
Personality Neuroscience

cambridge.org/pen

Review Paper

Cite this article: Cruz APM, Castro-Gomes V,
and Landeira-Fernandez J. (2024) An animal
model of trait anxiety: Carioca high freezing
rats as a model of generalized anxiety disorder.
Personality Neuroscience. Vol 7: e6, 1–7.
doi: 10.1017/pen.2023.6

Received: 20 April 2023
Revised: 5 June 2023
Accepted: 20 June 2023

Keywords:
Animal model of GAD; Carioca High-
conditioned Freezing rats; Generalized anxiety
disorder (GAD); Phenotyping; Trait anxiety

Corresponding author:
J. Landeira-Fernandez;
Email: landeira@puc-rio.br

This is part of the special issue on animal
personality.

© The Author(s), 2024. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution-NonCommercial-
ShareAlike licence (http://creativecommons.org/
licenses/by-nc-sa/4.0/), which permits non-
commercial re-use, distribution, and
reproduction in any medium, provided the same
Creative Commons licence is used to distribute
the re-used or adapted article and the original
article is properly cited. Thewritten permission of
Cambridge University Press must be obtained
prior to any commercial use.

An animal model of trait anxiety: Carioca high
freezing rats as a model of generalized anxiety
disorder

Antonio Pedro Mello Cruz1, Vitor Castro-Gomes2 and J. Landeira-Fernandez3

1Laboratory of Psychobiology and Behavioral Neuroscience, Institute of Psychology, University of Brasilia, Brasilia,
Federal District, Brazil; 2Institute of Psychology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil and
3Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Abstract

Despite being one of the main components of anxiety and playing a pivotal role in how an
individual perceives and copes with anxiogenic situations or responds to a given treatment, trait
anxiety is paradoxically omitted in most animal models of anxiety. This is problematic and
particularly more concerning in models that are used to screen drugs and other treatments for
specific anxiety disorders and to investigate their neurobiological mechanisms. Our group has
been engaged in the search for specific anxiety-related traits in animal models of anxiety. We
developed two new lines of rats with strong phenotypic divergence for high (Carioca High-
conditioned Freezing [CHF]) and low (Carioca Low-conditioned Freezing [CLF]) trait anxiety
as expressed in the contextual fear conditioning paradigm. Here, we summarize key behavioral,
pharmacological, physiological, and neurobiological differences in one these lines, the CHF rat
line, relative to randomized-cross controls and discuss how far they represent a valid and
reliable animal model of generalized anxiety disorder and so high trait anxiety.

Anxiety is characterized by uncomfortable feelings of apprehension, insecurity, and uncertainty,
combined with very specific physiological, neural, and behavioral reactions that are typically
triggered by the perception of potentially threatening situations in the environment. From an
evolutionary perspective, human anxiety likely has its origins in similar defensive reactions that
are shared with many other animals, particularly mammals (Blanchard et al., 2001; Graeff, 2010;
McNaughton & Corr, 2022), which through evolution have become increasingly complex and
sophisticated in their capacity to anticipate and successfully cope with various sources of threat
to our physical and emotional well-being.

In some individuals and for many reasons that have been widely investigated, anxiety
eventually loses its adaptive function and can become a disorder, although there is no precise
cutoff point that delineates adaptive (“normal”) and non-adaptive (“pathological”) anxiety. In
clinical terms, anxiety is considered a disorder when it becomes excessive, persistent, and
uncontrollable or in cases where it occurs even when there is little or nothing in the environment
to indicate a potential threat. Under these circumstances, anxiety takes on a pathological
dimension and often requires specific treatment for its clinical management (Baxter et al., 2013;
Öhman & Mineka, 2001).

Pathological anxiety is not limited to a single homogeneous clinical condition; instead, it
extends to several qualitatively distinct anxiety disorder categories that depend on their causes
and symptoms. According to the Diagnostic and Statistical Manual of Mental Disorders, fifth
edition, Text Revision (DSM-5-TR; American Psychiatric Association, 2022), the major anxiety
disorders include separation anxiety disorder, selective mutism, specific phobia, social anxiety,
panic disorder, agoraphobia, and generalized anxiety disorder (GAD), in addition to other
anxiety disorders, such as substance/medication-induced anxiety disorder, anxiety disorder due
to another medical condition, and other specified and unspecified anxiety disorders.

Among anxiety disorders, GAD is believed to be one of the most prevalent (Ruscio et al.,
2017). Such disorder encompasses various signs and symptoms, the most evident of which is a
diffuse, persistent, and exacerbated feeling of worry that is not restricted to a particular stimulus
but rather involves various circumstances (Crocq, 2017). Worry is impossible to assess in
animals, but muscle tension, irritability, fatigue, difficulty concentrating, sleep disturbances,
restlessness, and combinations of these symptoms often coexist with this feeling of worry.
According to the DSM-5, the feeling of worry must be accompanied by at least three of these
symptoms on most days for at least 6 months to satisfy the criteria for GAD.

Anxiety has two forms: state anxiety and trait anxiety (Spielberger, 1972). State anxiety is a
transient state of anxiety that occurs at a given moment in a specific context. It is an emotional
state of anxiety that is directly related to the perception of a potential threat, such that its
intensity tends to increase in the presence of the threat and ceases when it is no longer present.
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Trait anxiety refers to an individual’s vulnerability to express
anxiety over time in different situations, a relatively stable
component of personality that involves an intricate interplay
between genetic and environmental factors for its expression
(Gottschalk & Domschke, 2017). Importantly, individuals vary
considerably in their anxious personality traits and coping styles
(Knowles & Olatunji, 2020; Myles et al., 2020). Moreover, extreme
variations in certain anxiety traits have been linked to specific
anxiety disorders (Knowles &Olatunji, 2020), this link has received
great clinical and research interest.

1. Animal models of trait anxiety

Anxiety-like behavior is not exclusive to humans. Many nonhu-
man animals also have biological mechanisms that enable them to
anticipate and successfully cope with various threat-related stimuli
in the environment. Except for phenomenological and highly
subjective aspects that are inherent to reports of human anxiety,
almost all other anxiety-related components show great similarity
across mammalian species and have long been used to study
anxiety in laboratory settings (for review, see Graeff, 2010; Steimer,
2011). Since the seminal work of Hall (1934) that showed that rats
with high and low levels of emotionality exhibit different patterns
of exploration in an open field (i.e., more emotionality, less
exploration), no other emotion has been more studied in animal
models than anxiety and its related disorders.

Dozens of animal models of elicited anxiety have been
validated, and many have been recognized as valuable or
indispensable tools for studying defensive behaviors and searching
for more effective and targeted treatments for specific anxiety
disorders (Steimer, 2011). However, despite its obvious clinical
important, trait anxiety is paradoxically omitted or rarely
addressed in most of these studies. This is particularly concerning
when attempting to model or simulate anxiety in anxiolytic
screening studies and when investigating neurobiological mech-
anisms that underlie defensive behaviors and their possible
associations with anxiety disorders. One reason omission of a
trait perspective is problematic is that behavioral tests of anxiety in
humans and animals always involve an interplay between a trait
anxiety component (which reflects an individual’s vulnerability or
susceptibility to anxiety) and the situation that elicits state anxiety
at the time of testing. Thus, when extreme forms of these traits are
ignored, it is difficult, if not impossible, to dissociate adaptive
defensive reactions from eventual maladaptive defensive reactions
that are supposedly associated with specific anxiety disorders.
Moreover, trait anxiety is not directly observable. Instead, it is
inferred as a tendency to anxiety that can only be phenotypically
observed and assessed through a standardized anxiety-related
measure (e.g., behavioral, physiological, and neural correlates) at
the time of testing. Finally, interactions between trait and state
anxiety have been found to influence both the direction and
magnitude of a given treatment (Griebel et al., 2000; Rao &
Sadananda, 2016).

One strategy to manipulate trait anxiety in animal models is
bidirectional selective breeding for extremes in anxiety-related
parameters (for review, see Steimer & Driscoll, 2003), such as high
anxiety-related behavior (HAB) and low anxiety-related behavior
(LAB) rats and mice (Carboni et al., 2022; Landgraf & Wigger,
2003; Liebsch et al., 1998), Roman high- and low-avoidance rats
(Bignami, 1965; Giorgi et al., 2019), Naples high- and low-
excitability rats (Sadile et al., 1984; Pellicano & Sadile, 2006), the
Syracuse (high- and low-avoidance) rat strains (Brush, 2003; Brush

et al., 1999), the Maudsley reactive and non-reactive strains
(selected for emotional defecation; Broadhurst, 1960, 1975), the
Tsukuba (high and low runway activity) rat strains (Blizard et al.,
2005; Fujii et al., 1989; who also differ on defecation), Floripa H
and L rat lines (Izídio, & Ramos, 2007; Ramos et al., 2003),
aggressive and non-aggressive mice (Benus et al., 1991; Miczek
et al., 2015), and Carioca High-conditioned Freezing (CHF) and
Carioca Low-conditioned Freezing (CLF) rats. The latter were
developed by our group and associated laboratories, whose data
and foundations as an animal model of GAD are discussed below.

2. CHF rat line as a model of GAD

Starting with a highly heterogeneous population ofWistar rats, our
groups used a selective breeding protocol that has been in progress
for the last two decades, to develop two new lines of rats. The lines
differ in strong phenotypic divergence for high (CHF) and low
(CLF) trait anxiety, respectively, with selection based on
conditioned freezing scores in the well-known contextual fear
conditioning paradigm (Bolles & Fanselow, 1982). The basic
contextual fear conditioning protocol for our breeding separation
involves two phases, trial and test sessions, that occur on two
consecutive days. On the first day (conditioning trial), the rats are
placed in a conditioning chamber. After 8 min (pre-shock period/
baseline), they are exposed to three unavoidable mild electric
footshocks. Twenty-four hours later, the rats are placed in the same
conditioning chamber (context), but no shock is delivered. In this
second exposure (test session), a trained observer records the
occurrence of freezing behavior for 8 min according to a time-
sampling schedule. Rats were scored every 2 s as either freezing or
not freezing. Freezing was defined as a crouching, immobile
posture with no movement other than that required for breathing.
Contextual freezing behavior is then converted to a percentage as
an anxiety-like measure. The breeding protocol, which we have
uninterruptedly conducted in 42 successive generations since 2006,
consists of the selective mating of male and female rats with their
respective highest and lowest percentages of contextual freezing
behavior. To better interpret differences between these two rat
lines, a group of Wistar rats (CTL), composed of the offspring of
randomized cross-breeding populations, is used as an additional
control group in most of our studies. All animals were phenotyped
at 2–3 months of age.

Over the past 16 years, more than 13 000 animals have already
been phenotypically selected based on this protocol. Figure 1
presents the conditioned freezing behavior of our breeding lines
across the 42 generations. As we reported in our first study (Castro-
Gomes & Landeira-Fernandez, 2008), CHF and CLF rats exhibited
reliable differences in conditioned freezing after the first three
generations of selection. Males from both lines consistently exhibit
more conditioned freezing in response to contextual cues than
females. We also noted that the shock parameters that we
employed (i.e., three 1 mA, 1 s unsignaled electrical footshocks
with an inter-shock interval of 20 s) were very high. After the
fourth generation, the shock intensity was reduced until it reached
0·4 mA in the 12th generation. In the 13th and 14th generations,
we increased the shock intensity to 0·5 mA and 0·6 mA,
respectively. This shock intensity has remained until the present
generation. Male and female CHF, CLF, and CTL animals
systematically exhibit clear differences across the remained
generations.

The CHF rat line has been identified as a valid and reliable
animal model of GAD. We present a brief summary of how the
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main behavioral, pharmacological, physiological, and neuro-
biological findings from these animals constitute an animal model
of GAD. Notably, no animal model of anxiety fully recapitulates all
aspects of clinical anxiety in humans. Importantly, however, this is
not the intention of such models. Typically, the validity of an
animal model of anxiety or some other psychiatric condition is
estimated by considering its degree of face validity, predictive
validity, and construct validity (Treit, 1985; Willner, 1984),
although there is often certain parsimony with regard to the need
to fully meet these three criteria, depending on the purpose of
the study.

Table 1 summarizes the major correspondence between
findings from the CHF rat line and some of the main features of
GAD in humans. One of the first behavioral findings from the CHF
line was that these animals expressed their corresponding
“anxious” characteristics not only in the contextual fear
conditioning paradigm but also in the elevated plus maze
(Cavaliere et al., 2020; Dias et al., 2009; Léon et al., 2017;
Salviano et al., 2014), one of the best-known animal models of
anxiety (Cruz et al., 1994; Handley & Mithani, 1984; Pellow et al.,
1985). The elevated plus maze is based on the naturally occurring
approach-avoidance conflict in rodents that is related to their
motivation to explore new environments and innate fear of heights
and open spaces (Treit et al., 1993). Importantly, this anxious

behavioral profile that is observed in CHF rats in the elevated plus
maze (i.e., decrease in open-arm exploration) was detected without
significant changes in the total number of arm entries (open þ
closed arm entries) or absolute number of closed arm entries, thus
indicating that the phenotyping protocol that is used for the
selection of successive generations of these animals based on
contextual fear conditioning does not produce significant general
locomotor impairments, a key point in animal models of anxiety
that require locomotor activity.

A substantial body of evidence (Brandão et al., 2008; Fanselow,
2000; Luyten et al., 2011; Phillips & LeDoux, 1992) indicates that
conditioned freezing behavior in response to a context but not to
an explicit cue (e.g., a tone that is previously associated with an
aversive stimulus) share several behavioral, physiological, and
neurobiological characteristics with GAD. Likewise, the elevated
plus maze, at least in its usual form of a single 5-min session, also
exhibits features of an animal model of GAD. An intricate
relationship has been suggested between a type of behavior that is
supposedly related to generalized anxiety, which would occur
during the first 5 min of a single exposure to the test, with another
type of anxiety (specific phobia) that results from a longer exposure
(10 min) or second 5-min exposure to the test (File & Zangrossi,
1993). This view is consistent with findings that anxiolytics
increase open-arm exploration during a single 5-min session in the

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

CHF CTL CLF

Generation

Fr
ee

zi
ng

 (%
)

Fr
ee

zi
ng

 (%
)

Male

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Generation

Female

Figure 1. Mean ± SEM percentage of the time spent freezing in male (top) and female (bottom) Carioca High Freezing (CHF) and Carioca Low Freezing (CLF) rats across 42
generations. Control animals (CTL) started in the fifth generation of the two breeding lines.
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elevated plus maze but lose this anxiolytic-like effect (i.e., “one trial
tolerance”) when given in a single 10-min session or second 5-min
session (File & Zangrossi, 1993). According to these authors, this
mimics a condition that is supposedly related to specific phobia, for
which anxiolytics are known to be ineffective (Bandelow,
Michaelis, & Wedekind, 2017). Therefore, high trait anxiety in
CHF rats exposed for 5 min to the elevated plus maze further
corroborates the proposition that these animals are a model
of GAD.

Other more recent behavioral findings also corroborate this
view. For example, one of the main characteristics of GAD is its
chronic course. Accordingly, Lages et al. (2021a) showed that CLF
rats were unable to consolidate aversive memories, whereas CHF
rats exhibited considerable percentages of freezing behavior even
after multiple exposures to the context that was previously
associated with the aversive stimulus, with the additional
interesting feature of being susceptible to extinction. In another
study that compared patterns of freezing behavior in CHF and CLF
rats in response to the context or cue (a tone that was previously
associated with an electric footshock), Macêdo-Souza et al. (2020)
showed that CHF rats froze more than CTL rats and these more
than CLF when exposed to the context, that is associated to
generalized anxiety disorder (Luyten et al., 2011) but not to the cue
that is supposed linked to specific phobia (Garcia, 2017; Grillon
et al., 2006).

Potentially threatening situations are also known to activate the
hypothalamic–pituitary–adrenal (HPA) axis (Hinds & Sanchez,
2022). Consequently, GAD patients have been found to have
elevated cortisol levels (Lenze et al., 2011). Again, CHF rats were
equally selective for this parameter as reported byMousovich-Neto
et al. (2015). These authors showed increased neuroendocrine
responses (i.e., increased serum corticosterone) in CHF rats
comparted to control animals.

Benzodiazepines are among the most commonly prescribed
and effective medications for GAD (Gomez et al., 2018). For this
reason, many animal models of anxiety are pharmacologically
validated based on this class of drugs. Thus, in one of our studies
(Cavaliere et al., 2020), systemic injections of the benzodiazepine
midazolam (0·25, 0·5, 0·75, and 1·0 mg/kg, i.p.) selectively
increased open-arm exploration in CHF rats exposed for 5 min
to the elevated plus maze test. Interestingly, however, this

anxiolytic-like profile was only observed at the lowest dose tested
(0·25 mg/kg) in CLF rats. This observation is consistent with
previous findings that anxiolytic-like effects of benzodiazepines
and mainly serotonergic anxiolytics appear to depend on the
animals’ level of anxiety before testing (Blanchard et al., 2001).
Accordingly, in another study, systemic (0·5 mg/kg, i.p.) and intra-
infralimbic cortex (5 nmol/ml) injections of the preferential
5-HT2A receptor antagonist ketanserin induced anxiolytic-like
effects in CHF rats but anxiogenic-like effects in CLF rats in the
elevated plus maze (León et al., 2017).

Another interesting finding that is also consistent with
characteristics of GAD in humans refers to alcohol consumption.
Alcohol is known for its “anxiolytic” properties in humans and
animals. So, since GAD has also been associated with alcohol abuse
in clinical and nonclinical populations (Kushner et al., 1990; Smith
& Randall, 2012), this association was also recently investigated in
the CHF rat line (Bezerra-Krounis et al., 2020). As expected, CHF
animals consumed more alcohol than CLF and control animals,
which opens the possibility of using this model to better
understand the comorbidity between GAD and alcohol abuse.

It is important to mention that anxiety and depression are
independent disorders, although, clinical studies have shown that
there is a high level of comorbidity between them (Groen et al.,
2020), with a co-occurrence rate of 90% (Gorman (1996). Results
from our breeding line indicated that CHF animals from the fourth
generation did not differ from control animals, as measured by the
forced swimming test (Dias et al., 2009). However, more recent
results, employing CHF animal from the 26th and 27th generation
indicated a depressive like behavior when compared to control
animals (Goulart et al., 2021). Further studiesmay explore this type
of relationship and whether antidepressant drugs are capable of
reversing the depressive and the anxiety like effects in these
animals.

At the other extreme from animals with high trait levels, CLF
animals exhibited a delayed response to haloperidol at lower doses,
needing higher doses to reach similar levels of catatonia as control
randomly bred animals. Moreover, methylphenidate increased
freezing response and motor activity among CLF rats when
compared to control animals (Lages et al., 2021b). Since
haloperidol and methylphenidate are dopamine-related molecular
targets, it is possible that the CLF line of rats might represent an

Table 1. Correspondence between CHF rat line findings and some main features of generalized anxiety disorder in humans

CHF rat line Reference GAD features Reference

High and diffuse anxiety in contextual fear
conditioning, elevated plus maze, and
avoidance behavior in the elevated T-maze

Dias et al. (2009); Cavaliere et al.
(2020); Léon et al. (2017);
Salviano et al. (2014)

Excessive anxiety and worry American Psychiatric
Association (2013);
Crocq (2017)

Immobility/freezing behavior Castro-Gomes and Landeira-
Fernandez (2008)

Muscle tension American Psychiatric
Association (2013);
Crocq (2017)

Different pattern of acquisition/extinction in
response to context and cue

Macedo-Souza et al. (2020);
Lages et al. (2021a)

The focus of anxiety is not confined
to a specific situation or features of
other anxiety disorders (e.g., panic,
specific phobia, etc.)

American Psychiatric
Association (2013);
Crocq (2017)

Increase corticosterone serum levels Mousovich-Neto et al. (2015) Elevated cortisol Lenze et al. (2011)

Benzodiazepine and serotonergic anxiolytics
attenuate freezing behavior in CHF but not
CLF rats

Cavaliere et al. (2020); León et al.
(2017)

Benzodiazepine and serotonergic
anxiolytics attenuate GAD symptoms

Gomez et al. (2018);
Reinhold et al. (2011)

Higher alcohol intake Bezerra-Karounis et al. (2020) Comorbidities or associations with
alcohol abuse

Kushner et al. (1990);
Smith and Randall (2012)
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animal model of hyperactivity and attention disorders. This
hypothesis is currently under investigation in our laboratory.

Finally, other studies developed by our group but not discussed
in the scope of this review (for details, see Dias et al., 2014; Lages
et al., 2023; Léon et al., 2020) also indicate functional and structural
changes in neural circuits underlying anxiety in the CHF rat line,
which seems to indicate that the phenotyping process that
strengthened this trait anxiety was also expressed in terms of a
great capacity for neural plasticity.
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