondence E extends to a correspondence E of Z.
We define E(D) := (p2)∗(E .p∗1(D)) as a Q-divisor on A. It is well known that E(D) induces the
canonical metric ‖ ‖can of L. More precisely, if N is a common denominator for the coefficients
of the vertical part of D, then the line bundle associated to the divisor E(D) induces a formal
K◦-model of L⊗N and ‖ ‖⊗Ncan is the associated formal metric. Moreover, we deduce that ‖ ‖can

is a semi-positive admissible metric. For more details about these constructions, we refer the
reader to [Gub03, Theorem 8.9 and Example 10.11].

If L is any line bundle on A, then we deduce that ‖ ‖can is admissible by linearity and by the
special cases above.

In non-archimedean analysis, no good definition of Chern forms of metrized line bundles
is known. However, Chambert-Loir has introduced a measure which is the analogue of top-
dimensional wedge products of such Chern forms.

Proposition 3.8. There is a unique way to associate to any d-dimensional geometrically
integral proper varietyX overK and to any family of admissibly metrized line bundles L1, . . . , Ld
on X a regular Borel measure c1(L1) ∧ · · · ∧ c1(Ld) on Xan such that the following properties
hold.

(a) c1(L1) ∧ · · · ∧ c1(Ld) is multilinear and symmetric in L1, . . . , Ld.

(b) If ϕ : Y →X is a morphism of d-dimensional geometrically integral proper varieties over K,
then

ϕ∗(c1(ϕ∗L1) ∧ · · · ∧ c1(ϕ∗Ld)) = deg(ϕ)c1(L1) ∧ · · · ∧ c1(Ld).
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(c) If the metrics of L1, . . . , Ld are semi-positive and g ∈ C(Xan), then∣∣∣∣∫
Xan

g c1(L1) ∧ · · · ∧ c1(Ld)
∣∣∣∣ 6 |g|sup degL1,...,Ld

(X).

(d) If X is a formal K◦-model of X with reduced special fibre and if the metric of Lj is induced
by a formal K◦-model Lj of L on X for every j = 1, . . . , d, then

c1(L1) ∧ · · · ∧ c1(Ld) =
∑
Y

degL̃1,...,L̃d
(Y )δξY ,

where Y ranges over the irreducible components of X̃ and δξY is the Dirac measure in the
unique point ξY of Xan which reduces to the generic point of Y .

(e) If L1, . . . , Ld are endowed with semi-positive admissible metrics ‖ ‖j , then µ= c1(L1) ∧
· · · ∧ c1(Ld) is a positive Borel measure with µ(Xan) = degL1,...,Ld

(X).

(f) If we endow the set of positive regular Borel measures on Xan with the weak topology and
if we fix the line bundles L1, . . . , Ld on X, then c1(L1) ∧ · · · ∧ c1(Ld) is continuous with
respect to the vector (‖ ‖1, . . . , ‖ ‖d) of semi-positive admissible metrics on L1, . . . , Ld.

Proof. For existence, we refer the reader to [Gub07a, § 3]. Uniqueness for formal metrics is clear
by (d). The general case will be skipped. It follows from a repeated application of the minimality
of semi-positive admissible metrics in 3.4. 2

3.9 We consider a d-dimensional geometrically integral closed subvariety X of the abelian variety
A and canonically metrized line bundles L1, . . . , Ld on A. Then µ := c1(L|X) ∧ · · · c1(L|X) is
called a canonical measure on X. It does not depend on the choice of the canonical metrics.
Moreover, if one line bundle is odd, then µ= 0 (see [Gub07a, 3.15]).

Remark 3.10. By finite base change of K and then using linearity in the irreducible components,
we may extend Chambert-Loir’s measures to all proper schemes X over K of pure dimension d.

4. Raynaud extensions and Mumford models

In this section, K denotes an algebraically closed field with a non-trivial, non-archimedean
complete absolute value | |, valuation v :=−log | | and value group Γ. We fix an abelian variety
A over K.

First, we recall some results of Bosch and Lütkebohmert about the Raynaud extension of A.
To simplify the exposition, we will replace cubical line bundles by the use of metrics. Then we
explain Mumford’s construction, which gives an admissible formal K◦-model A associated to
certain polytopal decompositions of Rn. Moreover, we will relate ample line bundles on A and
their models on A to affine convex functions. At the end, we will define the tropical variety of
a closed subvariety of A, which is a periodic polytopal set in Rn.

4.1 To define the Raynaud extension of A, we will follow the rigid analytic presentation of Bosch
and Lütkebohmert [BL91, § 1] and adapt it to Berkovich analytic spaces as in [Ber90, § 6.5]. There
is a formal group scheme A1 over K with generic fibre A1 and a homomorphism A1→Aan of
analytic groups over K inducing an isomorphism onto an analytic subdomain of Aan such that
A1 has semi-abelian reduction. Moreover, A1 and the homomorphism A1→Aan are unique up
to isomorphism and hence we may identify A1 with a compact subgroup of Aan.
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It is convenient here to work in the category of formal analytic varieties, as we may identify
the objects with their generic fibres using a coarser topology (see 2.5). Since A1 has semi-stable
reduction, the special fibre is reduced and A1 has the structure of a formal analytic group. Let
T1 be the maximal formal affinoid subtorus in A1. Then semi-stable reduction means that there
is a unique formal abelian scheme B over K◦ with generic fibre B such that we have an exact
sequence

1→ T1→A1
q1→B→ 0 (3)

of formal analytic groups. Note that we may identify T1 with the compact analytic subgroup
{|x1|= · · ·= |xn|= 1} of T = (Gn

m)an. The uniformization E of A is given as an analytic group by
E := (A1 × T )/T1, where T1 acts on A1 × T by t1 · (a, t) := (t1 + a, t−1

1 · t). Using the canonical
maps, we get an exact sequence

1→ T → E
q→B→ 0 (4)

of analytic groups. The closed immersion T1→A1 extends uniquely to a homomorphism T →
Aan of analytic groups and hence we get a unique extension of A1 ↪→Aan to a homomorphism
p : E→Aan of analytic groups. The kernel M of p is a discrete subgroup of E(K) and the
homomorphism E/M →Aan induced by p is an isomorphism. The exact sequences (3) and (4)
are called the Raynaud extensions of A. We will write the group structure on the uniformization E
multiplicatively. We call n the torus rank of A.

By [BGR84, Theorem 6.13], the formal abelian scheme B is algebraizable and the GAGA
principle shows that the same is true for the Raynaud extension (4).

There are two extreme cases of abelian varieties over K. First, we have abelian varieties of
good reduction at v, which means that the torus part T of the Raynaud extension is trivial. On
the other hand, we have the abelian varieties with totally degenerate reduction at v, which means
that the abelian part B of the Raynaud extension is trivial.

4.2 The Raynaud extension (3) is locally trivial, i.e. there is an open atlas T of Bf−an by formal
affinoid varieties V such that q−1

1 (V )∼= V × T1. This follows easily from the corresponding fact
for semi-abelian varieties applied to the reduction of (3) (see [BL91, p. 655]). For every V , we fix
such a trivialization given by a section sV : V →A1. The transition functions gVW := sV − sW are
maps from V ∩W to T1. As usual, we fix coordinates x1, . . . , xn on T = (Gn

m)an. The functions
x1, . . . , xn are defined on the trivialization V × T of E by pull-back, but they do not extend
to E. However, the functions |x1|, . . . , |xn| are well-defined on E independently of the choice of
the formal affinoid atlas T. Using p(xj) = |xj |(p), we get a well-defined continuous surjective map

val : E −→ Rn, p 7→ (−log p(x1), . . . ,−log p(xn)).

We will see at the end of this section that this map has similar properties as in tropical algebraic
geometry, where one considers the special case T = E and where no abelian variety is behind the
construction. (In tropical algebraic geometry, this map is called the tropicalization map and it is
also denoted by val to emphasize that it is obtained on rational points by applying the valuation
to the coordinates.) Note that val maps the discrete subgroup M of Aan isomorphically onto a
complete lattice Λ in Rn [BL91, Theorem 1.2] and hence val induces a continuous surjective map

val :Aan→ Rn/Λ.

We will construct in Example 7.2 a natural homeomorphism ι of Rn/Λ onto a compact subset
S(A) (called the skeleton) of Aan. By [Ber90, § 6.5], val ◦ ι gives a proper deformation retraction
of A onto S(A).
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If χ is an element of the character group Ť of T , then the units χ−1(gVW ) are transition
functions of a formal line bundle Oχ on B. Obviously, sV induces a trivialization sV+b(x) =
sV (x− b) + a of A1 for all a ∈A1 with q1(a) = b and x ∈ V + b. Hence, Oχ is a translation-
invariant line bundle proving that Oχ ∈ Pic◦(B) and the same argument shows that the special
fibre Õχ ∈ Pic◦(B̃). The translation invariance of Oχ can also be seen from the fact that Oχ is
given by the formal group scheme extension of B by the formal multiplicative group obtained
from the push-forward of the Raynaud extension by the character χ. We have the description

E = Spec
(⊕
χ∈Ť

Oχ

)
of the Raynaud extension, which is easily obtained by using the Laurent series development on
the trivialization V × T . Note that q∗Oχ is trivial on E with canonical nowhere vanishing section
eχ given by the function χ on the trivialization V × T of E. Additional information for this and
the next paragraph can also be found in the book by Fresnel and van der Put [FvdP04, ch. 6].

4.3 Next, we describe a line bundle L on A using the uniformization E. By Aan = E/M , we see
that p∗(Lan) is equipped with an M -action α such that Lan may be recovered from p∗(Lan) by
passing to the quotient with respect to α. There is a formal line bundle H on B with generic
fibre denoted by H such that q∗(H) is isomorphic to p∗(Lan) (see [BL91, Proposition 4.4]). We
fix such an isomorphism to get the identification q∗(H) = p∗(Lan). Then q∗(H ) is a formal K◦-
model of p∗(Lan) and, as in Example 3.3, we get a formal metric q∗‖ ‖H on p∗(Lan). There is a
cocycle Z of H1(M, (R×)E) such that

(q∗‖αγ(w)‖H )γ·x = Zγ(x)−1 · (q∗‖w‖H )x

for all γ ∈M , x ∈ E and w ∈ (p∗Lan)x. By the description of the action α given in [BL91,
Proposition 4.9], it is easy to deduce that Zγ(x) depends only on val(x). For λ ∈ Λ, we get
a unique function zλ : Rn→ R with

zλ(val(x)) =−log(Zγ(x)) (γ ∈M, x ∈ E, λ= val(γ)).

Moreover, the same consideration shows that

zλ(u) = zλ(0) + b(u, λ) (u ∈ Rn, λ ∈ Λ)

for a symmetric bilinear form b : Λ× Λ→ Z. By [BL91, Theorem 6.13], L is ample if and only
if H is ample on B and b is positive definite on Λ. We note also that the bilinear form b is
trivial if L ∈ Pic◦(A) (use [BL91, Corollary 4.11]).

4.4 We now fix the notation used from convex geometry (see [Gub07a, § 6.1 and Appendix A]
for more details). A polytope ∆ of Rn is called Γ-rational if it may be given as an intersection of
half-spaces of the form {u ∈ Rn |m · u > c} for suitable m ∈ Zn and c ∈ Γ. If Γ = Q, then such
a polytope is called rational. The relative interior of ∆ is denoted by relint(∆). A closed face of
∆ is either the polytope ∆ itself or is equal to H ∩∆, where H is the boundary of a half-space
of Rn containing ∆. An open face of ∆ is the relative interior of a closed face.

A polytopal decomposition of Ω⊂ Rn is a locally finite family C of polytopes contained in Ω
which includes all faces, which is face to face and which covers Ω. A subdivision D of C is a
polytopal decomposition of Ω such that every ∆ ∈ C has a polytopal decomposition in D .
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We use the quotient map Rn→ Rn/Λ, u 7→ u to translate the above notions. A polytope ∆ in
Rn/Λ is given by a polytope ∆ in Rn which maps bijectively onto ∆. A polytopal decomposition C
of Rn/Λ is a finite family of polytopes in Rn/Λ induced by a Λ-periodic polytopal decomposition
C of Rn.

We define convex functions as in analysis (and not as in the theory of toric varieties). A convex
function f : Rn→ R is called strongly polyhedral with respect to the polytopal decomposition C
of Rn if the n-dimensional polytopes in C are the maximal subsets of Rn, where f is affine.

4.5 A Γ-rational polytope ∆ induces a polytopal domain U∆ := val−1(∆) of the torus T with
affinoid algebra

K〈U∆〉 :=
{ ∑

m∈Zn
amx

m1
1 · · · xmnn

∣∣∣∣ lim
|m|→∞

v(am) + m · u =∞∀u ∈∆
}

(see [Gub07a, Proposition 4.1]). We need the following generalization.

Lemma 4.6. Let V be an affinoid variety with affinoid algebra O(V ). Then every h ∈ O(V × U∆)
has a Laurent series development

h=
∑

m∈Zn
amx

m1
1 · · · xmnn (5)

for uniquely determined am ∈ O(V ) and the supremum semi-norm is given by

|h|sup = sup
u∈∆,m∈Zn

|am|supe
−m·u. (6)

The supremum in (6) is a maximum achieved in a vertex u of ∆. If V is connected, then h is
a unit in O(V × U∆) if and only if there is m0 ∈ Zn such that |am0(y)xm0 |> |am(y)xm| for all
x ∈ U∆, y ∈ V and m 6= m0.

Conversely, a Laurent series as in (5) is in O(V × U∆) if and only if −log‖am‖+ m · u tends
to ∞ for |m| →∞, where ‖ ‖ is any Banach norm on the affinoid algebra O(V ).

Proof. The description of O(V × U∆) as the set of Laurent series (5) is a direct generalization
of [Gub07a, Proposition 4.1]. The proof follows the same arguments and will be omitted. It
remains to prove the characterization of the units.

If h ∈ O(V ) has such a dominant term am0(y)xm0 , then am0 has no zeros on V and hence
Hilbert’s Nullstellensatz for affinoid algebras [BGR84, Proposition 7.1.3/1] shows that am0 ∈
O(V )×. We may assume that m0 = 0 and a0 = 1. Then we have h= 1− h1 for h1 ∈ O(V × U∆)
with |h1|sup < 1 and hence

h−1 =
∞∑
m=0

hm1 ∈ O(V × U∆).

If h ∈ O(V × U∆) has no such dominant term, then there are x ∈ U∆, y ∈ V and m0 6= m1 ∈ Zn
with

|am0(y)xm0 |= |am1(y)xm1 |= |h|sup.

Let u := val(x) and letW be the affinoid subdomain of V × U∆ given by val−1(u). It is isomorphic
to V × T1 for the affinoid torus T1 = {|x1|= · · ·= |xn|= 1} in T . Since the restriction of h to
W has no dominant term as well, we get h|W 6∈ O(W )× [BGR84, Lemma 9.7.1/1] and hence
h 6∈ O(V × U∆)×. 2

694

https://doi.org/10.1112/S0010437X09004679 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004679


Non-archimedean canonical measures on abelian varieties

4.7 Next, we define a formal K◦-model A of A associated to a Γ-rational polytopal decomposi-
tion C of Rn/Λ. In the algebraic framework, this is a construction of Mumford [Mum72] which
is useful for compactifying moduli spaces of abelian varieties (see [FC89]). We denote by C the
Γ-rational Λ-periodic polytopal decomposition of Rn which induces C .

We choose a formal affinoid atlas T as in 4.2. For V ∈ T with trivialization q−1
1 (V )∼= V × T1

and ∆ ∈ C , we define the affinoid subdomain

UV,∆ := q−1(V ) ∩ val−1(∆)∼= V × U∆ (7)

of E, where the term on the right is in the trivialization q−1(V )∼= V × T . The sets UV,∆ form a
formal analytic atlas on E inducing a formal analytic variety E f−an with corresponding formal
K◦-model E of E. We note that E has a formal affine open covering by the sets UV,∆ := U f−sch

V,∆ .
We may assume that T is closed under translation with elements of q(M). We may form the

quotient of E f−an by M , leading to a formal analytic structure on Aan. The associated formal
K◦-model A of A (see 2.6) is called the Mumford model associated to C . It has a covering by
formal affine open subsets U[V,∆] obtained by gluing UV+q(γ),∆+val(γ) for all γ ∈M . Obviously,
A is independent of the choice of T. Note that we have canonical morphisms q : E →B and
p : E →A extending the corresponding maps on generic fibres.

Recall that the strata of a variety were introduced in § 1.2. The next result describes the
strata of the special fibre of a Mumford model.

Proposition 4.8. Let A be the Mumford model of A associated to the Γ-rational polytopal
decomposition C of Rn/Λ. Let E be the formal K◦-model of E associated to the polytopal de-
composition C of Rn which was used in 4.7 to construct A .

(a) The formal torus T1 = Spf(K◦〈x±1
1 , . . . , x±1

n 〉) acts canonically on E inducing a (Gn
m)K̃-

action on the special fibre Ẽ .

(b) There is a bijective order reversing correspondence between strata Z of Ẽ and open faces
τ of C . It is given by

τ = val(π−1(Z)), Z = π(val−1(τ)),

where π : E→ Ẽ is the reduction map. We have dim(Z) + dim(τ) = dim(A).

(c) There is a bijective order reversing correspondence between strata W of Ã and open faces
τ of C . It is given by

τ = val(π−1(W )), W = π(val−1(τ)),

where π :A→ Ã is the reduction map. We have dim(W ) + dim(τ) = dim(A).

(d) Every irreducible component Y ′ of Ẽ is mapped isomorphically onto an irreducible comp-
onent Y of Ã . By (c), we get a bijective correspondence between irreducible components
of Ã and vertices of C . Moreover, q̃ : Y ′→ B̃ is a fibre bundle whose fibre is a (Gn

m)K̃-toric
variety.

Proof. By construction, Tf−an
1 acts on E f−an and (a) follows. To prove (b), we note that strata are

compatible with localization and hence we may consider a formal affinoid chart UV,∆ ∼= V × U∆

as in (7). By [Gub07a, Proposition 4.4], it follows that the strata of Ũ∆ are the same as the
(Gn

m)K̃-orbits and they correspond to the open faces of ∆. The strata of ŨV,∆ are the preimages
of the strata of Ũ∆, leading to the desired correspondence. The other claims in (b) follow also
from the corresponding statements for U∆ given in [Gub07a, Proposition 4.4].
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By (b) and the construction of A , p̃ maps a stratum of Ẽ isomorphically onto a stratum of
Ã and hence (c) follows easily from (b). To prove (d), let u be the vertex of C corresponding
to the irreducible component Y ′ by (b). Let ∆ ∈ C with vertex u. In the trivialization (7), Y ′

is given by Ṽ × Y∆,u, where Y∆,u is the affine toric variety given by the local cone of ∆ in u
(see [Gub07a, Proposition 4.4(d)]). If ∆ ranges over C , we see that Y ′ has over V the form
V × Yu, where Yu is the (Gn

m)K̃-toric variety given by the fan of local cones of the polytopes
∆ ∈ C in the vertex u. This can be done for every V ∈ T to cover Y ′. We note that Y ′ is the
union of the strata corresponding to the open faces τ of C with vertex u. Since Y ′ is locally
isomorphic to Y and no gluing arises with respect to the M -action, we easily deduce (d). 2

Remark 4.9. Let ∆ ∈ C with relative interior τ . We denote by L∆ the linear subspace of
Rn generated by ∆− u, u ∈∆. Then N∆ := L∆ ∩ Zn is a complete lattice in L∆ and we
get a subtorus H∆ of T̃ = (Gn

m)K̃ with H∆(K̃) =N∆ ⊗Z K̃×. It follows from the above proof
and [Gub07a, Remark 4.8] that the stratum of Ẽ associated to τ is a T̃ /H∆-torsor over B̃ with
respect to q̃.

4.10 Next, we describe K◦-models of the line bundle L on A. They should be defined on a given
Mumford model A of A associated to the Γ-rational polytopal decomposition C of Rn/Λ. As
in 4.3, we choose a formal line bundle H on B with q∗(H) = p∗(Lan) on the uniformization E
of A such that Lan = q∗(H)/M on Aan = E/M and which leads to a cocycle zλ(u) with respect
to λ ∈ Λ. We fix a formal affine atlas of B which trivializes the line bundle H and which induces
a formal affinoid trivialization T for q1 :A1→B.

Proposition 4.11. There is a bijective correspondence between isomorphism classes of formal
K◦-models L of L on A which are trivial over the formal open subsets U[V,∆], where ∆ ∈ C , V ∈
T, and continuous real functions f on Rn satisfying the following two conditions.

(a) For ∆ ∈ C , there are m∆ ∈ Zn and c∆ ∈ Γ with f(u) = m∆ · u + c∆ on ∆.

(b) f(u + λ) = f(u) + zλ(u) (λ ∈ Λ, u ∈ Rn).

Let ‖ ‖L be the formal metric of L associated to L (see Example 3.3). Then the corresponding
fL : Rn→ R is uniquely determined by

fL ◦ val =−log ◦ (p∗‖ ‖L /q
∗‖ ‖H ), (8)

where the quotient of the metrics on q∗(H) = p∗(Lan) is evaluated at any non-zero local section.

Proof. Let L be a formal K◦-model of L on A which is trivial on every U[V,∆]. Using
the identification q∗(H) = p∗(Lan), we may view p∗‖ ‖L /q∗‖ ‖H as a metric on OE . The
corresponding real function is obtained by evaluating this metric at the constant section 1.
Since formal metrics are continuous, the right-hand side of (8) is a continuous function on E.

Our first goal is to show that this function descends to Rn, i.e. there is fL : Rn→ R with (8).
We choose a connected V ∈ T and ∆ ∈ C . By assumption, the formal affine open subset V with
generic fibre V trivializes the formal line bundle H , i.e. there is a nowhere-vanishing section
sV ∈ Γ(V ,H ). We may consider sV as a section of H|V with ‖sV ‖H = 1 on V . By assumption,
L is trivial on U[V,∆] and hence there is a nowhere-vanishing section tV ∈ Γ(V, L) with ‖tV ‖L = 1
on U[V,∆]. We apply Lemma 4.6 to the unit h := q∗(sV )/p∗(tV ) on UV,∆ ∼= V × U∆; hence, there
are m∆ ∈ Zn and aV,∆ ∈ O(V )× with

p∗‖ ‖L /q
∗‖ ‖H = |h|= |aV,∆xm∆ | (9)
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on UV,∆. A priori, m∆ depends also on V but, since the functions |xi| are well defined on E, it
follows easily from (9) that we may select m∆ independently from V ∈ T. We conclude that
|aV,∆|= |aW,∆| on V ∩W for every V, W ∈ T. If we vary V ∈ T keeping ∆ fixed, we get a
formal K◦-model G of OB on B, given by trivializations aV,∆ ∈ O(V )×. Since the special fibre
B̃ is smooth, the formal metric ‖ ‖G on OB induces a constant function ‖1‖G (see [Gub03,
Proposition 7.6]). This means that |aV,∆| is constant on V and hence there is a∆ ∈K× with
|aV,∆|= |a∆| for all V ∈ T. For x ∈ UV,∆, we conclude that |h(x)| in (9) depends only on val(x)
and hence there is a unique function fL with (8). Moreover, we have proved that (a) holds with
c∆ := v(a∆). Since C is a polytopal complex, it is clear that continuity of fL follows from (a).

Finally, we prove (b) for fL . Let x ∈ E with val(x) = u and let γ ∈M with val(γ) = λ. Then
(b) follows from

fL ◦ val(γ · x) = −log((p∗‖ ‖L )γ·x/(q∗‖ ‖H )γ·x)
4.3= −log((p∗‖ ‖L )x/(ezλ(u)q∗‖ ‖H )x)
= fL (u) + zλ(u).

Conversely, let f : Rn→ R be a continuous function satisfying (a) and (b). We define a metric
‖ ‖′ on p∗(Lan) = q∗(H) by

‖ ‖′/q∗‖ ‖H = e−f◦val.

As a consequence of (b), ‖ ‖′ descends to a metric ‖ ‖f on Lan = p∗(Lan)/M . It is uniquely
characterized by the property

f ◦ val =−log(p∗‖ ‖f/q
∗‖ ‖H ). (10)

We choose m∆ ∈ Zn and c∆ ∈ Γ from (a). There is a∆ ∈K× with c∆ = v(a∆). For V ∈ T and
∆ ∈ C , the metric p∗‖ ‖f is given on UV,∆ by

p∗‖ ‖f/q
∗‖ ‖H = |a∆| · |xm∆ | (11)

as a consequence of (10). Using sV ∈ Γ(V, H) from above, we deduce that the nowhere-vanishing
section tV,∆ := (a∆xm∆)−1 · q∗(sV ) ∈ Γ(UV,∆, q∗(H)) satisfies

p∗‖tV,∆‖f = 1

on UV,∆. We may view (tV,∆)V ∈T ,∆∈C as a family of frames of Lan of constant ‖ ‖f -metric 1
and hence ‖ ‖f is the metric on L associated to a unique formal K◦-model Lf of L [Gub98,
Proposition 7.5], as desired.

It remains to show that f 7→Lf is inverse to L 7→ fL . Here, the same argument as for
[Gub07a, Proposition 6.6] applies. 2

Proposition 4.12. Let C be a Γ-rational polytopal decomposition of Rn/Λ with associated
Mumford model A of A over K◦ obtained from the formal K◦-model E of the Raynaud
extension E as in 4.7. We assume that there is a K◦-model L of L on A as in Proposition 4.11
corresponding to the affine function fL . Let p : E →A be the quotient map. Then (p∗L )˜ is
relatively ample with respect to the canonical reduction q̃ : Ẽ → B̃ if and only if fL is a strongly
polyhedral convex function with respect to C (see 4.4).

Proof. Let u be a vertex of C . By Proposition 4.8, we get a corresponding irreducible component
Y ′u of Ẽ . Moreover, we have seen that Y ′u is a fibre bundle over B̃ which is trivial over Ṽ = Ṽ for
every V ∈ T with associated formal scheme V over K◦. The fibre Zu of the bundle is the (Gn

m)K̃-
toric variety associated to the local cones of the polytopes ∆ ∈ C with vertex u. We claim that
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the restriction of (p∗L )˜ to the trivialization Ṽ × Zu is the pull-back of a line bundle on Zu.
Indeed, the toric variety Zu is given by pasting the family

(U∆) :̃= Spec(K̃[x̃S∆ ]),

where ∆ is ranging over the polytopes of C with vertex u and

x̃S∆ := {x̃m |m ∈ Zn, u′ ·m > 0 ∀u′ ∈∆− u}.

For such a ∆, we use the presentation fL (u′) = m∆ · u′ + c∆ from Proposition 4.11(a). If we
change the identification p∗(Lan) = q∗(H), then ‖ ‖L is replaced by a positive multiple and hence
we may assume that fL (u) = 0. There is a∆ ∈K× with c∆ = v(a∆). The functions ã∆x̃m∆ |(U∆)˜
define a (Gn

m)K̃-equivariant Cartier divisor D on Zu. Since H is trivial over V (see 4.10), we
deduce easily from Proposition 4.11 that p̃∗L̃ |Ṽ×Zu

is isomorphic to the pull-back of OZu(D)
with respect to the second projection.

The claim follows from the fact that D is ample if and only if fL is a strongly polyhedral
convex function in the vertex u [Ful93, § 3.4]. 2

4.13 Let X be a closed subscheme of A. Then the subset val(Xan) of Rn/Λ is called the tropical
variety associated to X.

We note the analogue to tropical algebraic geometry, where one studies the tropical variety
associated to an algebraic subvariety of Gn

m. However, the lift p−1(Xan) of X to the Raynaud
extension E is only an analytic subvariety and hence our tropical varieties are best studied in
the framework of Berkovich analytic spaces (see [Gub07a] for details about tropical analytic
geometry).

Proposition 4.14. The tropical variety val(Xan) is a finite union of Γ-rational polytopes in
Rn/Λ of dimension at most dim(X). If X is connected, then the tropical variety is also connected.

Proof. Let E be the Raynaud extension of A and let T be an atlas of trivializations of E over B
as in 4.2. We choose any Γ-rational polytope ∆ of Rn inducing a polytope ∆ of Rn/Λ and V ∈ T.
The trivialization leads to UV,∆ ∼= V × U∆. By [Ber04, Corollary 6.2.2], val(UV,∆ ∩ p−1(Xan)) is
a finite union of Γ-rational polytopes in Rn of dimension at most dim(X). Since Aan is covered
by finitely many U[V,∆], we conclude easily that val(Xan) is a finite union of Γ-rational polytopes
in Rn/Λ of dimension at most dim(X). If X is connected, then Xan is also connected [Ber90,
Theorem 3.4.8]. By continuity of val, we see that val(Xan) is also connected. 2

Theorem 4.15. Let X be a purely d-dimensional closed subscheme of A and let b be the
dimension of the abelian variety B of good reduction in the Raynaud extension (3) of A. Then
the tropical variety val(Xan) is a finite union of Γ-rational polytopes in Rn/Λ of dimension at
least d− b and at most d.

Proof. By Proposition 4.14, there are Γ-rational polytopes ∆1, . . . ,∆k ∈ Rn/Λ of dimension at
most d with val(Xan) = ∆1 ∪ · · · ∪∆k. We may assume that no polytope ∆j may be omitted in
this decomposition. We have to prove that dim(∆j) > d− b. For u ∈ val(Xan), it is enough to
show that the dimension of the polytopal set val(Xan) in a neighborhood of u is at least d− b.

We choose a lift u of u to Rn and an n-dimensional Γ-rational polytope ∆ with u ∈ relint(∆).
Using the notation of the proof of Proposition 4.14, we choose V ∈ T such that u ∈ val(XV,∆)
for XV,∆ := UV,∆ ∩ p−1(Xan). The claim follows now from the following more general result.
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Let Y be any closed analytic subvariety of UV,∆ of pure dimension d such that u ∈ val(Y ) and
let N be the dimension of val(Y ) in a neighborhood of u. Then we have N > d− b.

The proof is by induction on N and follows as in [Gub07a, Proposition 5.4]. If N = 0, then
we may assume that val(Y ) = {u} by passing to a smaller ∆. By our choice of V , we have
the trivialization UV,∆ ∼= V × U∆, where U∆ is the polytopal domain in (Gn

m)an associated to ∆.
Passing to the associated admissible formal affine K◦-schemes, we get UV,∆

∼= V ×U∆. By abuse
of notation, we will use the projection p2 also on UV,∆. Let Y be the closure of Y in UV,∆.
By [Gub07a, Proposition 4.4], the open face τ := relint(∆) induces the stratum Zτ := π(val−1(τ))
of Ũ∆ of dimension n− dim(τ) = 0, where π : U∆→ Ũ∆ is the reduction map. Now we use that
π ◦ pan

2 = p̃2 ◦ π on Y and that the reduction π on the right-hand side is a surjective map from Y
onto the special fibre Ỹ (see 2.6). We conclude from val(Y ) = {u} that p̃2 maps Ỹ to the closed
point Zτ . Since Y is of pure dimension d, the same is true for the special fibre Ỹ and hence we
get

d 6 dim(p̃−1
2 (Zτ )) 6 dim(Ṽ ) = b.

This proves the claim for N = 0.
Now we prove the case N > 0. By [Ber04, Corollary 6.2.2], val(Y ) is a finite union of Γ-

rational polytopes. We conclude that u is contained in an N -dimensional Γ-rational polytope
σ ⊂ val(Y ). Note that any point u′ ∈ σ contained in a sufficiently small neighborhood of u has also
local dimension N . By density of Y (K) ∈ Y an [Ber90, Proposition 2.1.15], we find such an u′ with
u′ = val(y) for some y ∈ Y (K). Moreover, we may assume that u′ has an n-dimensional Γ-rational
polytope ∆′ as a neighborhood such that ∆′ ∩ val(Y ) = ∆′ ∩ σ. There are α ∈K and m ∈ Zn such
that the hyperplane H = {xm = α} passes through y and such that val(Han) = {ω ·m = v(α)}
intersects val(Y ) ∩∆′ transversally. By Krull’s Hauptidealsatz, the closed analytic subvariety
Y ′ := Y ∩Han ∩ UV,∆′ of UV,∆′ has pure dimension d− 1. We deduce from

val(Y ′)⊂ val(Y ) ∩ {ω ·m = v(α)} ∩∆′,

that val(Y ′) has dimension N ′ 6N − 1 in a neighborhood of u′. By induction applied to Y ′, we
get N − 1 >N ′ > d− 1− b, proving the claim. 2

Remark 4.16. We now assume that X is an irreducible d-dimensional closed subvariety of A.
In the preprint [Gub08b] of this paper, it was claimed in Theorem 4.15 that val(Xan) is of pure
dimension. As pointed out by the referee, the argument was based on a wrong application of
Chevalley’s theorem, which does not hold in the category of analytic spaces, and so this question
remains open.

However, if A is isogeneous to B1 ×B2, where B1 (respectively B2) is an abelian variety with
good (respectively totally degenerate) reduction at v, then val(Xan) has indeed pure dimension
d− e for some e ∈ {0,min(b, d)}.

To prove this, let ϕ :A→B1 ×B2 be an isogeny. By [BL91, Theorem 1.2], ϕ lifts to an
isogeny φ : E→Ban

1 × (Gn
m)an between the associated uniformizations of the Raynaud extension.

Obviously, (Gn
m)an is also the torus part in the Raynaud extension of A and φ restricts to an

isogeny (Gn
m)an→ (Gn

m)an. On the other hand, an (analytic) endomorphism of Gn
m is given by

φ∗(xj) = xmj for some mj ∈ Zn, j = 1, . . . , n. We conclude that the linear isomorphism φaff ,
given by the matrix (m1, . . . ,mn)t, maps val(Xan) onto val(φ(X)an). Hence, we may assume
that A=B1 ×B2. Let p2 :A→B2 be the second projection. Then Y = p2(X) is an irreducible
closed subvariety of B2 of dimension d− e for some e ∈ {0,min(b, d)} with b= dim(B1). By
construction, we have val(Xan) = val(Y an) and hence the claim follows from the fact that the
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tropical variety of an irreducible d′-dimensional closed subvariety of a totally degenerate abelian
variety has pure dimension d′ (see Theorem 4.15 or [Gub07a, Theorem 6.9]). 2

5. Subdivisions of the skeleton

In this section, K denotes an algebraically closed field endowed with a non-trivial, non-
archimedean complete absolute value | |. Let v :=−log | | be the valuation with value group
Γ := v(K×), valuation ring K◦ and residue field K̃.

A smooth variety X ′ over K has not always a smooth formal K◦-model and hence we study
a strictly semi-stable K◦-model X ′. Its special fibre X̃ ′ may be viewed as a divisor with normal
crossings on X ′. The skeleton of X ′ is a metrized polytopal set of (X ′)an closely related to the
stratification of X̃ ′. We will see that the skeleton has similar properties to a tropical variety.

We will study the effect of subdivisions on the models. In particular, this is interesting if X ′

maps to an abelian variety. The most important result of this somehow technical section is at
the end, where we will compute the degree of an irreducible component of X̃ ′ in this setting
under a certain transversality assumption. In the next section, this result is used to compute
canonical measures on abelian varieties.

5.1 Let X ′ be a strictly semi-stable admissible formal scheme over K◦, i.e. X ′ is covered by
formal open subsets U ′ with an étale morphism

ψ : U ′ −→S := Spf(K◦〈x′0, . . . , x′d〉/〈x′0 · · · x′r − π〉)

for r 6 n and π ∈K× with |π|< 1. The generic fibre U ′ of U ′ is smooth and hence the generic
fibre X ′ of X ′ is a smooth analytic space. For simplicity, we assume that X ′ is connected. Then
X ′ is d dimensional, but r and π may depend on the choice of U ′.

Note that S = Spf(K◦〈x′0, . . . , x′r〉/〈x′0 · · · x′r − π〉)× Spf(K◦〈x′r+1, . . . , x
′
d〉). For i= 1, 2, we

denote the ith factor by Si and the corresponding projection by pi : S →Si. The second factor
S2 is the affine formal scheme associated to the closed unit ball of dimension d− r. The first
factor S1 is isomorphic to the affine formal scheme over K◦ associated to the polytopal domain
U∆ in Gr

m, where ∆ is the simplex {u′1 + · · ·+ u′r 6 v(π)} in Rr
+.

We will use the strata of the special fibre X̃ , which were introduced in § 1.2. We will always
normalize the formal open covering as in the following proposition. The reason will become clear
in the construction of the skeleton.

Proposition 5.2. Any formal open covering of X ′ admits a refinement {U ′} by formal open
subsets U ′ as in 5.1 and which has the following properties.

(a) Every U ′ is a formal affine open subscheme of X ′.

(b) There is a distinguished stratum S of X̃ ′ associated to U ′ such that, for any stratum T of
X̃ ′, we have S ⊂ T if and only if Ũ ′ ∩ T 6= ∅.

(c) ψ̃−1({0̃} × S̃2) is the stratum of Ũ ′ which is equal to Ũ ′ ∩ S for the distinguished stratum
S from (b).

(d) Every stratum of X̃ ′ is the distinguished stratum of a suitable U ′.

Proof. We start with the formal open covering {U ′} from 5.1. We will refine it successively to
get the claim. First, we may assume that the covering is a refinement of the given formal open
covering of X ′. Let P̃ be any point of X̃ ′ and let S be the stratum of X̃ ′ which contains P̃ .
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There is a U ′ with P̃ ∈ Ũ ′. We remove from U ′ the closure of all strata T of X̃ ′ with S ∩ T = ∅.
Note that the closure of a stratum in X̃ is a strata subset (see [Ber99, Proposition 2.1]) and
that the closures of two strata are either disjoint or one closure is contained in the other. Hence,
we get from U ′ a formal open subset which contains P̃ and which has property (b) for our S.
By passing to a formal affine open subset containing P̃ , we get also (a). If we do this for every
point P̃ , we get a formal open subcovering with properties (a), (b) and (d). So, we may assume
that the covering {U ′} satisfies (a), (b) and (d). We will show that this implies (c).

By [Ber99, Lemma 2.2], the restriction of ψ̃ to a stratum of Ũ ′ induces an étale morphism
to a stratum of S̃ and hence the preimage of a stratum of S̃ is a stratum of Ũ ′. We conclude
that ψ̃−1({0̃} × S̃2) is the union of d− r-dimensional strata Si of Ũ ′. Let S be the distinguished
stratum of X̃ ′ associated to U ′. By (b), S is contained in the closure of every Si. Since {0̃} × S̃2

is a closed stratum of S̃ , ψ̃(S ∩ Ũ ′) is contained in {0̃} × S̃2. This proves S = Si for some i.
By dimensionality reasons, we get S = Si for every i, proving (c). 2

5.3 Next, we describe the skeleton of a strictly semi-stable formal scheme X ′ over K◦. For
details, we refer the reader to [Ber99, § 4], [Ber04, § 4] and [Gub07a, 9.1].

We start with the model example S from 5.1. Replacing x′0 by π/(x′1 · · · x′r), every analytic
function f on S an has a unique representation as a convergent Laurent series of the form

f =
∑

m1,...,mr∈Z

∑
mr+1,...,md∈N

am(x′1)m1 · · · (x′d)md .

For every u in the simplex ∆ := {u ∈ Rr
+ | u′1 + · · ·+ u′r 6 v(π)}, we get an element ξu ∈S an

using the bounded multiplicative semi-norm

|f(ξu)| := max
m
|am|e−m1u1−···−mrur .

We define the skeleton of S as {ξu | u ∈∆}. It is a closed subset of S an homeomorphic to ∆.
To omit the preference of the coordinate x′0, it is better to identify the skeleton of S ′ with the
simplex {u′0 + · · ·+ u′r = v(π)} in Rr+1

+ .

Next, we consider a formal open subset U ′ of X ′ as in Proposition 5.2. Then the skeleton
S(U ′) of U ′ is defined as the preimage of the skeleton of S with respect to the morphism ψan. It
is a closed subset of the generic fibre U ′ of U ′. Using Proposition 5.2(b), one can show that ψan

induces a homeomorphism of S(U ′) onto the skeleton of S . Using the above, we may identify
S(U ′) again with the metrized simplex {u′0 + · · ·+ u′r = v(π)} in Rr+1

+ . This is independent of
ψ up to reordering the coordinates u′0, . . . , u

′
r.

Finally, the skeleton S(X ′) of X ′ is the union of all skeletons S(U ′). Berkovich has shown
that S(X ′) is a closed subset of the generic fibre X ′ which depends only on the formal model X ′,
but neither on the choice of the formal covering {U ′} nor on the choice of the étale morphisms ψ.

The skeleton S(X ′) has a canonical structure as an abstract metrized simplicial set, which
reflects the incidence relations between the strata of X̃ ′: for every stratum S of codimension r,
there is a canonical simplex ∆S in S(X ′) defined in the following way. We choose a formal affine
open subset U ′ as in Proposition 5.2 such that S is the distinguished stratum associated to U ′.
Then we define ∆S as the skeleton of U ′. It is easy to see that ∆S does not depend on the
choice of U ′ and hence we may identify ∆S with the simplex {u′0 + · · ·+ u′r = v(π)} in Rr+1

+ .
The canonical simplices have the properties:
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(a) the canonical simplices (∆S)S∈str(X̃ ′) cover S(X ′);

(b) for S ∈ str(X̃ ′), the map T 7→∆T gives a bijective order reversing correspondence between
T ∈ str(X̃ ′) with S ⊂ T and closed faces of ∆S ;

(c) for R, S ∈ str(X̃ ′), ∆R ∩∆S is the union of all ∆T with T ∈ str(X̃ ′) and T ⊃R ∪ S.

There is a continuous map Val :X ′→ S(X ′) which restricts to the identity on S(X ′). It is
enough to define it for p ∈ U ′, where U ′ is the generic fibre of a formal affine open subset U ′ as
above. Using the identification ∆S = {u′0 + · · ·+ u′r = v(π)}, we set

Val(p) := (−log ◦ p(ψ∗(x′0)), . . . ,−log ◦ p(ψ∗(x′r))) ∈∆S .

By [Ber99, Theorem 5.2], the map Val gives a proper strong deformation retraction of X ′ to the
skeleton S(X ′).

5.4 It would be tempting to call the family of canonical simplices a polytopal decomposition
of S(X ′). However, we note that the family is not necessarily face to face; only the weaker
property 5.3(c) holds instead.

In the following, we now consider a Γ-rational polytopal subdivision D of S(X ′). This means
that D is a family of Γ-rational polytopes, each contained in a canonical simplex, such that
D ∩∆S := {∆ ∈D |∆⊂∆S} is a polytopal decomposition of ∆S for every S ∈ str(X̃ ′).

Proposition 5.5. There is a coarsest formal analytic structure X′′ on X ′ which refines (X ′)f−an

in such a way that Val−1(∆) is a formal open subset for every ∆ ∈D .

Proof. Let S ∈ str(X̃ ′) and let U ′ be the generic fibre of a set U ′ as in Proposition 5.2. We note
that such sets U ′, for varying S, form a formal affinoid atlas of (X ′)f−an. To prove the claim, it
is enough to show that the sets

(U ′ ∩Val−1(∆))∆∈D∩∆S
(12)

define a formal affinoid atlas on U ′. The polytope ∆ ∈D ∩∆S is given by finitely many
inequalities of the form m · u′ + v(λ) > 0 for some m ∈ Zr+1 and λ ∈K×. In terms of the
semi-stable coordinates x′0, . . . , x

′
r of U ′, the subset U ′ ∩Val−1(∆) is given by finitely many

inequalities of the form |λψ∗(x′)m| 6 1 and hence it is an affinoid subdomain of U ′. This
description yields easily that (12) is a formal affinoid atlas of U ′, proving the claim. 2

Remark 5.6. Let U ′ be a formal open subset of X ′ as in Proposition 5.2 with étale morphism
ψ : U ′→S . The generic fibre U ′ is a formal open subset of the formal analytic variety X′′ from
Proposition 5.5 and we write suggestively U ′ ∩ X′′ for the formal analytic structure on U ′ induced
by X′′.

Let S be the distinguished stratum of X̃ ′ associated to U ′. The first factor S1 from 5.1 is the
formal scheme over K◦ associated to the polytopal domain val−1(∆S) in {x′ ∈Gr+1

m | x′0 · · · x′r =
v(π)}.

The polytopal decomposition D ∩∆S of ∆S leads to a formal analytic refinement of S f−an
1

inducing an admissible formal scheme S ′
1 over K◦ and a canonical morphism ι1 : S ′

1→S1

extending the identity from the generic fibre. By base change, we get a morphism ι : S ′→S
with the same property. Note that S ′ = S ′

1 ×S2 has reduced special fibre (see 2.6).
Since the base change ψ′ : U ′′→S ′ of ψ with respect to ι is étale, U ′′ has also reduced

special fibre (see [GD67, 17.5.7]). By 2.6, U ′′ is an admissible formal scheme over K◦ associated
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to a formal analytic variety. By the proof of Proposition 5.5, the latter is U ′ ∩ X′′ and hence
U ′′ = (U ′ ∩ X′′)f−sch.

In the following, X ′′ denotes the admissible formal K◦-scheme associated to X′′ and hence
we may identify the special fibre X̃

′′
with the reduction X̃ ′′ (see 2.6). Since D is a polytopal

subdivision of the skeleton, the identity is a formal analytic morphism X′′→ (X ′)f−an and hence
we get a unique morphism ι′ : X ′′→X ′ extending the identity on the generic fibre.

Recall that the order on the strata is given by inclusion of closures. Similarly, we define an
order on the open faces of D .

Proposition 5.7. Let X′′ be the formal analytic variety associated to D as described in
Proposition 5.5. Then there is a bijective correspondence between open faces τ of D and strata
R of X̃

′′
, given by

R= π(Val−1(τ)), τ = Val(π−1(Y )), (13)

where π :X ′→ X̃
′′

is the reduction map and Y is any non-empty subset of R.

Proof. Let τ be an open face of D . We have to prove that R := π(Val−1(τ)) is a stratum of X̃
′′
.

There is a unique S ∈ str(X̃ ′) such that τ is contained in relint(∆S). We choose a formal affine
open subset U ′ as in Proposition 5.2 such that S is the distinguished stratum associated to U ′.
Note that strata are compatible with localization and hence we may assume that X ′ = U ′. By
Remark 5.6, we have a cartesian diagram of admissible formal schemes over K◦:

X ′′

ι′

��

ψ′ // S ′

ι

��

p′1 // S ′
1

ι1

��
X ′ ψ // S

p1 // S1

with ψ and ψ′ étale. Let ψ1 := p1 ◦ ψ and ψ′1 := p′1 ◦ ψ′.
The idea of the proof is to use ψ1 to reduce the claim to the corresponding statement for

the polytopal domain S1 in Gr
m. We describe this result here in terms of the torus Gr+1

m and in
terms of the valuation map

val : (Gr+1
m )an→ Rr+1, p 7→ (−log ◦ p(x′0), . . . ,−log ◦ p(x′r))

to omit the preference of the first coordinate. By [Gub07a, Propositions 4.4 and 4.7], there is a
bijective correspondence between open faces σ of D (which is a polytopal decomposition of ∆S =
{u ∈ Rr+1 | u′0 + · · ·+ u′r = v(π)} by the assumption U ′ = X ′) and strata T ′1 of S̃ ′

1, given by

T ′1 = π(val−1(σ) ∩S an
1 ), σ = val(π−1(T ′1)), (14)

where π : S an
1 = (S ′

1)an→ S̃ ′
1 denotes the reduction map. In fact, one can replace T ′1 in the

second formula of (14) by any non-empty subset of T ′1. To see this, note that the formal affinoid
subtorus D = {|x0|= · · ·= |xr|= 1, x0 · · · xr = 1} of Gr+1

m acts on S an
1 and this extends to an

action of the formal torus on S ′
1. The strata of S ′

1 are the same as the torus orbits. We conclude
that D acts transitively on the set {π−1(P̃ ) | P̃ ∈ T ′1(K̃)}. Since the map val is invariant under
the D-action, we conclude that val(π−1(T ′1)) = val(π−1(P̃ )) for any K̃-rational point P̃ of T ′1.
Note that we may use base extension to make any non-closed point rational; therefore, since the
map val is invariant under base extension, we conclude that val(π−1(T ′1)) = val(π−1(P̃ )) holds
for any (i.e. not necessarily closed) point P̃ of T ′1. This proves the second formula in (14) with
T ′1 replaced by any non-empty subset.
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Now let T ′1 be the stratum of S̃ ′
1 corresponding to the given open face τ . Obviously,

T ′ := (p̃′1)−1(T ′1) = T ′1 × S̃2 is a stratum of S̃ ′ = S̃ ′
1 × S̃2. We would like to prove that the

preimage of T ′ with respect to ψ̃′ is equal to R. Using (14), we first note that

(ψ̃′)−1(T ′) = (ψ̃′1)−1(π(val−1(τ) ∩S an
1 )). (15)

Next, we prove the following formula:

(ψ̃′1)−1(π(val−1(τ) ∩S an
1 )) = π((ψan

1 )−1(val−1(τ))). (16)

The inclusion ‘⊃’ follows immediately from π ◦ ψan
1 = ψ̃′1 ◦ π. Here, we have used that ψan

1 =
(ψ′1)an. To prove the reverse inclusion, let us choose a point x̃′ ∈ (ψ̃′1)−1(π(val−1(τ) ∩S an

1 )).
The reduction map is surjective; hence, there is x′ ∈X ′ with π(x′) = x̃′. By assumption, there is
z ∈ val−1(τ) ∩S an

1 with

π(z) = ψ̃′1(x̃′) = ψ̃′1(π(x′)) = π ◦ ψan
1 (x′).

By (14), we get π ◦ ψan
1 (x′) ∈ T ′1. An application of (14) shows that val(ψan

1 (x′)) ∈ τ . We conclude
that x̃′ = π(x′) ∈ π((ψan

1 )−1(val−1(τ))), proving (16).
Using (15) and (16), we get finally the desired relation between R and T ′:

(ψ̃′)−1(T ′) = π((ψan
1 )−1(val−1(τ))) = π(Val−1(τ)) =R. (17)

By [Ber99, Lemma 2.2], the preimage of the stratum T ′ with respect to the étale morphism ψ̃′

is the union of strata of the same dimension. This argument was already used in the proof of
Proposition 5.2. To prove that R is a stratum, it is enough to show that R is irreducible. Note
that ι̃1(T ′1) = {0̃} in S̃1 and hence

(ψ̃′)−1(T ′) = T ′ ×S̃ X̃ ′ = T ′ ×{0̃}×S̃2
ψ̃−1({0̃} × S̃2)∼= Gr−t

m × S, (18)

where t := dim(τ). Here, we have used that T ′1 is an (r − t)-dimensional torus orbit and that
S = ψ̃−1({0̃} × S̃2) (see Proposition 5.2 and [Gub07a, Proposition 4.4]). We conclude that
R= (ψ̃′)−1(T ′) is irreducible, proving that R ∈ str(X̃

′′
).

Since the open faces of D form a covering of the skeleton S(X ′), we conclude that every
R ∈ str(X̃

′′
) has the form R= π(Val−1(τ)) for an open face τ of D ′.

It remains to show that τ may be reconstructed from R by the second formula in (13). By
the same argument as used in the paragraph after (14), it is enough to prove this for Y = {ỹ}
for any K̃-rational point ỹ of R. Since ψ′ is étale, the formal fibre X ′+(ỹ) := π−1(ỹ) is isomorphic
to the formal fibre over z̃ := ψ̃′(ỹ) in S ′ (see [Gub07a, Proposition 2.9]). For z̃1 := p̃1(z̃), we get
the following isomorphism of formal fibres:

X ′+(ỹ)∼= (S ′
1)an

+ (z̃1)× (S2)an
+ (0̃). (19)

The (d− r)-dimensional ball S an
2 does not contribute to Val. Using the analogue of the claim

for the polytopal domain S an
1 deduced after (14), we get

Val(X ′+(ỹ)) = val((S ′
1)an

+ (z̃1)) = val(π−1(T ′1)) = τ.

This proves the second formula in (13). 2

Remark 5.8. Let U ′ be a formal affine open subset of X ′ as in Proposition 5.2 and let
ψ : U ′→S = S1 ×S2 be the étale morphism from 5.1. Let us consider the composition
ψ1 : U ′→S1 of the first projection with ψ and let ψ′1 : U ′′→S ′

1 be the base change of ψ1

induced by the polytopal decomposition D . We have seen in the above proof that the preimage
of any stratum of S̃ ′

1 with respect to ψ̃′1 is a stratum of Ũ ′′.
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Recall that X ′′ = (X′′)f−sch and that we have a canonical morphism ι′ : X ′′→X ′ extending
the identity on the generic fibre.

Corollary 5.9. Let R ∈ str(X̃
′′
) with corresponding open face τ of D .

(a) dim(τ) = codim(R, X̃
′′
).

(b) S := ι̃′(R) ∈ str(X̃ ′).

(c) R
ι̃′→ S is a fibre bundle with fibre (Gm)dim(R)−dim(S)

K̃ .

(d) Every stratum of X̃
′′

is smooth.

(e) The closure R is the union of the strata of X̃
′′

corresponding to the open faces σ of D with
τ ⊂ σ.

(f) For open faces τ1, τ2 of D with corresponding strata R1, R2 of X̃
′′
, we have τ1 ⊂ τ2 if and

only if R1 ⊃R2.

(g) For an irreducible component Y of X̃
′′
, let ξY be the unique point of X ′ with reduction equal

to the generic point of Y . Then Y 7→ ξY is a bijection between the irreducible components
of X̃

′′
and the vertices of D .

Proof. We use the proof of Proposition 5.7. We have dim(τ) = codim(T ′1, S̃
′
1) by [Gub07a,

Proposition 4.4]. Using that R is locally equal to (ψ̃′1)−1(T ′1) and the smoothness of ψ̃′1, we
get (a). Let S ∈ str(X̃ ′) with τ ⊂ relint(∆S). By (a) and (18), we deduce (b) and (c). Since S is
smooth by Proposition 5.2(c), we get (d) from (c).

Since strata are compatible with localization, it is enough to prove (e) in case of X ′ = U ′

for a formal affine U ′ as in Proposition 5.2 such that S is the distinguished stratum of X̃ ′

associated to U ′. Since ψ̃′1 is flat, we get R= (ψ̃′1)−1(T ′1). By [Gub07a, Remark 4.8], T ′1 is the
union of all strata of S̃ ′

1 corresponding to the open faces σ of D with σ ⊃ τ . If we take preimages
of this decomposition, we get (e). Note that (f) is a consequence of (e).

By using the unique dense stratum of an irreducible component, it follows from (a) and
Proposition 5.7 that the map Y 7→Val(ξY ) is a bijection between the irreducible components
of X̃

′′
and the vertices of D . To prove (g), it remains to see that ξY ∈ S(X ′). There are

a formal affine open subset U ′ of X ′ as in Proposition 5.2 with Y ∩U ′ 6= ∅ and an étale
morphism ψ : U ′→S = S1 ×S2. By Remark 5.8, there is an irreducible component Z of
S̃ ′ such that ψ(ξY ) = ξZ . Since ψ is étale, it is enough to prove that ξZ ∈ S(S ) (see [Ber04,
Corollary 4.3.2]). Since Z = Zu × S̃2 for the irreducible component Zu of S̃1 corresponding to
the vertex u = Val(ξY ) of D (see [Gub03, Proposition 4.7]), it is easy to see that the point ξu
from 5.3 reduces to the generic point of Z and hence we get ξu = ξZ , proving the claim. 2

5.10 For the remaining part of this section, we fix the following situation: let A be an abelian
variety over K with uniformization E such that Aan = E/M as in 4.1. We recall that M is a
discrete subgroup of E(K) such that val : E→ Rn maps M isomorphically onto a complete lattice
Λ of Rn.

We assume that we have a morphism ϕ0 : X ′→A0, where X ′ is still a strictly semi-
stable scheme over K◦ and A0 is the Mumford model of A associated to a Γ-rational polytopal
decomposition C0 of Rn/Λ. Let f :X ′→A be the generic fibre of ϕ0.

Proposition 5.11. There is a unique map faff : S(X ′)→ Rn/Λ with faff ◦Val = val ◦ f on X ′.
The map faff is continuous. For every S ∈ str(X̃ ′), the restriction of faff to the canonical simplex
∆S is an affine map and there is a unique ∆ ∈ C0 with faff(relint(∆S))⊂ relint(∆).
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Proof. We recall the construction of A0 given in 4.7. Let V be a formal affine open subset of
the formal abelian scheme B which trivializes the Raynaud extension (3) of A. For the generic
fibre V of V and ∆ ∈ C0, we get a formal affinoid subdomain UV,∆ of E with associated affine
formal schemes UV,∆. With varying V and ∆, we get a formal affinoid atlas on E with associated
K◦-model E0 of E which is covered by the formal open subsets UV,∆. By passing to the quotient
by M , we get A0 = E0/M and the quotient morphism maps UV,∆ isomorphically onto the formal
open chart U[V,∆] of A0.

There is a formal open covering {U ′} of X ′ as in Proposition 5.2 such that for any U ′ of
the covering, there are V,∆ as above with U ′ ⊂ ϕ−1

0 (U[V,∆]). We denote the generic fibre of U ′

by U ′. By construction, there is a unique lift F : U ′→ UV,∆ of f . Now we use the coordinates
x1, . . . , xn of the torus T from the Raynaud extension (4) of A. They are defined on UV,∆ by
using the trivialization UV,∆ ∼= V × U∆ from 4.2 for the polytopal domain U∆ of T . Note that
F ∗(xi) is a unit of U ′. By [Gub07a, Proposition 2.11], there are ui ∈ O(U ′)×, mi ∈ Zr+1 and
λi ∈K× with

F ∗(xi) = λiuiψ
∗(x′)mi (20)

for i= 1, . . . , n, where ψ : U ′→S = S1 ×S2 is again the étale morphism and x′ = (x′0, . . . , x
′
r)

are the semi-stable coordinates from 5.1. Let S ∈ str(X̃ ′) be the distinguished stratum of
X̃ ′ associated to U ′. Then the canonical simplex ∆S may be identified with the simplex
{u′0 + · · ·+ u′r = v(π)} in Rr+1

+ and we define faff : ∆S → Rn by

faff(u′0, . . . , u
′
r) := (mi · u′ + v(λi))i=1,...,n. (21)

We note that this definition depends only on |λi|, |x′i| and mi; hence, it is independent of
the trivialization of UV,∆. If we change V and ∆, then the new lift is obtained from F by an
M -translation. We deduce easily that the locally defined maps faff induce a well-defined map
faff : S(X ′)→ Rn/Λ. All the claimed properties follow from the construction and uniqueness is
clear from surjectivity of Val. 2

Remark 5.12. More generally, Berkovich [Ber04, Corollary 6.1.2] has shown that a morphism
between strongly non-degenerate pluristable formal schemes over K◦ induces a piecewise linear
map between the skeletons. Now Proposition 5.11 describes precisely the domain of affineness
and we will see in Remark 5.19 that this holds also if X ′ is a strongly non-degenerate strictly
pluristable formal scheme over K◦.

By Propositions 4.8 and 5.7, we conclude easily that every stratum of X̃ ′ is mapped into a
stratum of Ã0. This will be proved in a more general context in Lemma 5.15. The preserving of
strata is a key fact which will allow us to describe canonical measures on X = f(X ′) in terms
of the skeleton of X ′.

Proposition 5.13. Let C be a Γ-rational polytopal subdivision of C0 with associated Mumford
model A of A. Then (X ′ ×A0 A )f−an is the formal analytic variety X′′ from Proposition 5.5
associated to the Γ-rational subdivision D of S(X ′) given by

D := {∆S ∩ f
−1
aff (σ) | S ∈ str(X̃ ′), σ ∈ C }.

Proof. We will use the notation from the proof of Proposition 5.11. Let σ ∈ C be contained in
∆ ∈ C0, let V be the generic fibre of a formal affine open subset V of B and let U ′ be a formal
affine open subset of X ′ as in Proposition 5.2 with ϕ0(U ′)⊂U[V,∆]. Then the sets

(U ′ ×U[V,∆]
U[V,σ])

an = U ′ ×Aan U[V,σ]
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form a formal affinoid atlas of (X ′ ×A0 A )f−an. We have U[V,σ] = U[V,∆] ∩ val−1(σ) and hence
Proposition 5.11 yields

U ′ ×Aan U[V,σ] = U ′ ∩ f−1(val−1(σ)) = U ′ ∩Val−1(f−1
aff (σ)).

Let S be the distinguished stratum of X̃ ′ associated to U ′. Therefore, we have Val(U ′) = ∆S

and we deduce that

(U ′ ×U[V,∆]
U[V,σ])

an = U ′ ∩Val−1(σ′)

for the polytope σ′ := f
−1
aff (σ) ∩∆S ∈D . These sets form the formal affinoid atlas (12) for X′′,

proving X′′ = (X ′ ×A0 A )f−an. 2

Proposition 5.14. We keep the above assumptions and notation. Then X′′ is the coarsest
formal analytic variety on X ′ such that f :X ′→Aan induces a formal analytic morphism
φ : X′′→A f−an. If R is the stratum of X̃

′′
corresponding to the open face τ of D , then φ̃(R) is

contained in the stratum of Ã corresponding to the unique open face σ of C with faff(τ)⊂ σ.

Proof. The first claim is clear by construction. By definition of D , there is an open face σ of C
with faff(τ)⊂ σ. If π denotes the reduction map, then we get

φ̃(R) = φ̃(π(Val−1(τ))) = π(f(Val−1(τ)))
5.11
⊂ π(val−1(σ)).

By Proposition 4.8, we deduce that φ̃(R) is contained in the stratum of Ã corresponding to σ. 2

Again, let X ′′ be the admissible formal K◦-scheme associated to the formal analytic variety
X′′ from Propositions 5.13 and 5.5. The following commutative diagram gives an overview
of the occurring canonical morphisms of admissible formal schemes, where E0 (respectively E ) is
the K◦-model of the uniformization E associated to C0 (respectively C ) as in 4.7 and where the
vertical maps extend the identity on the generic fibre.

X ′′

ι′

��

ϕ // A

ι0
��

E
poo

ι

��
X ′ ϕ0 // A0 E0

p0oo

(22)

Lemma 5.15. Let R ∈ str(X̃ ′′). Then S := ι̃′(R) is a stratum of X̃ ′. The restricted morphism
ϕ̃0 : S→ Ã0 = Ẽ0/M has a lift Φ̃0 : S→ Ẽ0, unique up to the M -action on Ẽ0. Moreover, there is
a unique lift Φ̃ :R→ Ẽ of ϕ̃ :R→ Ã = Ẽ /M with Φ̃0 ◦ ι̃′ = ι̃ ◦ Φ̃ on R.

Proof. The first claim was proved in Corollary 5.9. The proof of the remaining claims follows
standard arguments from the theory of coverings (applied to the quotient maps p̃0 : Ẽ0→ Ã0 =
Ẽ0/M and p̃ : Ẽ → Ã = Ẽ /M).

Let Y be an irreducible component of Ã0 with ϕ̃0(S)⊂ Y . By Proposition 4.8, Y corresponds
to a vertex u of C0 and p̃−1

0 (Y ) is the disjoint union of the irreducible components Yu of
Ẽ0 associated to the vertices u of C0 with residue class u ∈ Rn/Λ. Moreover, Yu is mapped
isomorphically onto Y by p̃0. Using composition with the inverse Y → Yu of this isomorphism,
we get the desired lift Φ̃0 of the restriction of ϕ̃0 to S. Uniqueness up to the M -action on Ẽ0 is
obvious. Similarly, we get a lift Φ̃ of the restriction of ϕ̃ to R by working with C instead of C0.
The lift Φ̃ is also unique up to the M -action on Ẽ .

It remains to prove that Φ̃0 determines Φ̃ uniquely by the condition Φ̃0 ◦ ι̃′ = ι̃ ◦ Φ̃. Let us
choose x̃′ ∈R and let x̃ := ι̃′(x̃′). Note that the lift Φ̃0 is uniquely determined by choosing an
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element ỹ ∈ p̃−1
0 (ϕ̃0(x̃)) if we require that Φ̃0(x̃) = ỹ. Similarly, Φ̃ is determined by Φ̃(x̃′) = ỹ′

for some ỹ′ ∈ p̃−1(ϕ̃(x̃)). Since M acts faithfully and transitively on p̃−1
0 (ϕ̃0(x̃)) (respectively on

p̃−1(ϕ̃(x̃))), there is a unique ỹ′ with ι̃(ỹ′) = ỹ. Note that p̃0 and p̃ are local isomorphisms. Since
ϕ̃0 ◦ ι̃′ = ι̃0 ◦ ϕ̃, this lifts to the identity Φ̃0 ◦ ι̃′ = ι̃ ◦ Φ̃ on R for a unique Φ̃. 2

Remark 5.16. We may use the same techniques to construct a lift of the morphism f :X ′→
Aan = E/M to the uniformization E of A. In general, such a lift does not exist globally on X ′.
By [BL91, Theorem 1.2], such a lift exists if H1(X ′, Z) = 0. Let us consider the formal open
subset US := Val−1(∆S) of X ′ for the canonical simplex ∆S associated to a stratum S of X̃ ′.
Then US is the generic fibre of a formal open subset US of X ′. Obviously, US is strictly semi-
stable with skeleton ∆S . Since the skeleton is a proper deformation retraction of the generic
fibre, we get H1(US , Z) = 0 and hence we may apply the above results to get the desired lift
F : US → E of f |US .

Note that it is not necessary to appeal to such sophisticated results. We may just use
Proposition 5.11 to conclude that faff(∆S) is contained in a polytope ∆ ∈ C0 and hence f(US)
is contained in the formal open subset val−1(∆) of Aan. The preimage of val−1(∆) in E is
the disjoint union of the formal open subsets val−1(∆), where ∆ ranges over all polytopes of
C0 mapping (bijectively) onto ∆ with respect to the residue map Rn→ Rn/Λ. Obviously, M
acts faithfully and transitively on the set of all such val−1(∆). Since the quotient morphism
p : E→Aan = E/M maps val−1(∆) isomorphically onto val−1(∆), we get a lift F : US → E of
the restriction of f to US , unique up to the M -action. Note that this construction was partially
used in the proof of Proposition 5.11.

By Proposition 5.11, we get a unique map faff : ∆S → Rn such that faff ◦Val = val ◦ F on
US . Moreover, faff is affine on ∆S . Conversely, every lift of faff : ∆S → Rn/Λ to Rn is an affine
map faff : ∆S → Rn and there is a unique lift F : US → E of the restriction of f to US such
that faff ◦Val = val ◦ F on US . This follows from the fact that the lift of faff is unique up to
Λ = val(M)-translation.

Finally, we note that we may use such lifts F to construct the lifts Φ̃0 : S→ Ẽ0 and Φ̃ :R→ Ẽ
from Lemma 5.15. We will give the construction for Φ̃0, but everything works similarly for Φ̃. The
map f is the generic fibre of the formal morphism ϕ0 : X ′→A0 and US is a formal open subset
of X ′; hence, the lift F is the generic fibre of a formal lift ΦS : US → E0 of ϕ0. We conclude
that the reduction Φ̃S agrees with a lift Φ̃0 from Lemma 5.15 on the dense stratum S of S.
Similarly, we could argue for every other stratum T ⊂ S to describe the restriction of Φ̃0 to T
as the reduction of a formal lift of ϕ0. However, it is not always possible to describe Φ̃0 by the
reduction of a single formal lift defined on a formal open subset of X ′. The problem arises if
there are two strata T1, T2 in S such that faff(∆T1) ∪ faff(∆T2) does not map bijectively onto
faff(∆T1) ∪ faff(∆T2). In this case, the lift F will be multivalued on UT1 ∪ UT2 and the above
covering argument breaks down. This problem can be omitted if we start with a sufficiently fine
polytopal decomposition C0 of Rn/Λ and then Φ̃0 is indeed the reduction of a single formal lift.

5.17 Our goal is to compute the degree of an irreducible component Y of X̃
′′

with respect to
a line bundle L on A . This can be done in terms of convex geometry under the following
hypotheses fulfilled in our applications.

We still have our abelian variety A over K with uniformization E and the morphism
ϕ0 : X ′→A0, where A0 is the Mumford model of A associated to the Γ-rational polytopal
decomposition C0 of Rn/Λ and where X ′ is a strictly semi-stable formal scheme over K◦ with
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connected generic fibre X ′. We assume that the generic fibre f :X ′→Aan of ϕ0 is proper and
hence the special fibre ϕ̃0 is also proper (see [Gub98, Remark 3.14]). Let C1 be a Γ-rational
polytopal decomposition of Rn/Λ with associated Mumford model A1 of A. We now choose
C := C0 ∩ C1 := {∆0 ∩∆1 |∆0 ∈ C0 ,∆1 ∈ C1}. Let A be the Mumford model of A associated to
C . We apply Propositions 5.13 and 5.14 to this setup. By (22), we get the following commutative
diagram of canonical morphisms of admissible formal schemes over K◦.

X ′′

ι′

��

ϕ // A

ι0
��

ι1 // A1

X ′ ϕ0 // A0

(23)

Recall that all admissible formal schemes in (23) are associated to formal analytic varieties and
that the morphism ϕ is determined by the fact that the rectangle is cartesian on the level of
formal analytic varieties.

By Corollary 5.9, the irreducible component Y of X̃ ′′ corresponds to the vertex u′ = ξY of
the Γ-rational subdivision

D = {∆S ∩ f
−1
aff (σ) | S ∈ str(X̃ ′), σ ∈ C }

of S(X ′). There is a unique S ∈ str(X̃ ′) such that u′ ∈ relint(∆S). If S′ is the dense stratum
in Y , then Corollary 5.9 yields S = ι̃′(S′). We choose a lift faff : ∆S → Rn of faff . By Lemma 5.15,
there is a lift Φ̃0 : S→ Ẽ0 (respectively Φ̃ : Y → Ẽ ) of ϕ̃0 (respectively ϕ̃) to the special fibre of the
formal K◦-model E0 (respectively E ) of E associated to C0 (respectively C ) with Φ̃0 ◦ ι̃′ = ι̃ ◦ Φ̃.

Let L be a line bundle on A. The role of A1 now becomes clear as we assume that L has a
formal K◦-model L of L on A1 corresponding to a continuous piecewise affine function fL as
in Proposition 4.11 (applied to C1). We assume that g := fL ◦ faff is convex in a neighborhood
of u′. In the light of Proposition 4.12, this is a natural positivity assumption for L . We have
seen in 5.3 that we may identify ∆S with the simplex {w′0 + · · ·+ w′r = v(π)} in Rr+1

+ . In the
following, it is more convenient to identify ∆S with the simplex {w′1 + · · ·+ w′r 6 v(π)} in Rr

+

obtained by omitting the coordinate w′0. Then we define a polytope {u′}g in Rr by

{u′}g := {ω ∈ Rr |w′ ∈∆ ∈ starr(u′)⇒ ω · (w′ − u′) 6 g(w′)− g(u′)},

where starr(u′) is the set of r-dimensional polytopes in D with vertex u′. The volume of {u′}g
with respect to the Lebesgue measure on Rr will be denoted by vol({u′}g). By 4.3, there is
a line bundle H on the formal abelian scheme B from the Raynaud extension (4) such that
p∗(Lan) = q∗(H) for the generic fibre H of H and the canonical morphisms p : E→Aan = E/M ,
q : E→B = Ban. We now have the following commutative diagram of varieties over K̃.

Y

ι̃′

��

Φ̃ // Ẽ

ĩ0
��

q̃ // B̃

id
��

S
Φ̃0 // Ẽ0

q̃0 // B̃

(24)

For simplicity of notation, we will write degL (Y ) for the degree of Y with respect to the line
bundle (ι̃1 ◦ ϕ̃)∗(L̃ ) and similarly for other degrees. It is always understood that we use the
pull-backs of the line bundles with respect to the canonical morphisms from (23) or (24).

By Proposition 5.11, it is easy to deduce that

D = {∆S ∩ f
−1
aff (σ) | S ∈ str(X̃ ′), σ ∈ C1}. (25)
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There is a unique ∆1 ∈ C1 with u := faff(u′) ∈ relint(∆1). Since the vertex u′ of D is contained
in relint(∆S), it follows from (25) that

{u′}= f
−1
aff (∆1) ∩∆S , {u}= ∆1 ∩ faff(∆S).

The first equality yields that the affine map faff |∆S
is injective and hence faff(∆S) is a (d− e)-

dimensional simplex in Rn/Λ, where d := dim(X ′) and e := dim(S) = d− dim(∆S). We now make
the transversality assumption

d− e= codim(∆1, Rn). (26)

Proposition 5.18. Using the assumptions from 5.17, we have

degL (Y ) =
d!
e!
· degH (S) · vol({u′}g).

Proof. Let E1 be the K◦-model of E associated to C1. In the following, we will always use the
canonical morphisms p1 : E1→A1, q1 : E1→B, i1 : E → E1 and Φ̃1 := ĩ1 ◦ Φ̃ to compute degrees.
Using p∗(Lan) = q∗(H), we have the decomposition

p∗1(L ) = q∗1(H )⊗ OE1(fL ) (27)

for a formal K◦-model OE1(fL ) of OE on E1. The reason behind the notation is that the formal
metric on the trivial bundle OE associated to the formal model OE1(fL ) (see Example 3.3)
satisfies

−log ‖s‖OE1
(fL ) = fL ◦ val, (28)

where s is the unique meromorphic section of OE1(fL ) extending the canonical section 1 of OE .
This follows immediately from the definition of fL in (8). In the decomposition (27), q∗1(H )
reflects the contribution of the abelian part B to L and OE1(fL ) measures the combinatorial
contribution from the polytopal decomposition C1 and from the piecewise affine function fL .
We deduce that

degL (Y ) =
d∑
`=0

(
d

`

)
d`(Y ), (29)

from (27), where d`(Y ) := degH , . . . ,H︸ ︷︷ ︸
`

,OE1(fL ), . . . , OE1(fL )︸ ︷︷ ︸
d−`

(Y ).

Our goal is now to prove that d`(Y ) = 0 for ` 6= e and to compute de(Y ) using the projection
formula with respect to ι̃′ : Y → S and

Φ̃∗(q̃∗(H̃ )) = (ι̃′)∗(Φ̃∗0(q̃∗0(H̃ ))) (30)

obtained from (24).

Step 1. The cycle class c1(OE1(fL ))d−`.Y in CH(Y ) is algebraically equivalent to a strata cycle
of Y .

It is always understood that c1(OE1(fL )) operates by pull-back with respect to Φ̃1 on Y .
Again, we denote by s the unique meromorphic section of OE1(fL ) extending the canonical
section 1 of OE . It is enough to show that div(s).S′′ is algebraically equivalent to a strata cycle
of Y for every S′′ ∈ str(X̃ ′′) with S′′ ⊂ Y . We have seen in Proposition 5.14 that ϕ̃= φ̃ maps
strata into strata. By Proposition 4.8, we easily deduce the same property for ι̃1. Passing to the
lift Φ̃1, we see that Φ̃1(S′′) is contained in a stratum Z of Ẽ1. By Proposition 4.8, Z corresponds
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to relint(σ) for a unique σ ∈ C1. Using

fL (u) = mσ · u + v(aσ)

on σ with mσ ∈ Zn and aσ ∈K×, we deduce from (28) that the Cartier divisor div(s) is
given on val−1(σ) by aσ · xmσ . Here, we consider χ= xmσ as a meromorphic section of q∗1(Oχ)
which restricts to a nowhere-vanishing global section on the generic fibre q∗(Oχ) (see 4.2). We
consider the Cartier divisor D := div(s/(aσ · xmσ)) on E1. It has a well-defined reduction D̃ on
a neighborhood of Z which is trivial on (val−1(σ))˜and hence Φ̃∗1(D̃) is a Cartier divisor on Y
which is trivial on S′′. Since S′′ is a strata subset, Φ̃∗1(D̃).S′′ is a strata cycle in Y . We have seen
in 4.2 that Õχ is algebraically equivalent to 0 and hence O(D̃)|Z is algebraically equivalent to
OE1(fL ) |̃Z . By construction, div(s).S′′ is algebraically equivalent to Φ̃∗1(D̃).S′′, proving the first
step.

We need an explicit description of the Cartier divisor Φ̃∗1(D̃) on Y from Step 1. Let U ′ be
a formal affine open subset of X̃ ′ as in Proposition 5.2 with étale morphism ψ : U ′→S =
S1 ×S2 such that S is the distinguished stratum of X̃ ′ associated to U ′. Passing to a formal
open refinement, we may assume that ϕ0(U ′) is contained in a formal trivialization of the
Raynaud extension (3) and hence the torus coordinates x1, . . . , xn make sense on ϕ0(U ′).

We denote by S ′
1 the K◦-model of the polytopal domain S an

1 in (Gr
m)an associated to the

refinement D ∩∆S and let U ′′ := (ι′)−1(U ′). We have seen in Remark 5.6 that ψ′ : U ′′→S ′ =
S ′

1 ×S2 is the base change of ψ to S ′ and hence ψ′ is étale. Let ψ1 : U ′→S ′
1 be the composition

of the first projection with ψ and let ψ′1 be the base change of ψ1 to S ′
1. Then ψ̃′1 is a smooth

morphism such that the preimage of a stratum of S̃ ′
1 is a stratum of Ũ ′′ (see Remark 5.8).

We conclude that ψ̃′1(Y ∩ Ũ ′′) is dense in an irreducible component of S̃ ′
1, which we denote by

Yu′ . This notation is justified by the fact that the irreducible components of S ′
1 are in bijective

correspondence with the vertices of D ∩∆S (see [Gub07a, Proposition 4.7]).

Step 2. There is a Cartier divisor D̃1 on Yu′ with (ψ̃′1)∗(D̃1) = Φ̃∗1(D̃)|Y ∩Ũ ′′ .

By Remark 5.16, the lift Φ̃1 : Y ∩ Ũ ′′→ Ẽ1 is equal to the reduction of a suitable lift
F : U ′→ E of f . Moreover, F induces a lift ∆S → Rn of faff . We may assume that the lift is
equal to faff from 5.17. Indeed, faff is determined up to Λ-translation and hence the polytope
{u′}g is also determined up to translation, which does not affect the volume in Proposition 5.18.

We consider the polytopes ν of C1 with closed face ∆1 from 5.17. We have seen in the first step
that the Cartier divisor D is given on val−1(ν) by (aν/aσ) · xmν−mσ . It follows easily from the
definitions that the polytopes µ := (faff)−1(ν) ∩∆S are just the polytopes of D ∩∆S with vertex
u′. By Proposition 5.7 and Corollary 5.9, the reductions of the formal open subsets Val−1(µ)
cover Y . By construction, F induces a formal morphism Φ1 : U ′′→A1 with reduction Φ̃1 and
hence Φ̃∗1(D̃) = (Φ∗1(D))˜on Y ∩ Ũ ′′. By [Gub07a, Proposition 2.11], there is an n× r matrix M
with entries in Z, γi ∈ O(U ′)× and λ ∈ (K×)n with

F ∗(xi) = λi · γi · (ψan)∗(x′1)Mi1 · · · (ψan)∗(x′r)
Mir

on the generic fibre U ′ of U ′ for i= 1, . . . , n. We have seen in (21) that

faff(w′) =Mw′ + λ

for w′ = (w′1, . . . , w
′
r) ∈∆S . Note that we use here the identification of ∆S with the

simplex ΣS := {w′1 + · · ·+ w′r 6 v(π)} in Rr
+, which is different from the one used in (21).
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Let y := (x′1, . . . , x
′
r). We conclude that Φ∗1(D) is given on Val−1(µ) ∩ U ′ by
aν
aσ
· F ∗(xmν−mσ) =

aν
aσ
· λmν−mσ · γ · (ψan)∗(y)(mν−mσ)t·M

for some γ ∈ O(U ′)×. For a Cartier divisor, such a unit γ can be omitted. Let αµ ∈K×

with v(αµ) + ((mν −mσ)t ·M) · u′ = 0. Then Φ∗1(D) is given by αµ · (ψan)∗(y)(mν−mσ)t·M on
Val−1(µ) ∩ U ′. These functions are also defined on the formal open subsets val−1(µ) of (S ′

1)f−an.
Let Uµ be the formal affine open subset of S ′

1 associated to val−1(µ) and let D1 := {Uµ, αµ ·
y(mν−mσ)t·M} with µ ranging over the polytopes of D ∩∆S with vertex u′. It is easy to see
that D1 is a Cartier divisor on the open subset

⋃
µ Uµ of S ′

1 containing Yu′ . We conclude that
(ψ̃′1)∗(D̃1) = Φ̃∗1(D̃)|Y ∩Ũ ′′ , proving the second step.

We note that the Cartier divisor D1 depends on the choice of the stratum S′′, but the linear
equivalence class of the Cartier divisor D1 is independent of S′′ and hence the same is true for
the linear equivalence class of D̃1 on Yu′ .

Step 3. d`(Y ) = 0 for ` 6= e.

If ` > e, then c1(OE1(fL ))d−`.Y has dimension ` > e= dim(S) and hence the projection
formula with respect to ι̃′ : Y → S and (30) prove that

d`(Y ) = deg(c1(H )`.c1(OE1(fL ))d−`.Y )
= deg(c1(H )`.ι̃′∗(c1(OE1(fL ))d−`.Y )) = 0.

It remains to consider ` < e. We will use the first step for the dense stratum S′ in Y (instead of
S′′). We conclude that Φ̃1(S′) is contained in the stratum Z of Ẽ1 corresponding to relint(∆1).
By Proposition 4.8, we have dim(Z) = dim(A)− dim(∆1). By the construction in the first step,
the cycle class

α := (Φ̃1)∗(c1(OE1(fL ))d−`.Y ) = c1(OE1(fL ))d−`.(Φ̃1)∗(Y )
is algebraically equivalent to a cycle supported in Z1 for a strata subset Z1 of codimension > d− `
in Z. We have

e= d− codim(∆1, Rn) = d+ dim(B)− dim(Z)

by our transversality assumption. Using ` < e, we get

dim(Z1) 6 dim(Z)− (d− `) = dim(B) + `− e < dim(B).

By Proposition 4.8, all strata of Ẽ1 have dimension > dim(B) and hence α is algebraically
equivalent to 0. The projection formula now shows that

d`(Y ) = deg(c1(H )`.(Φ̃1)∗(c1(OE1(fL ))d−`.Y )) = deg(c1(H )`.α) = 0.

Step 4. de(Y ) = (d− e)! · degH (S) · vol({u′}g).
Recall that r = d− e. By the first step, we know that c1(OE1(fL ))r.Y is algebraically

equivalent to an e-dimensional strata cycle W of X̃ ′′. Since W has support in Y , its components
have the form Si, where the Si ∈ str(X̃ ′′) correspond to an open face of DS ∩∆S with vertex
u′. This follows from Corollary 5.9 as well as the fact that ι̃′ maps Si isomorphically onto S.

Now we will use the formal open subset U ′′ := (ι′)−1(U ′) of X ′′ from Step 2. Since ι̃′(Si) = S,
we have Si ∩U ′′ 6= ∅. The same holds for every stratum relevant in the intersection process for W
described in Step 1. We conclude that we may compute W on U ′′. We note that ψ̃′1 : Ũ ′′→ S̃ ′

1 is
a smooth morphism and that the stratification of Ũ ′′ is obtained by the preimages of the strata
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of S̃ ′
1 (see Remark 5.8). By the second step and the compatibility of flat pull-back with the

intersection operations (see [Ful84, Proposition 2.3]), the intersection process on Y ∩U ′′ leading
to W ∩U ′′ may be first performed on Yu′ giving a cycle W ′ and then W ∩U ′′ = (ψ̃′1)∗(W ′). To
obtain W ′, we have just to replace Y by Yu′ and the Cartier divisors Φ̃∗1(D̃) by D̃1. It is clear that
W ′ =

∑
niS

′
i, where the zero-dimensional strata S′i of S̃ ′

1 correspond to the same open faces as
the Si. We deduce that W =

∑
niSi and

∑
ni = degD1

(Yu′). Using the projection formula with
respect to ι̃′ : Y → S and (30), we get

de(Y ) = deg(c1(H )e.W ) = deg(c1(H )e.ι̃′∗(W )).

We have noticed that Si ∼= S and hence we get

de(Y ) = degH (S)
∑
i

ni[Si : S] = degH (S) degD1
(Yu′). (31)

To compute the degree of Yu′ , we will use the theory of toric varieties. The projection Gr+1
m →Gr

m,
given by (x′0, . . . , x

′
r) 7→ (x′1, . . . , x

′
r), leads to an isomorphism of S f−an

1 with the polytopal
domain val−1(ΣS) for the simplex ΣS := {w′1 + · · ·+ w′r 6 v(π)} in Rr

+. We recall from 5.17 that
we identify ΣS with ∆S and hence Yu′ is equal to the (Gr

m)K̃-toric variety associated to the vertex
u′ of D ∩ ΣS (see [Gub07a, Proposition 4.7]). As in the second step, let ν ∈ C1 with closed face
∆1 and let µ := f−1

aff (ν) ∩∆S . Then the polytopes µ are just the polytopes of D ∩ ΣS with vertex
u′. We have seen in the second step that the Cartier divisor D1 is given on the formal open subset
val−1(µ) of (S ′

1)an by αµ · y(mν−mσ)t·M . In the theory of toric varieties, the Cartier divisor D̃1|Yu′

induces a polyhedron P as the set of all ω ∈ Rr with

∀w′ ∈ µ ∈ starr(u′)⇒ ω · (w′ − u′) 6 (mν −mσ)t ·M · (w′ − u′).

It is easy to see that P is a translate of our polytope {u′}g. By [Ful93, § 5.3], Corollary on p. 111,
we get

degD1
(Yu′) = r! · vol(P ) = r! · vol({u′}g).

Together with (31), this proves the fourth step. Finally, the proposition is a consequence of (29),
Steps 3 and 4. 2

Remark 5.19. Berkovich has defined the skeleton S(X ′) more generally for a non-degenerate
pluristable formal scheme X ′ over K◦ and he has shown that S(X ′) has a canonical piecewise
linear structure (see [Ber04]). If X ′ is strongly non-degenerate, then there is a well-defined
proper strong deformation retraction from the generic fibre X ′ to S(X ′) which generalizes the
map Val.

All the results of § 5 can be generalized to a strongly non-degenerate strictly pluristable X ′.
This is based on the following facts proved in the appendix: the linear pieces of S(X ′) are given
by canonical plurisimplices ∆S corresponding to the strata S of X̃ ′. Moreover, ∆S is a polytope
with associated polytopal domain U∆S

(see 4.5). In analogy to Proposition 5.2, X ′ consists
locally of open building blocks U ′ such that S(U ′) is a canonical plurisimplex ∆S of S(X ′) and
there is an étale morphism ψ : U ′→ U f−sch

∆S
.

Similarly as in the strictly semi-stable case, this allows us to prove the results of this section
by using well-known results for polytopal domains. Moreover, we could replace strictly semi-
stable formal schemes in § 6 by strongly non-degenerate strictly pluristable formal schemes. This
is straightforward and we leave the details to the reader.
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6. Canonical measures

In this section, K is a field with a discrete valuation v. We denote by K the completion of the
algebraic closure of K. Note that K is algebraically closed [BGR84, Proposition 3.4.1/3] and
the value group Γ is equal to Q.

We consider a geometrically integral d-dimensional closed subvariety X of A over K. In § 3,
we have defined canonical measures on X. Now we will compute them explicitly in terms of
convex geometry. The main idea is to choose a Mumford model of A and a semi-stable alteration
of X to apply the results from §§ 4 and 5. Note that the restriction to geometrically integral
varieties is not a serious restriction. In general, we may perform a finite base change and then
we can proceed by linearity in the components.

6.1 For our computations, Proposition 5.18 will be crucial. To fulfill its transversality assumption
(26), we shall choose the polytopal decomposition of the Mumford model ‘completely irrational’.
We choose an infinite-dimensional Q-subspace Γ′ of R containing Q. By [Bou64, ch. VI, n◦ 10,
Proposition 1], there is an algebraically closed field K′, complete with respect to a valuation v′

extending v, such that the value group v′((K′)×) is Γ′.

6.2 We denote the analytic space over K associated to X by Xan. Let C0 be a rational polytopal
decomposition of Rn/Λ with associated Mumford model A0 of Aan over K◦. We denote the
closure of Xan in A0 by X0, which is a formal K◦-model of Xan (see [Gub98, Proposition 3.3]).
By de Jong’s alteration theorem [deJ96, Theorem 6.5], applied to a projective K◦-model of
Xan dominating X0 (see [Gub03, Proposition 10.5]), there is always a semi-stable alteration
ϕ0 : X ′→X0, which means that the generic fibre f :X ′→Xan of ϕ is a proper surjective
morphism and X ′ is an irreducible d-dimensional analytic space which is the generic fibre of a
strictly semi-stable admissible formal scheme X ′ over K◦. It follows from [Gub98, Remark 3.14]
that ϕ̃ is a proper surjective morphism between the special fibres.

6.3 We will use the notation from the previous sections. Let E be the uniformization of A, i.e.
Aan = E/M for a discrete subgroup M in E with complete lattice Λ = val(M) in Rn. Let E0 be
the K◦-model of E associated to the polytopal decomposition C0 of Rn (see 4.7).

Let S ∈ str(X̃ ′) with canonical simplex ∆S in the skeleton S(X ′). By Lemma 5.15, there
is a lift Φ̃0 : S→ Ẽ0 of ϕ̃0 : S→ Ã0, unique up to the M -action on Ẽ0. If q0 : E0→B denotes
the unique morphism extending q : E→B = Ban from the Raynaud extension (4), then q̃0 ◦ Φ̃0

is unique up to q(M)-translation on the abelian variety B̃ over K̃.
A canonical simplex ∆S is called non-degenerate with respect to the morphism f if the

conditions dim(faff(∆S)) = dim(∆S) and dim(q̃0 ◦ Φ̃0(S)) = dim(S) are fulfilled. This definition
does not depend on the choice of the lift Φ̃0. Moreover, it depends only on X ′ and f , but not
on the choice of C0. This means that if we have a second rational polytopal decomposition C ′0
of Rn/Λ with associated Mumford model A ′0 and with a semi-stable alteration ϕ′0 : X ′→A ′0
such that the generic fibre is again f , then the definitions of non-degenerate canonical simplices
agree. Indeed, the independence of the first condition is obvious and the invariance of the second
condition follows from an easy diagram chase involving Lemma 5.15 by passing to the common
refinement C0 ∩ C ′0.

6.4 Let Σ be a Λ-periodic set of polytopes such that Σ := {σ ⊂ Rn/Λ | σ ∈ Σ} is a finite set. If σ
is a polytope in Σ, then we assume that all closed faces of σ are also in Σ. Let Aσ be the affine
space in Rn generated by the polytope σ.
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The polytopal decomposition C of Rn/Λ is said to be Σ-generic if the following conditions
hold for every σ ∈ Σ, ∆ ∈ C :

(a) dim(Aσ ∩ A∆) =D if D := dim(σ) + dim(∆)− n > 0;

(b) Aσ ∩ A∆ = ∅ if D < 0.

By [Gub07a, Proposition 8.2], every Σ-generic C is Σ-transversal, which means that ∆ ∩ σ is
either empty or of dimension dim(∆) + dim(σ)− n for all ∆ ∈ C , σ ∈ Σ.

Lemma 6.5. Let L be an ample line bundle on A. Then there is a Γ′-rational polytopal
decomposition C1 of Rn/Λ with the following properties.

(a) (1/m)C1 is Σ-generic and hence Σ-transversal for all m ∈ N\{0}.
(b) If A1 denotes the formal (K′)◦-model of AK′ associated to C1, then there are N ∈ N\{0} and

a formal (K′)◦-model L of L⊗N on A1 corresponding to a function fL as in Proposition 4.11
which is a strongly polyhedral convex function with respect to C1.

Proof. In [Gub07a, Lemma 8.4], this was proved for a totally degenerate abelian variety A. Using
Proposition 4.11, the same proof applies here. 2

6.6 We keep the assumptions from 6.2 and we consider an ample line bundle L on A endowed
with a canonical metric.

Let ∆S be a canonical simplex of the skeleton S(X ′) which is non-degenerate with respect
to f . By 5.3, we may identify ∆S with the simplex {u′0 + · · ·+ u′r = v(π)} in Rr+1

+ . In the
following, it is more convenient to identify ∆S with the simplex ΣS := {u′ ∈ Rr

+ | u′1 + · · ·+ u′r 6
v(π)} by omitting the coordinate u′0. Let us choose an affine lift faff : ∆S → Rn of the map faff

from Proposition 5.11. Using the identification ∆S = ΣS , there is a unique injective linear map
`
(0)
S : Rr→ Rn extending faff − faff(0). By (21), `(0)

S is defined over Z and hence ΛS := (`(0)
S )−1(Λ)

is a complete rational lattice in Rr. The positive definite bilinear form b associated to L (see 4.3)
induces a complete lattice

ΛLS := {b(`(0)
S (·), λ) | λ ∈ Λ}

on (Rr)∗ = Rr. We denote by vol the volume with respect to the Lebesgue measure on Rr.
There is an ample line bundle H on the abelian scheme B from the Raynaud extension (4)

of A with generic fibre H such that p∗(L) = q∗(H) on E (see 4.3). As in 5.17, we define the
degree degH (S) of S ∈ str(X̃ ′) by using the lift Φ̃0 : S→ Ẽ0 and q̃0 : Ẽ0→ B̃.

Theorem 6.7. Under the hypothesis in 6.6, the support of the positive measure µ :=
c1(f∗(L))∧d is equal to the union of the canonical simplices of S(X ′) which are non-degenerate
with respect to f . For a measurable subset Ω contained in the relative interior of such a simplex
∆S and r := dim(∆S), we have

µ(Ω) =
d!

(d− r)!
· degH (S) ·

vol(ΛLS)
vol(ΛS)

· vol(Ω). (32)

Remark 6.8. The theorem generalizes easily to several canonically metrized ample line bundles
L1, . . . , Ld on A. Let µ := c1(f∗(L1)) ∧ · · · ∧ c1(f∗(Ld)) and let Hj be an ample line bundle on B
with p∗(Lj) = q∗(Hj). Then the support of µ will be again equal to the union of all canonical
simplices ∆S which are non-degenerate with respect to f .
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We are going to describe the canonical measure µ(Ω) for any measurable subset Ω of a
canonical simplex ∆S . For r := dim(∆S), let vol(ΛL1

S , . . . , ΛLrS ) be the mixed volume in Rr of
the corresponding fundamental lattices. This is a positive number which agrees with vol(Λ′)
if all lattices ΛLiS are equal to a single lattice Λ′. Moreover, the mixed volume is symmetric
and multilinear with respect to the Minkowski sum of fundamental lattices. We conclude that
vol(ΛL1

S , . . . , ΛLrS ) is multilinear and symmetric with respect to the line bundles L1, . . . , Lr. For
more details, we refer the reader to [Gub07a, A6].

The generalization of Theorem 6.7 can now be stated as

µ(Ω) = r!
∑

i

degHj1
,...,Hjs

(S) ·
vol(Λ

Li1
S , . . . , ΛLirS )
vol(ΛS)

· vol(Ω), (33)

where i ranges over {1, . . . , d}r with i1 < i2 < · · ·< ir and where j1 < · · ·< js is the complement
of i in {1, . . . , d}. Both sides of (33) are multilinear and symmetric with respect to L1, . . . , Ld.
Since symmetric real-valued multilinear forms are determined by the restriction to the diagonal,
(33) follows from (32).

Corollary 6.9. If L1, . . . , Ld are arbitrary line bundles on A endowed with canonical metrics,
then µ := c1(f∗(L1)) ∧ · · · ∧ c1(f∗(Ld)) is supported in the union of canonical simplices of S(X ′)
which are non-degenerate with respect to f and the restriction of µ to such a simplex is a multiple
of the Lebesgue measure.

Proof. This follows from (33) and multilinearity. 2

Remark 6.10. Theorem 6.7 is well known in the two extreme cases of abelian varieties. If A is an
abelian variety of potentially good reduction, then (32) shows that µ=

∑
Y degH (Y )δξY with Y

ranging over the irreducible components of X̃ ′. This is a special case of Proposition 3.8(d) and
was first proved by Chambert-Loir [Cha06].

If A is an abelian variety which is totally degenerate at v, then Theorem 6.7 shows that the
support of µ is equal to the union of all d-dimensional canonical simplices ∆S of S(X ′) with
dim(faff(∆S)) = d and we have µ(Ω) = d! · vol(ΛLS) · vol(Ω)/vol(ΛS) for any measurable subset Ω
of ∆S . This was proved in [Gub07a, Theorem 9.6].

Proof of Theorem 6.7. By [Gub07a, Remark 3.14], the measure µ is independent of the odd part
L− of L. Moreover, L− does not influence the bilinear form b of L and hence we may assume
that L is a symmetric ample line bundle. It will be crucial for the proof to choose a Mumford
model A of A as ‘generic’ as possible. Let Σ be the set of simplices {faff(∆S) | S ∈ str(X̃ ′)}
together with all their closed faces. Then we will use the Γ′-rational polytopal decomposition
C1 of Rn/Λ from Lemma 6.5 with associated Mumford model A1. By multilinearity, we may
assume that the strongly polyhedral convex function fL from Lemma 6.5 induces a model L of
L on A1. For m > 1, let A ′m be the Mumford model of A associated to the Γ′-rational polytopal
decomposition C ′m := C0 ∩ (1/m)C1 (see 5.17). Note that A ′m, L and A are only defined over the
valuation ring of the ‘large’ field extension K′. Since µ is invariant under base change [Gub07a,
Remark 3.10], we may perform analytic calculations for µ over K′.

We fix a rigidification on L such that the given canonical metric ‖ ‖can on L is given by (2)
in Example 3.7. Let Xm be the closure of X in A ′m. If we apply Propositions 5.13 and 5.14 to
the polytopal decomposition C ′m instead of C , then we get a minimal formal analytic structure
X′′m on X ′ which refines (X ′)f−an such that our given morphism f :X ′→Aan extends to a
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morphism φm : X′′m→ (A ′m)f−an. Let ϕm : X ′′
m→A ′m be the associated morphism of admissible

formal schemes over K◦.

Step 1. µ is the weak limit of discrete measures µm on X ′ which are supported in the preimages
of the generic points of the irreducible components of X̃ ′′

m with respect to the reduction map.

This will be a consequence of Tate’s limit argument (see (2) in Example 3.7). We may assume that
the metric ‖ ‖ in (2) is equal to the formal metric ‖ ‖L . We note that multiplication by m extends
uniquely to a morphism ψm : A ′m→A1 (see [Gub07a, Proposition 6.4]). Then Lm := ψ∗m(L ) is
a (K′)◦-model of [m]∗(L) on A ′m with associated formal metric [m]∗‖ ‖ and hence we have
f∗([m]∗‖ ‖) = ‖ ‖L ′′m for the formal (K′)◦-model L ′′

m := ϕ∗m(Lm) of f∗([m]∗(L)) = f∗(L)⊗m
2
. By

(2), we get

f∗‖ ‖can = lim
m→∞

‖ ‖1/m
2

L ′′m
.

If we use this uniform limit together with Proposition 3.8, then we get

µ= lim
m→∞

m−2d
∑
Z

degL̃ ′′m
(Z) δξZ , (34)

where Z ranges over all irreducible components of X̃ ′′
m.

Step 2. A first determination of supp(µ).

By Corollary 5.9(g) and Proposition 5.13, the points ξZ are the vertices of the subdivision
Dm := {∆S ∩ f

−1
aff (σ) | S ∈ str(X̃ ′), σ ∈ C ′m} of S(X ′). As we have seen in 5.17, a vertex may

only occur in the interior of a canonical simplex ∆S with dim(faff(∆S)) = dim(∆S). By (34), we
conclude that the support of µ is contained in the union of such ∆S .

Step 3. Transformation of the limit in (34) into a multiple of vol(Ω).

To prove (32), we may assume that Ω is a polytope contained in the interior of a canonical simplex
∆S with dim(faff(∆S)) = dim(∆S). Using the identification ∆S = ΣS , the lift faff : ∆S → Rn

extends to an affine map f0 : Rr→ Rn which is also one-to-one and the polytopal decomposition
D := {f−1

0 (∆) |∆ ∈ C1} is periodic with respect to the lattice ΛS from 6.6. Similarly as in (25),
we have Dm = {∆S ∩ f

−1
aff (σ) | S ∈ str(X̃ ′), σ ∈ (1/m)C1}. We conclude that there is a bijective

correspondence between the irreducible components Z of X̃ ′′
m with ξZ ∈ Ω and the vertices u′

of (1/m)D contained in Ω. We note that our situation matches 5.17. By our above choice of Σ,
the transversality assumption (26) in the vertex f0(u′) follows easily from Σ-transversality in
Lemma 6.5. From Proposition 5.18, we get

degL̃ ′′m
(Z) =

d!
e!
· degH ⊗m2 (S) · vol({u′}gm),

where e := dim(S) = d− r and gm := fLm ◦ f0. We deduce that

degL̃ ′′m
(Z) =

d!
e!
· degH (S) · vol({u′}gm) ·m2e. (35)

We define the dual polytope of the vertex u :=mu′ of D with respect to the convex function
g := fL ◦ f0 : Rr→ R by

{u}g := {ω ∈ Rr | ω · (w − u) 6 g(w)− g(u) ∀w ∈ U},

where U is a sufficiently small neighborhood of u in Rr. Since {u′}gm =m{u}g, (35) yields

degL̃ ′′m
(Z) =

d!
e!
· degH (S) · vol({u}g) ·m2e+r. (36)

717

https://doi.org/10.1112/S0010437X09004679 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004679


W. Gubler

Let F be the fundamental domain of the lattice ΛS in Rr. For m� 0, the number of (1/m)ΛS-
translates of (1/m)F contained in Ω (respectively intersecting ∂Ω) is mrvol(Ω)/vol(F ) +
O(mr−1) (respectively O(mr−1)). By (34) and (36), we deduce that

µ(Ω) =
d!
e!
· degH (S) ·

∑
u

vol({u}g) · vol(Ω)
vol(ΛS)

, (37)

where u ranges over all vertices of D modulo ΛS . The set {{u}g | u vertex of D} is invariant
under ΛS-translation. By [McM94, Theorem 3.1], this set is a ΛLS -periodic tiling of Rr, which
means that Rr is covered by these r-dimensional polytopes and they meet face-to-face. Together
with (37), this proves (32). Since H̃ is ample on B̃, we have degH (S) 6= 0 if and only if ∆S is
non-degenerate with respect to f . By Step 2, we get also the claim about the support. 2

Remark 6.11. By the projection formula (b) in Proposition 3.8, Theorem 6.7 gives also an
explicit description for the canonical measure

c1(L|X)∧d = f∗(c1(f∗L)∧d)

on X. We conclude that the support of such a canonical measure is equal to the union of all
f(∆S), where ∆S ranges over all canonical simplices of S(X ′) which are non-degenerate with
respect to f . Note that this set is independent of the choice of L. We call it the canonical subset
of Xan.

The referee has suggested that the canonical subset is a piecewise linear space. In the
following, a piecewise linear space means always a piecewise RZ+-linear space for R := Q ∩ (0, 1]
in the sense of [Ber04, ch. 1]. We will always skip RZ+ for brevity.

Theorem 6.12. The canonical subset of Xan has a unique structure as a piecewise linear space
T such that for any semi-stable alteration ϕ0 : X ′→A0 as in 6.2 with generic fibre f :X ′→Aan,
the restriction of f to the union of all canonical simplices which are non-degenerate with respect
to f induces a piecewise linear map to T with finite fibres.

Proof. Let X0 be the closure of X in a Mumford model A0 of A over K◦ associated to the
rational polytopal decomposition C0 of Rn/Λ. By a result of de Jong, there is a finite group
G acting on a strongly non-degenerate pluristable formal scheme Y over K◦ with the following
properties (see [Ber99, Lemma 9.2]).

(a) We endow X0 with the trivial G-action. Then there is a dominant G-equivariant morphism
γ : Y →X0.

(b) The generic fibre Y of Y is the analytic space associated to an irreducible smooth projective
variety over K.

(c) The generic fibre g : Y →Xan of γ is a generically finite proper morphism.

(d) The fixed field K(Y )G is a purely inseparable extension of the field of rational functions
K(X).

Now we choose a semi-stable alteration η : X ′→ Y with generic fibre h :X ′→ Y . Then
ϕ0 := γ ◦ η plays the role of the semi-stable alteration in 6.2 and f := g ◦ h is its generic fibre.

Let ∆S be a canonical simplex of S(X ′) which is non-degenerate with respect to f . Since
faff ◦Val = val ◦ g ◦ h, it is clear that h is one-to-one on ∆S . We claim that h(∆S) is contained
in the skeleton S(Y ) of Y .
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By continuity, it is enough to prove that h(u′) ∈ S(Y ) for every u′ ∈ relint(∆S) with rational
coordinates. We choose a rational polytopal decomposition C1 of Rn/Λ with associated Mumford
model A1 such that u′ is a vertex of the subdivision D := {∆R ∩ f

−1
aff (σ) |R ∈ str(X̃ ′), σ ∈ C1}

satisfying the transversality condition (26) and such that g := fL ◦ faff strongly polyhedral
convex function in u′ for a symmetric ample line bundle L on A with a formal K◦-model L
on A1 associated to a piecewise affine function fL as in Proposition 4.10. This is much easier to
construct than the simultaneous transversality conditions in Lemma 6.5 and does not require a
base change.

Let A ′1 be the Mumford model associated to C0 ∩ C1. We get a commutative diagram of
admissible formal schemes over K◦ with reduced special fibres

X ′′

ι′1
��

η1 // Y1

j1

��

γ1 // A ′1

ι1

��

ψ1 // A1

X ′ η // Y
γ // A0

(38)

by assuming that the rectangles are cartesian on the level of formal analytic varieties. The vertical
maps and ψ1 are the identity on the generic fibre.

By Corollary 5.9, there is a unique irreducible component Z of X̃ ′′ with u′ = ξZ . Since the
assumptions of 5.17 are satisfied, Proposition 5.18 yields

degL (Z) =
d!
e!
· degH (S) · vol({u′}g).

Since H is ample (see 4.3) and ∆S is non-degenerate with respect to f , we have degH (S)> 0.
By strict convexity of g in u′, we get also vol({u′}g)> 0 and hence degL (Z)> 0. By
the projection formula, we have degL (Z) = degL (β̃∗(Z)) for β := ψ1 ◦ γ1 ◦ η1. Note that
dim(β̃(Z)) = dim(Z) = d is necessary for the positivity of the degree. Now (38) yields that η̃1(Z)
is also d dimensional. Since Y is d dimensional, we conclude that η̃1(Z) is an irreducible
component W of Ỹ1 and hence h(ξZ) = ξW . By the generalization of Corollary 5.9(g) to Y
(see Lemma 6.13 below), we know that ξW is a vertex of a subdivision D1 of S(Y ) and hence
h(u′) = ξW ∈ S(Y ), proving h(∆S)⊂ S(Y ).

By Remark 6.11 and the above, h maps the support of µ := c1(f∗L∧d) into S(Y ). By [Ber04,
Corollary 6.1.3], h restricts to a piecewise linear map from the piecewise linear subspace supp(µ)
to S(Y ). Moreover, the skeleton S(Y ) is invariant under G and the G-transformations induce
piecewise linear automorphisms of the skeleton [Ber04, Corollary 6.1.2].

There is a Zariski dense open subset U of Xan such that g : V → U is finite for V := g−1(U)
(see (c)). By [Ber99, Corollary 8.6], the quotient V/G exists. By [Ber99, Corollary 8.4], we
have S(Y )⊂ V . We note that the compact subset S(Y )/G of V/G has a canonical structure
as a piecewise linear space. Indeed, the skeleton S(Y ) is a piecewise linear space because it is
the geometric realization of a polysimplicial set D (see [Ber04, Theorem 5.1.1]). As S(Y )/G is the
geometric realization of the polysimplicial set D/G, we deduce that S(Y )/G is also a piecewise
linear space (see [Ber04, Proposition 3.5.3]). We conclude that h(supp(µ)) is a piecewise linear
subspace of S(Y ) which maps onto a piecewise linear subspace of S(Y )/G. By shrinking U
and using (d), we may assume that the canonical morphism V/G→ U is radicial. In particular,
it is a homeomorphism of the underlying topological spaces (see [Ber07, Remark 2.2.2]). As a
consequence, we get a piecewise linear structure on f(supp(µ)) = g(h(supp(µ))). By Remark 6.11,
this is the canonical subset T of Xan.
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The domains of linearity for the piecewise linear map f : supp(µ)→ T are subsets of the
canonical simplices of S(X ′) which are non-degenerate with respect to f . By Proposition 5.5,
they induce a finer formal analytic structure on X ′ and we may apply de Jong’s alteration
theorem also to the associated formal scheme over K◦. Replacing the alteration η by the
composition of the two alterations, we may assume that the domains of linearity are really
equal to the canonical simplices of S(X ′) which are non-degenerate with respect to f . Then a
linear atlas of T is given by the charts f(∆S), where ∆S ranges over all such canonical simplices
and f is a linear isomorphism from ∆S onto f(∆S).

Let us now consider any semi-stable alteration ϕ′0 : Z ′→A ′0 as in 6.2 with generic fibre
f ′ : Z ′→Aan. Then there is a semi-stable alteration which factors through ϕ0 and ϕ′0. Using the
above atlas, it follows easily that f ′ induces a piecewise linear map S(Z ′)→ T . Uniqueness is
obvious. 2

We now sketch how the results of the first part of § 5 generalize to the strongly non-degenerate
pluristable formal scheme Y from the above proof. By definition, there are a strongly non-
degenerate strictly pluristable formal scheme Y ′ and a surjective étale morphism ρ : Y ′→ Y .
By [Ber04, Theorem 5.1.1], the skeleton S(Y ) has a piecewise linear structure which is a cokern of
the piecewise linear structure on S(Y ′) described in Remark 5.19 and in the appendix. Moreover,
there is a ‘polytopal’ subdivision of S(Y ) given by canonical ‘plurisimplices’ ∆S , which are in
bijective correspondence to the strata S of Ỹ . We use quotation marks because ∆S is only a
quotient of a canonical plurisimplex ∆S′ of S(Y ′) for any stratum S′ with ρ̃(S′)⊂ S. To construct
∆S , we have to identify closed faces ∆P and ∆Q in the boundary of ∆S′ if and only if the strata
P and Q map into the same stratum of Ỹ . By [Ber04], there are well-defined proper strong
deformation retractions Val : Y → S(Y ) and Val′ : Y ′→ S(Y ′), where Y and Y ′ are the generic
fibres of Y and Y ′.

Lemma 6.13. There is a unique map gaff : S(Y )→ Rn/Λ with gaff ◦Val = val ◦ g on Y . We get
a ‘polytopal’ subdivision D1 := {∆S ∩ g−1

aff (σ) | S ∈ str(Ỹ ), σ ∈ C1} of S(Y ) defining a formal

analytic structure Y1 on Y as in Proposition 5.5 with Y1 = Y f−an
1 . Moreover, Proposition 5.7

and Corollary 5.9(a), (b), (e), (f) and (g) hold for Y1 (instead of X′′).

Proof. By Remark 5.19, the lemma holds for the strictly pluristable Y ′. The idea is now to use
the étale covering ρ : Y ′→ Y to deduce the claim for Y . It is necessary to define gaff := val ◦ g.
Using that ρan is surjective [Ber94, Lemma 2.2] and ρan ◦Val′ = Val ◦ ρan, it is easy to prove that
gaff ◦Val = val ◦ g from the corresponding property for g′aff : S(Y ′)→ Rn/Λ.

In Appendix A, we have studied building blocks for strongly non-degenerate strictly
pluristable formal schemes over K◦. We define a building block for Y as a formal affine open
subscheme U of Y such that a building block U ′ of Y ′ exists with ρ(U ′) = U . Since an
étale map is open, the building blocks cover Y . By definition, Ũ ′ has a smallest stratum
S′ and hence Ũ has the smallest stratum S := ρ̃(S′). We set U := U an. If U varies over all
building blocks and ∆ over D1, then U ∩Val−1(∆) is a formal affinoid atlas for Y . Here, we
use that the ‘polytopal subdivision’ D1 is induced by the valuation of units, i.e. ∆ is given by
inequalities v(bm) + m · u > 0 induced by the units g∗(bmxm) on U coming from the inequalities
of a corresponding polytope of C1. It now follows analogously to the proofs of Propositions 5.5
and 5.13 that the formal affinoid atlas induces a formal analytic variety Y1 isomorphic
to Y f−an

1 .
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A similar construction applies to Y ′, leading to an admissible formal scheme Y ′1 over K◦
with reduced special fibre. Since ρ is étale and surjective, the natural base change ρ1 of ρ to Y1

is étale and surjective. We deduce from 2.6 that ρ1 is the canonical map Y ′1 → Y1.
Let R′ be a stratum of Ỹ ′1 . By [Ber99, Lemma 2.2], ρ̃1(R′) is an open dense set of a stratum

of Ỹ1. Using the claim for Y ′, we know that R′ = π((Val′)−1(τ ′)) for a unique open face τ ′ of
D ′1. Note that ρan maps τ ′ isomorphically onto an open face τ of D1 and ρ̃1(R′)⊂ π(Val−1(τ)).

If τ varies over all open faces of D1, then the definition of Y1 = Y f−an
1 yields that π(Val−1(τ))

is a partition of Ỹ1 = Ỹ1. The surjectivity of ρ̃1 and a partition argument show that R :=
π(Val−1(τ)) is a strata subset equal to

⋃
ρ̃1(π((Val′)−1(τ ′))), where τ ′ ranges over all open

faces of D ′1 with ρan(τ ′) = τ .
We claim that R is a stratum of Ỹ1. By localizing, we may assume that Y and Y ′ are building

blocks and that τ ⊂ relint(∆S) for the canonical ‘plurisimplex’ ∆S = S(Y ). Since ρan maps the
interior of the plurisimplex ∆S′ = S(Y ′) isomorphically onto relint(∆S), there is a unique open
face τ ′ of D ′1 with ρan(τ ′) = τ . We conclude that R= ρ̃1(π((Val′)−1(τ ′))) ∈ str(Ỹ1).

The remaining claims are easily deduced from the corresponding claims for Y ′ using that ρ1

is étale and surjective. 2

7. Proof of the main theorem and examples

First, we will give the proof of Theorem 1.1. Then we will describe the canonical measure in two
relevant examples.

Proof of Theorem 1.1. By a finite base change and using linearity in the components, we
may assume that X is a d-dimensional geometrically integral closed subvariety of the abelian
variety A. The argument will be based on the description of canonical measures in the previous
section; hence, we will use the notation from there. By multilinearity, it is enough to consider
ample line bundles in Theorem 1.1(c). We choose a semi-stable alteration ϕ0 : X ′→X0 as
in 6.2 with generic fibre f :X ′→Xan. Then we have the explicit description (33) of µ :=
c1(f∗(L1)) ∧ · · · ∧ c1(f∗(Ld)). Since µ is supported in S(X ′), we get

val∗(c1(L1|Xan) ∧ · · · ∧ c1(Ld|Xan)) = deg(f) · (faff)∗(µ) (39)

by Propositions 3.8 and 5.11. More precisely, Remark 6.8 shows that µ is supported in the union
of the canonical simplices ∆S which are non-degenerate with respect to f . Since

d− dim(∆S) = dim(S) = dim(q̃0 ◦ Φ̃0(S)) 6 dim(B̃) = b,

we get dim(faff(∆S) = dim(∆S) > d− b. By Theorem 4.15, the tropical variety val(Xan) is a
finite union of rational polytopes of dimension at most d and at least d−min{b, d}}. Hence, we
may list the simplices faff(∆S) as in (a), where ∆S ranges over the canonical simplices which
are non-degenerate with respect to f . Then (c) and (d) follow from (33) and (39). Finally, (b)
follows from the next lemma. 2

Lemma 7.1. In the above notation, let us consider u ∈ val(Xan) and let d− e be the dimension
of the tropical variety val(Xan) in a neighborhood of u. Then there is a (d− e)-dimensional
canonical simplex ∆S of S(X ′) which is non-degenerate with respect to f such that u ∈ faff(∆S).

Proof. By Proposition 5.11 and the surjectivity of f and val, it is clear that the simplices faff(∆T ),
T ∈ str(X̃ ′), cover val(Xan). Since faff is locally an affine map defined over Q, we may assume
that u is an element of val(Xan) with coordinates in Q. Moreover, by density of the Q-rational
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points in val(Xan), we may assume that u is not contained in any faff(∆T ) of dimension < d− e.
We have to prove that there is a (d− e)-dimensional canonical simplex ∆S with u ∈ faff(∆S) and

dim(q̃0 ◦ Φ̃0(S)) = e, (40)

which yields that ∆S is non-degenerate with respect to f . We choose a rational simplex ∆ in
Rn/Λ of codimension d− e such that u ∈ relint(∆) and

∆ ∩ val(Xan) = {u}. (41)

We extend ∆ to a rational polytopal subdivision C 1 of Rn/Λ (which is not assumed to have the
properties of Lemma 6.5). We denote the associated Mumford model of A by A1.

Let C := C0 ∩ C1 be the minimal polytopal decomposition of Rn/Λ containing C0 and C1. Let
A be the Mumford model of A associated to C and let φ : X′′→A f−an be the morphism obtained
from ϕ0 by base change as in Propositions 5.13 and 5.14. Since C is a polytopal subdivision of
C 1, we get a canonical formal analytic morphism φ1 : X′′→A f−an

1 . Passing to the associated
admissible formal schemes over K◦, this induces a morphism ϕ1 : X ′′→A1 (see 2.6).

Note that U := val−1(∆) is a formal open subset of A f−an
1 . By (41), we get Xan ∩ U 6= ∅. Let

X1 be the closure of Xan in A1. Then the special fibre X1 has an irreducible component Y with
Y ∩ Ũ 6= ∅. We use here that the reduction of A f−an

1 is equal to the special fibre of A1 (see 2.6).
Since ϕ̃1 maps X̃ ′′ onto X̃1, there is an irreducible component Yu′ of X̃ ′′ mapping onto Y .
As the notation already indicates, Yu′ is the irreducible component associated to a vertex u′ of
the rational subdivision D = {∆S ∩ f

−1
aff (σ) | S ∈ str(X̃ ′), σ ∈ C } of S(X ′) (see Corollary 5.9).

More precisely, u′ = Val(ξ) for the unique point ξ of X ′, which reduces to the generic point
of this irreducible component Yu′ . From ϕ̃1(Yu′) = Y , we deduce that the reduction of f(ξ) to
the special fibre Ã1 is equal to the generic point of Y . We conclude that f(ξ) ∈ U and hence
faff(u′) = val(f(ξ)) ∈∆ by Proposition 5.11 and by the definition of U . Since f(ξ) ∈Xan, we get
faff(u′) = u from (41).

Let S be the unique stratum of the chosen strictly semi-stable K◦-model X ′ of X ′ with
u′ ∈ relint(∆S). We note first that u = faff(u′) ∈ faff(∆S). As we have remarked at the end
of 5.17, the fact that relint(∆S) contains a vertex of D implies that dim(faff(∆S)) = dim(∆S).
From the non-degeneracy assumption on u, we deduce that dim(∆S) = d− e and hence S is an
e-dimensional stratum.

It remains to prove (40). By Corollary 5.9, the canonical morphism X̃ ′′→ X̃ ′ maps Yu′ onto
S. By Lemma 5.15, we have lifts Φ̃0 : S→ Ẽ0 and Φ̃ : Yu′ → Ẽ of ϕ̃0 and ϕ̃, where E0 and E are
the K◦-models of the uniformization E of A associated to the polytopal decompositions C0 and
C . Using that C is a polytopal subdivision of C1, the map Φ̃ induces a canonical morphism
Φ̃1 : Yu′ → Ẽ1, which is a lift of the restriction of ϕ̃1 to Yu′ . This lift may be also constructed by
the fact that E1 and A1 = E1/M are locally isomorphic. Since ϕ̃1(Yu′) = Y , Proposition 4.8(d)
yields that Y ′ := Φ̃1(Yu′) is isomorphic to Y . Lemma 5.15 and an easy diagram chase involving
the canonical morphisms qi : Ei→B to the formal abelian scheme B of the Raynaud extension
show that

q̃0 ◦ Φ̃0(S) = q̃ ◦ Φ̃(Yu′) = q̃1 ◦ Φ̃1(Yu′).

We conclude that the dimension of

q̃0 ◦ Φ̃0(S) = q̃1(Y ′) (42)

is at most e. To show equality, we consider a basic formal affinoid subdomain UV,∆ ∼= V × U∆

from the construction of E f−an
1 (see 4.7). Here, V is the generic fibre of a formal affine open
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subset of B which trivializes the Raynaud extension (3) of A and ∆ is a simplex in Rn lifting the
simplex ∆ considered at the beginning of the proof. We may choose V such that ŨV,∆ ∩ Y ′ 6= ∅.
Recall that U∆ is the polytopal subdomain val−1(∆) of (Gn

m)an. By the choice of V , we have
ŨV,∆ ∼= Ṽ × Ũ∆.

We claim that the second projection p̃2 maps the generic point of Y ′ into the torus orbit Z
of Ũ∆ corresponding to relint(∆). Recall from [Gub07a, Proposition 4.4] that Z = π(val−1(∆)),
where π is the reduction map. We have seen above that f(ξ) reduces to the generic point of Y
and that val(f(ξ)) = u. Let ξ′ be the unique lift of f(ξ) to E whose reduction π(ξ′) is the generic
point of Y ′. We conclude that val(p2(ξ′)) = val(ξ′) is the unique point u ∈ relint(∆) which lifts
u. Therefore, we have π(p2(ξ′)) ∈ Z. Since π(p2(ξ′)) = p̃2(π(ξ′)), we get the above claim. Since
Z is the closed orbit of Ũ∆, we conclude that p̃2(Y ′)⊂ Z.

By [Gub07a, Proposition 4.4], the dimension of the torus orbit Z is codim(∆) = d− e.
The above claim shows that Y ′ ∩ ŨV,∆ is contained in the closed subset (q̃1(Y ′) ∩ Ṽ )× Z of
ŨV,∆ ∼= Ṽ × Ũ∆. Since Y ′ is d dimensional and the product is at most d dimensional, we get
Y ′ ∼= (q̃1(Y ′) ∩ Ṽ )× Z. Moreover, we deduce that dim(q̃1(Y ′)) = e. By (42), we get (40) and the
lemma. 2

Remark to the proof of Lemma 7.1. The argument shows that the irreducible component Y ′ of
Ẽ1 is a fibre bundle over q̃1(Y ′) with fibre isomorphic to the toric variety Y∆ associated to
star(∆) = {σ ∈ C1 |∆⊂ σ} (see [Gub07a, Remark 4.8]). Indeed, the choice of V as a trivialization
yields that q̃−1

1 (Ṽ )∼= Ṽ × Z̃ , where Z is the formal K◦-model of (Gn
m)an associated to the

polytopal decomposition C1. Now the proof of the lemma shows that Y ′ ∩ q̃−1
1 (Ṽ )∼= (q̃1(Y ′) ∩

Ṽ )× Y∆, proving the claim.

Example 7.2. Let us consider the special case X =A in Theorem 6.7. For every u ∈ Rn/Λ,
there is a canonical point ξu ∈Aan which we describe as follows: let V be the generic fibre of
a non-empty formal affine open subset of the abelian scheme B which trivializes the Raynaud
extension (3) of A. Then UV,{u} = val−1(u) ∩ q−1(V )∼= V × U{u} is an affinoid subdomain of
the uniformization E. Using Aan ∼= E/M , it is obvious that UV,{u} is isomorphic to an affinoid
subdomain U[V,u] of Aan. By Lemma 4.6, we may write every analytic function h on U[V,u] as a
strictly convergent Laurent series

h=
∑

m∈Zn
amx

m1
1 · · · xmnn

in the torus coordinates x1, . . . , xn on the polytopal domain U{u} in (Gn
m)an, where the

am ∈ O(V ) are uniquely determined by h. Then we define ξu ∈ U[V,u] by

|h(ξu)|= sup
m∈Zn

|am|sup · e−m·u.

It is easy to see that ξu does not depend on the choice of V and the representative u. The subset
S(A) := {ξu | u ∈ Rn/Λ} of Aan is called the skeleton of A (see [Ber90, § 6.5]).

By a combinatorial result of Knudsen and Mumford [KKMS73, ch. III], there is a rational
triangulation C of Rn/Λ (even refining any given rational polytopal decomposition) and
mC ∈ N\{0} such that for every maximal ∆ ∈ C , the simplex mC ∆ is GL(n, Z)-isomorphic to a
Zn-translate of the standard simplex {u ∈ Rn

+ | u1 + · · ·+ un 6 1}. Then the Mumford model
A of A associated to C is strictly semi-stable. Künnemann used this to construct projective
strictly semi-stable K◦-models for abelian varieties (see [Kün98] and also the erratum in [Kün01,
5.8]).
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Let ∆ ∈ C with u ∈∆. A similar application of Lemma 4.6 as above shows that ξu is contained
in the affinoid chart U[V,∆]

∼= V × U∆ of Aan and that |h(ξu)| > |h(x)| for all h ∈ O(U[V,∆]) and all
x ∈ U[V,∆] with val(x) = u. By [Ber99, Theorem 5.2], this maximality implies that ξu is contained
in the skeleton S(A ) of A . We conclude that S(A) = S(A ) and val = Val maps the skeleton
homeomorphically onto Rn/Λ.

We apply Theorem 6.7 with X ′ =X =A and X ′ = A . The canonical simplices of S(A ) are
just the elements of C . By Proposition 4.8 and its proof, a stratum S of Ã has locally the
form S ∩ Ũ[V,∆S ]

∼= Ṽ × Zτ for V as above and the open face τ = relint(∆S) with corresponding
stratum Zτ := π(val−1(τ)) in Ũ∆S

. Hence, ∆S is a non-degenerate simplex of S(A ) (with respect
to f = id) if and only if dim(Zτ ) = 0. We conclude that the non-degenerate canonical simplices
of S(A ) are just the n-dimensional simplices of C . The lattice ΛLS in 6.6 does not depend on
the choice of such a simplex ∆ = ∆S . By Proposition 3.8 and Theorem 6.7, we conclude that
c1(L)∧d is supported in S(A) and corresponds to the unique Haar measure ν on Rn/Λ with
ν(A) = degL(A). Using multilinearity for non-ample line bundles and Remark 6.8, we deduce
easily the following corollary.

Corollary 7.3. Let L1, . . . , Ld be canonically metrized line bundles on the abelian variety
A over K of dimension d. Then c1(L1) ∧ · · · ∧ c1(Ld) is supported in the skeleton S(A) and
corresponds to the Haar measure on Rn/Λ with total measure degL1,...,Ld

(A).

Example 7.4. We will show that the whole spectrum of values {d− b, . . . , d− e} in Theorem 1.1
may occur for a single canonical measure, where d− e denotes the dimension of the tropical
variety. We assume that K is the function field k(C) for an irreducible regular projective curve
C over an algebraically closed field k of characteristic 0. Let v be the discrete valuation on K
defined by the order in a given closed point P ∈ C. It is easy to use the construction below to
give similar examples for other fields.

We consider a product A=B1 ×B2 of abelian varieties over K, where B1 has good reduction
at v and where B2 is totally degenerate at v. As usual, let K be a minimal algebraically closed
field containing K which is complete with respect to a valuation extending v. The analytic
considerations will be performed over K. ‘Totally degenerate at v’ means that the Raynaud
extension of B2 is an analytic torus and hence Ban

2
∼= (Gn

m)an/M for a discrete subgroup M with
Λ = val(M) a complete lattice in Rn. Then E ∼=Ban

1 × (Gn
m)an is the Raynaud extension of A

and we have Aan ∼= E/M .
By assumption, B1 is the generic fibre of an abelian scheme B1 over the discrete valuation

ring K◦. The associated admissible formal scheme B1 := B̂1 over K◦ (see 2.7) is just the formal
abelian scheme B over K◦ in the Raynaud extension (3) for A. To get a Mumford model B2

for Ban
2 , we will use a similar polytopal decomposition C of Rn/Λ as in Example 7.2. There is

a rational triangulation C of Rn/Λ such that the strictly semi-stable K◦-model B2 is projective
[Kün98, §§ 3 and 4]. Künnemann’s proofs show that C can be chosen as a refinement of any given
rational polytopal decomposition of Rn/Λ (see also [Kün01, 5.5]). We get a strictly semi-stable
formal K◦-model A := B1 ×B2 of Aan.

By Künnemann’s construction, B2 is defined algebraically over the valuation ring F ◦ of a
finite extension F of the completion Kv, i.e. we have a strictly semi-stable algebraic F ◦-model
B2 of B2 with associated admissible formal scheme B2 = B̂2. We choose ample line bundles L1

on B1 and L2 on B2. Then L := p∗1(L1)⊗ p∗2(L2) is an ample line bundle on A := B1 ×K◦ B2.
By passing to a suitable tensor power of L, we may assume that L is very ample and that
H0(A, L)→H0(Ã, L̃) is surjective for the reduction L̃ of L to the special fibre Ã.
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Let b := dim(B1) and let us fix m ∈ {0, . . . ,min(b, n)}. Let us choose generic global sections
s̃1, . . . , s̃m ∈H0(Ã, L̃). By assumption, they are the reductions of global sections s1, . . . , sm of
L. The generic choice of the sections leads to a closed subscheme

X := div(s1) ∩ · · · ∩ div(sm)

of codimension m in A which is flat over F ◦. By Bertini’s theorem, the generic fibre X of X is an
irreducible smooth variety over F of dimension d := b+ n−m. The same argument shows that
the irreducible components Yi of the special fibre X̃ are Cartier divisors and

⋂
i∈I Yi is a smooth

variety over F̃ of pure dimension dim(X)− |I|+ 1 for any non-empty subset I. By a criterion
of Hartl and Lütkebohmert [HL00, Proposition 1.3], X is strictly semi-stable. Since m 6 b, the
fibre of X over any point of B2 is non-empty and hence

val(Xan) = Rn/Λ.

We conclude that the excess e of the tropical variety val(Xan) is given by

e := dim(X)− dim(val(Xan)) = b−m.

Now we switch from the algebraic point of view to the analytic and formal category. Then X has
an associated admissible formal scheme X := X̂ over K◦ which is a strictly semi-stable formal
K◦-model of Xan and a closed formal subscheme of the Mumford model A = B1 ×B2 of Aan.
Let L ,L1,L2 be the formal line bundles on A ,A1,A2 induced by L, L1, L2.

If S ∈ str(Ã ), then S = B̃1 × S2 for S2 ∈ str(B̃2) corresponding to an open face τ := relint(∆)
for a unique ∆ ∈ C (see Proposition 4.8). We note that

dim(S) = codim(∆, Rn) + b > b >m.

We consider first the case dim(S)>m. Using the generic choice of s1, . . . , sm again, Bertini’s
theorem yields that

S′ := div(s1) ∩ · · · ∩ div(sm) ∩ S (43)
is a stratum of X̃ with dim(S′) = dim(S)−m. If dim(S) =m= b, then S′ is a strata subset of
X̃ consisting of degL̃1

(B̃1) = degL1
(B1) points. Therefore, the skeleton S(X ) may be identified

with the triangulation C by using the map Val except in the case m= b, where we have to
count the n-dimensional simplices of C with multiplicity degL1

(B1). By construction, S′ is non-
degenerate (with respect to f = id in the sense of 6.3) if and only if dim(S2) 6m. If we endow
the generic fibre L of L with a canonical metric, then Theorem 6.7 shows that

ν := val∗(c1(L|X)∧d) =
∑
∆

λ∆ · δ∆, (44)

where ∆ ranges over all simplices of C with dim(∆) > n−m= d− b and where λ∆ > 0. Similarly
as in Example 7.2, we deduce that the contribution of the n-dimensional simplices of C to ν is
equal to a strictly positive Haar measure νn on Rn/Λ. Note however that for m> 0, we have

νn(Rn/Λ)< ν(Rn/Λ) = degL(X).

Finally, we show that the multiplicities λ∆ are given completely in terms of convex geometry.
The simplex ∆ ∈ C of dimension r > n−m corresponds to a stratum S′ of X̃ as above. Let
m∆ ∈ Zn and c∆ ∈Q such that fL (u) = m∆ · u + c∆ for all u ∈∆. Then the dual polytope ∆g

of ∆ with respect to g := fL is given by the face

∆g := {u}g ∩ (m∆ + ∆⊥)
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of the dual polytope {u}g of the vertex u of ∆ (see 5.17), where ∆⊥ is the orthogonal
complement of ∆ in Rn (see [Gub07a, Appendix A]). Let L∆ be the linear space such that
u + L∆ is the affine space spanned by ∆ and let Λ∆ := Λ ∩ L∆ be the complete lattice in L∆

induced by Λ.

Recall that mC is the natural number such that a suitable translate of mCσ is GL(n, Z)-
isomorphic to the standard simplex {u ∈ Rn

+ | u1 + · · ·+ un 6 1} for every σ ∈ C . Let vol∆ be the
Haar measure on L∆ such that vol∆(∆− u) = 1/(r!mC ). On L∗∆, we will use the dual measure
also denoted by vol∆. These are the volumes from Theorem 6.7. On the other hand, we have the
relative Lebesgue measure on L∆ ⊂ Rn which is used for the Dirac measure δ∆ and which we
now denote by volRn . Formula (32) in Theorem 6.7 yields

λ∆ =
d!

(d− r)!
· degL1

(S′) · vol∆((Λ∆)L)
volRn(Λ∆)

.

Here, we have used the complete lattice (Λ∆)L := {b(·, λ) | λ ∈ Λ∆} in (L∆)∗ defined by the
bilinear form b associated to L (see 4.3). By using (43), we get

dim(S′) = d− r, degL1
(S′) =

(
m

n− r

)
· degL1

(B̃1) · degL2
(S2).

By the theory of toric varieties, the degree of the toric variety S2 with respect to L̃2 is given in
terms of vol(∆g). As in the formula in [Gub07a, Equation (36)], we get

degL2
(S2) = (n− r)! · volRn(∆g) · volRn(Zn ∩∆⊥)−1

and hence degL1
(B̃1) = degL1

(B1) yields

λ∆ =
d! ·m! · volRn(∆g) · vol∆((Λ∆)L) · degL1

(B1)
(d− r)! · (m+ r − n)! · volRn(Zn ∩∆⊥) · volRn(Λ∆)

.
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Appendix A. Building blocks

Let K be an algebraically closed field with a non-trivial, non-archimedean complete absolute
value | | and valuation v :=−log | |. In the appendix, we will study building blocks of strongly
non-degenerate strictly pluristable formal schemes of length l ∈ N over the valuation ring K◦.

A.1 Such a building block Ul is recursively defined by U0 := Spf(K◦) and the following conditions:

(a) Ul is an affine formal scheme over K◦ with generic fibre Ul;

(b) there is an étale morphism ψl : Ul→Ul−1(n(l), a(l)) over K◦ for a building block Ul−1 of
length l − 1 and n(l) ∈ (N\{0})pl , a(l) ∈ O(Ul−1)pl ;

(c) the entries of a(l) = (a(l)
1 , . . . , a

(l)
pl ) are units in O(Ul−1);

(d) Ũl has a smallest stratum which maps into the smallest stratum of Ũl−1(n(l), a(l)).
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Let D = Spf(K◦〈x〉) be the formal unit disk. For k = 1, . . . , l, we recall that Uk−1(n(k), a(k))
is the closed formal subscheme of

Uk−1 ×Dn
(k)
1 +1 × · · · ×Dn

(k)
pk

+1

given by the following equations:

x
(k)
i0 · · · x

(k)

in
(k)
i

= a
(k)
i (i= 1, . . . , pk). (45)

Recursively, we know that Ũl−1 has a smallest stratum. It follows from [Ber99, Lemma 2.3] that
Ũl−1(n(l), a(l)) has a smallest stratum and hence (d) makes sense. By [Ber99, Lemma 2.2], the
smallest stratum of Ũl maps onto an open dense subset of the smallest stratum of Ũl−1(n(l), a(l)).
By [Ber99, Lemma 2.10], we have an isomorphism from str(Ũl−1(n(l), a(l))) onto str(Ũl) given by
taking preimages with respect to ψ̃l. It is easy to see that every strongly non-degenerate strictly
pluristable formal scheme is covered by open building blocks.

For i= 1, . . . , pl and j = 0, . . . , n(l)
i , let z(l)

ij = ψ∗l (x
(l)
ij ) and let z(l) be the resulting vector.

Recursively, we define z = (z(1), . . . , z(l)), where we use the natural pull-backs of the coordinates
x = (x(1), . . . , x(l)) from the definition of the building blocks U1, . . . ,Ul to Ul. It will be
convenient to skip all entries with index j = 0, i.e. let

x̂ := (x(k)
ij )

k=1,...,l;i=1,...,pk;j=1,...,n
(k)
i

.

Similarly, we define n = (n(1), . . . , n(l)) and n̂ = (n̂(1), . . . , n̂(l)). We set

Val : Ul −→ R|n̂|, p 7→ −log ◦ p(x̂)

and ∆l := Val(Ul). By [Ber04, §§ 4 and 5], the map Val restricts to a homeomorphism from
the skeleton S(Ul) onto ∆l. It gives S(Ul) a canonical piecewise linear structure and induces a
canonical proper strong deformation retraction Ul→ S(Ul).

These constructions can be globalized for any strongly non-degenerate strictly pluristable
formal scheme X over K◦. We will show in the next proposition that the building blocks induce
the linear pieces of the skeleton S(X ).

Proposition A.2. Let Ul be a strongly non-degenerate strictly pluristable building block of
length l with generic fibre Ul and let ∆l := Val(Ul)⊂ R|n̂| as above. Then the following properties
hold.

(a) ∆l is a polytope in R|n̂| defining a polytopal domain U∆l
:= val−1(∆l) in (G|n̂|m )an and

U∆l
:= U f−sch

∆l
(see 4.5).

(b) The pull-backs ẑ of the coordinates x̂ define an étale morphism Ul
ψ→U∆l

.

(c) There is a bijective order reversing correspondence between strata S of Ũl and open faces
τ of ∆l. It is given by

τ = Val(π−1(T )), S = π(Val−1(τ)),

where π : Ul→ Ũl is the reduction map and T is any non-empty subset of S. We have
dim(τ) = codim(S, Ũl).

(d) Let Y be an irreducible component of Ũl. Then there is a unique ξY ∈ Ul with π(ξY ) dense
in Y . Moreover, we have ξY ∈ S(Ul) and Val(ξY ) is the vertex of ∆l corresponding to the
dense open stratum of Y by (c).

(e) If f ∈ O(Ul)×, then there are λ ∈K×, µ ∈ O(Ul)× and m ∈ Z|n̂| with f = λµẑm. There is a
unique affine function F on ∆l with v ◦ f = F ◦Val.
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Proof. The proof is by induction on l. Let u = (u(1), . . . , u(l)) be the coordinates on R|n̂| =
R|n̂(1)| × · · · × R|n̂(l)|. By the induction hypothesis, a

(k)
i induces an affine function A

(k)
i =

A
(k)
i (u(1), . . . , u(k−1)) on the polytope ∆k−1 = Val(Uk−1) in R|n̂

(1)|
+ × · · · × R|n̂

(k−1)|
+ for k =

2, . . . , l. Since a
(k)
i ∈ O(Uk−1), the values of A(k)

i are in R+. It follows from (45) that ∆l is
given as a subset of R|n̂|+ by

u
(k)
i1 + · · ·+ u

(k)

in
(k)
i

6A
(k)
i (k = 1, . . . , l; i= 1, . . . , pk), (46)

proving (a). By induction again, we have a(l)
i = λiµiŷmi , where λi ∈K×, µi ∈ O(Ul−1)× and ŷ is

the pull-back of the coordinates (x̂(1), . . . , x̂(l−1)) to Ul−1. For b(l)i := λiŷmi and c(l)
i := λix̂mi , we

get Ul−1(n(l), a(l))∼= Ul−1(n(l), b(l)) and U∆l
∼= U∆l−1

(n(l), c(l)). For the latter, we use [Ber99,
Proposition 1.4]. Therefore, the canonical diagram

Ul−1(n(l), a(l))

��

// U∆l

��
Ul−1

// U∆l−1

is cartesian. The bottom line is given by ŷ and the induction hypothesis yields that this map is
étale. We conclude that the upper line is étale, proving (b).

Note that (c) holds for any polytopal domain (see [Gub07a, Proposition 4.4]). It follows
from [Ber99, § 2] that

str(Ũl−1(n(l), a(l)))−→ str(Ũl), S′ 7→ ψ̃−1
l (S′)

is a bijective order preserving map. This proves easily (c).

By [Ber99, Proposition 1.4], we have O(Ul)◦ = O(Ul) and hence we may apply the theory of
formal affinoid varieties to deduce the existence and uniqueness of ξY (see § 2). Since Val maps
S(Ul) bijectively onto ∆l, there is ξ ∈ S(Ul) with Val(ξ) equal to the vertex Val(ξY ) of ∆l given
by the correspondence in (c). By the first paragraph of [Ber04, p. 332], π(ξ) is dense in Y and
hence ξ = ξY , proving (d).

Let P̃ be a K̃-rational point in the smallest stratum of Ũl. By [Gub07a, Proposition 2.9],
ψ̃ induces an isomorphism π−1(P̃ )→ π−1(ψ̃(P̃ )) between formal fibres. This allows us to apply
results for polytopal domains to the formal fibre π−1(P̃ ). By Lemma 4.6, we have a convergent
Laurent expansion

f =
∑

m∈Z|n̂|
amẑm

on π−1(P̃ ) and there is a dominant term t := aν ẑν in the expansion, i.e.

|t(x)|> |amẑm(x)|

for all x ∈ π−1(P̃ ) and m ∈ Z|n̂|\{ν}. Let Y be an irreducible component of Ũl. Applying (c) with
T = {P̃}, we deduce that there is a sequence xn ∈ π−1(P̃ ) with Val(xn) ∈ relint(∆l) converging
to the vertex Val(ξY ) of ∆l. By compactness of Ul, we may assume that xn converges to some
x ∈ Ul. By continuity, we have Val(x) = Val(ξY ) and hence (c) again shows that π(x) is not
contained in any other irreducible component than Y . It is a basic fact for units in an affinoid
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algebra that this implies that |f(x)|= |f(ξY )| (see [Gub03, Proposition 7.6]). We conclude that

|f(ξY )|= |f(x)|= lim
n→∞

|f(xn)|= lim
n→∞

|t(xn)|= |t(x)|= |t(ξY )|.

If Y ranges over all irreducible components of Ũl, then the points ξY form the Shilov boundary
of Ul (see [Ber90, Proposition 2.4.4]). We conclude that µ := ft−1 is a unit in O(Ul)◦ = O(Ul),
proving (e). 2

Remark A.3. By (46), the coordinate u(k)
ij is identically zero on ∆l if and only if a(k)

i ∈ O(Uk−1)×.

The corresponding z(k)
ij is a formal unit on Ul. We deduce easily from Proposition A.2(e) that

O(Ul)× = O(Ul)× ×
∏
k,i,j

(z(k)
ij )Z,

where the indices of the basis range over 1 6 k 6 l, 1 6 i 6 pk with a
(k)
i 6∈ O(Uk−1)× and 1 6 j 6

n
(k)
i .
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Kün98 K. Künnemann, Projective regular models for abelian varieties, semistable reduction, and the

height pairing, Duke Math. J. 95 (1998), 161–212.
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Supér. (4) 34 (2001), 503–523.

McM94 P. McMullen, Duality, sections and projections of certain Euclidean tilings, Geom. Dedicata
49 (1994), 183–202.

Mum72 D. Mumford, An analytic construction of degenerating abelian varieties over complete rings,
Compositio Math. 24 (1972), 239–272.
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