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Let C(M, Q) be the Clifford algebra of an even dimensional vector space M 
relative to a quadratic form Q. When Q is non-degenerate, it is well known 
that there exists an isomorphism of the orthogonal group 0(Q) onto the group 
of those automorphisms of C(M, Q) which leave invariant the space 
M C C(M, Q). These automorphisms are inner and the group of invertible 
elements of C(M, Q) which define such inner automorphisms is called the 
Clifford group. 

If instead of the group 0(Q) we take the group of similitudes y(Q) or even 
the group of semi-similitudes Ty(Q), it is possible to associate in a natural 
way with any element of these groups an automorphism or semi-automorphism, 
respectively, of the subalgebra of even elements C+(M, Q) C C(M, Q). Each 
one of the automorphisms of C+(M, Q) so defined can be extended, as it is 
shown here (Theorem 2), to an inner automorphism of C(M, Q), although 
the extension is not unique. A semi-automorphism of C+(M, Q) associated 
to a semi-similitude of Q can be extended to all of C(M, Q) if and only if 
the ratio of the semi-similitude satisfies the conditions given in Theorem 3. 
Although the extension is not unique, Theorem 3 gives all the possible ex
tensions. We do not know if there exist semi-similitudes whose ratios do not 
satisfy the conditions of Theorem 3. In particular, Theorem 2 asserts that 
the conditions do hold for the similitudes. This gives a new proof of a result 
of Dieudonné (cf. (6) and the corollary of Theorem 3). 

In the case that the characteristic of the ground field K is ^ 2, we show 
that C(M, Q) can be expressed as a direct sum of certain subspaces. This 
permits us to consider C(M, Q) as a graded space. In II, we use this gradation 
to characterize the automorphisms of C(M, Q) associated with the similitudes 
and to characterize the semi-automorphisms of C+(M, Q) associated to the 
semi-similitudes (Theorem 4). 

In III we use our characterization of such automorphisms to define what 
we call the extended Clifford group. Then we apply to the elements of this 
group the usual definition of spin-norm. In this way we obtain a mapping of 
the extended Clifford group into the centre of the algebra C+(ikf, Q). 

If S is a similitude of ratio p, p~1S2 is an orthogonal transformation. We 
determine the spin-norm of this orthogonal transformation using the mapping 

Received January 30, 1961. This paper presents some results included in the author's 
dissertation written under the guidance of Professor N. Jacobson and presented to Yale 
University in 1957. 

45 

https://doi.org/10.4153/CJM-1962-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-004-1


46 M. J. WONENBURGER 

mentioned above (Proposition 1). In the same way we find the spin-norm 
of the commutator of elements of the group of similitudes (Proposition 2). 
These results can be used when the Witt index of the quadratic form Q is 
> 0, to prove that the commutator group of the group of similitudes coin
cides with the group generated by the elements of the form p - 15 2 (Theorem 5). 
Theorem 5 also gives necessary and sufficient conditions for this to hold true 
for the group of proper similitudes. 

i 

The well-known results on the Clifford algebras, (3; 7; 9), and the exterior 
algebras, (1; 2; 4), will be used, and computations with the elements of these 
algebras will be made assuming that the reader is familiar with them. How
ever, it has been considered convenient to start with the general definitions 
of these algebras. 

The Clifford aléebra. Let M be a finite dimension vector space over a 
field K of characteristic ^ 2, Q a quadratic form on M. The Clifford algebra 
C(M, Q) relative to Q is the factor algebra of the free algebra 

F(M) = K®M®M2®...®Mi®... 

where Mt = M ® KM®K . . . ®K M i times, by the ideal I generated by 
the elements x ® x — Q(x). That is C{M, Q) = F(M)/I and it is an algebra 
over K. 

If dim M = n, the algebra C(M, Q) has dimension 2n and given any basis 
Xi, x2, . . . , xn oî M the coset X\el x2

€2 . . . xn
€n, et = 0, 1, of the elements 

xiel ® x2
C2 ® . • . ® xn

en 6 F(M) form a basis for C(M, Q). 
The free algebra F(M) has a main antiautomorphism of order 2 which 

carries the element 

xfl ® xi2 ® . . . <g) xin into xin ® . . . ® xu. 

Since this antiautomorphism leaves invariant the generators of / , / is in
variant under it (as an ideal), and therefore it induces an antiautomorphism 
in the Clifford algebra which we denote by * and call the main antiautomor
phism of C(M, Q). 

F(M) can be made into a graded algebra if we define the degree of an 
element a £ Mh to be h. It also can be made into a semi-graded algebra, that 
is, an algebra with a gradation in which the set of indices is the group with 
two elements {1, — 1} (cf. 4, chapter i). The elements of degree 1 or positive 
elements form the subalgebra F+{M) = K(= M0) ® M2 ® . . . ® M2i ® . . . 
and the elements of degree — 1 or negative elements form the subspace 
F~(M) = Mx ® Mz ® . . . 0 M2i+1 ® . . . . 

The ideal / is generated by elements of F+(M), therefore / is homogeneous 
under the semi-gradation and can be written as I = I+ ® I~, where 
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1+ = ir\F+(M), I- = ir\ F~(M). It follows that the Clifford algebra has 
a structure of semi-graded algebra, namely, 

C(M, Q) = F(M)/I « F+(M)/I+ © F~(M)/I~ = C+(M, Q) © C~(M, Q). 

The exterior algebra. When the quadratic form Q is identically 0, the 
ideal / , generated now by the homogeneous elements x 0 xy is homogeneous 
under the gradation of F(M) defined before. It follows that the factor algebra 
E(M) = F(M)/I is a graded algebra with the same set of indices; however, 
in this case the subspaces of degree s > n = dim M are 0. Therefore E(M), 
the exterior algebra of M, is the direct sum of its subspaces of degree 0, 1 , . . . , n ; 
that is, E(M) = K © Ex © E2 © . . . © Em where Er is the subspace of 
elements of degree r> and K = E0 that of elements of degree 0. 

A linear isomorphism of E(M) onto C(M,Q)(1). If xhx2, . . . , xr € M 
we define the element [xi . . . xr] Ç C(M, Q) inductively by 

[x] = x 

[xx. . . x2jc-iX2k] = [[*i. . • ff2*-i], #2*] ([a, 6] = a i — ôa) 

[xi . . . X2*X2*H-I] = {[*i • • • *2*], x2fc+i} ({a, 5} = ab + ba). 

LEMMA 1. The function [xi . . . xr] vanishes when any two of its arguments 
are equal. 

Proof. Since the function is multilinear it suffices to show that [ X\ . . . Xr—2XX\ 

= 0. This follows from the following two calculations 

[{a, x}j x] = (ax + xa)x — x{ax + xa) = ax2 — x2a = Q{x)a — Q(x)a = 0, 

{[a, x], x) = (ax — xa)x + x(ax — xa) = ax2 — x2a = 0. 

LEMMA 2. 77^ ŝ >ace spanned by 1 a?wZ //̂ ^ [xi. . . xr] is /&e w/̂ /̂e o/ C(ilf, Q). 

Proof. Let 3/1, 3/2, . . . , yn be an orthogonal basis for M with respect to the 
bilinear form associated to Q. Then one proves by induction that 

buy a • • • yd = 2T~lyuyn -.ytr 
if the ij are different. This implies the lemma. 

THEOREM 1. There is a linear isomorphism of the exterior algebra E(M) onto 
C(M, Q) sending 1 into 1, Xi A . . . A xr into [xi . . . xr]. If M[r] denotes the 
subspace of elements [xi, . . xT] in C(M, Q), image of the subspace Erj then 
C(M, Q) = K © M{1] © M[2] © . . . © M[n]. 

Proof. Since [x± . . . xr] is multilinear we have a linear mapping of the free 
algebra F(M) into C(M, Q) sending 1 into 1, xx ® . . . 0 xr into [xi . . . xr]. 
By Lemma 1 this induces a linear mapping of the exterior algebra E(M) 

(1)I am indebted to Professor Jacobson for this definition. 
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into C(M, Q). By Lemma 2 this mapping is onto C(M, Q). Comparison of 
dimensionalities shows that this is an isomorphism which gives 

C(M, Q) = K © Mm ® Mm ® . . . ® M[n]. 

Since E\ — M and under the linear isomorphism E is isomorphically 
mapped onto M[i\, this space is identified with M. 

DEFINITION 1. If an element of C(M, Q) belongs to M[r] it will be said that 
it has degree r. The field K is considered as M[o]. 

Under this gradation C(M, Q) is not a graded algebra but a graded vector 
space over K, and C+(M, Q) = K ® M[2] 0 . . . 0 M[2r] if dim M = 2r or 
2r + 1. 

Let yi, y2, . . . , yr G M span the subspace Y C M, and zh . . . , zr the sub-
space Z C. M. Then yx A . . . A yr = azi A . . . A zr, a G K, if and only if 
Y = Z. Therefore [yi . . . yr] = a[zi. . . zr] if and only if Y = Z, which implies 

LEMMA 3. If yi, y2, . . . , yr and z\, . . . , zr are orthogonal bases for Y and Z, 

respectively, y\y2. . . yr = azi. . . zr if and only if Y = Z. 

i i 

DEFINITION 2. A transformation 2 of an algebra onto itself will be called a 
semi-automorphism relative to a if 2 is an automorphism of the algebra con
sidered as a ring, that is 

(a + b)* = a 2 + Z>2, (aô) s = aH*, 

and it is a semi-linear mapping relative to the automorphism a of K with respect 
to multiplication by elements of K, that is, (aa) s = a* as. In particular if the 
algebra has an identity a2 = (al) s = cfl = a0". 

J/ £Ae automorphism a is the identity, 2 will be called an automorphism. 

If (S, a) is a semi-similitude of Q of ratio p, that is, a semi-linear trans
formation of M onto M, relative to the automorphism a of K, such that 
Q(xS) = pQ(x)(X (cf. 1, chapter i), there exists a semi-automorphism 2 of 
/^(Tkf) relative to a, associated to {S, a) and defined in the following way 

(yi ® 3>2 ® . . . 0 3;2^)s = p-'CyiS) ® ^ S ® . . . ® y2tS. 

Under this automorphism I+ is changed into itself. To prove this it is 
sufficient to take elements of the form 

d = 3>i ® y2 ® . . . ® yT ® u ® z\ ® . . . ® zs 

where r + s = 2t and u = x ® x — Q(x). Then 

d* = p-('+i)(yiS) ® . . . ® y r5 ® xS ® xS ® 2i5 ® . . . ® 2SS 

- p - ' Q W f r i S ) ® . . . ® yTS ® 2i5 ® . . . ® zsS. 

Since p-^xS) ® xS - £(*)" = p " 1 ^ ® xS - Q(x5)) = p " ^ G I+ 

dz = p-(«+i)(yi5) ® , . . ® y r5 ® » ® zi5 ® . . . ® zs5 e /+. 
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Therefore 2 induces a semiautomorphism in C+(M, Q) which will be called 
the semi-automorphism associated to (5, a). This is a semi-automorphism 
relative to o\ The image under this semi-automorphism of the element 
Xi#2. . . X2n is p~n(xiS)(x2S) . . . (x2nS). If Xij . . . , x2h are orthogonal vectors 
so are the vectors X\S, . . . , X2hS. This implies that 2 takes M^ into itself 
and therefore 2 is homogeneous of degree 0. From now on we are going to 
assume that Q is non-degenerate. 

If dim M = 2r, M[2r] is one dimensional. Let 0 9e e G M[2T], then e^ = ae. 
Since e2 = Ô G X, <5* = (e2) s = (e s)2 = a2<5. When o- is the identity, (S, cr) is 
called a similitude, S is an automorphism and one must have a2 = 1, e s = d= e. 
A similitude is proper (improper) if e s = e{e^ = — e). The proper similitudes 
form a subgroup Y + of index 2 of the group y of similitudes; the improper 
similitudes y~ form the other coset. 

THEOREM 2. Any automorphism 2 0/ C+(ikf, Q) associated to a similitude S 
of Q can be extended to an inner automorphism of C(M, Q). 

Proof. It follows from their definitions that, if xS = a(xSi), the auto
morphisms of C+(M, Q) associated to 5 and Si are equal. Therefore when M 
is odd dimensional the automorphism 2 is equal to the automophism associated 
to a rotation U (cf. 7, chapter 11, § 13). The rotation U defines an inner 
automorphism of C(M, Q) which induces on C+(M, Q) the automorphism 
2 (3, 2.3). 

If dim M = 2r and S is proper the automorphism 2 leaves invariant the 
centre of C+(ikf, Q), Z = K + Ke, therefore it is an inner automorphism of 
C+(M, Q) and can be extended to an automorphism of C(M, Q). 

If S is improper and x\, #2, . . . , X2T is an orthogonal basis for M, let us 
take the proper similitude S' defined as follows 

xtS
f = XtS for i = 1, 2, . . . , 2r — 1, and x2rS' = — x2rS. 

The automorphism 2 ' associated to S' is inner and let u £ C+ be such that 
c s / = ^ - 1 a / and take y = XiX2 . . . x2r-i G C~". Then zw defines an inner auto
morphism of C which induces on C+ the automorphism 2. 

THEOREM 3. Let 2 be a semi-automorphism of the algebra C+(M, Q) associated 
to the semi-similitude (5, a) of ratio p. Then 

(i) if dim M = 2r + 1, S ca?z 6e extended to a semi-automorphism of 
C(M, Q) if and only if p = n2. Then if x G M, x^ = ^(xS) or — ^(xS). 

(ii) if dim M — 2r, 2 can 6e extended to C{M, Q) if and only if p = 
iV(a: + j3e) = (a + 0e) (a - /3e). T t e , # x G l f , x s = p " 1 ^ ) ^ + fie). 

Proof. Let #1, x2, . . . , xn be an orthogonal basis of M, e = xi . . . xn and 
ô = Q(xi) . . . Q(xn). Since the algebra C(My Q) is generated by xi and 
XiX2, X1X3, . . . , Xixn, given a semi-automorphism of C+ it would be possible 
to extend it to C if and only if we can find an element c $ C+ which anti-
commutes with (xiXt) s i = 2, 3, . . . , n and whose square is equal to 
(xi2) s = Q(xi)(T. For, if the extension exists Xis has all these properties and 
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conversely if there exists a c with these properties the m a p taking u = u+ + u~ 
= u+ + XÏV+, where u+, v+ Ç C+ , u~ Ç C~, in to w 2 = (u+) 2 + c(z/+) 2 can 
easily be seen to give a ring endomorphism of C(M, Q). 

T h e image of C t h a t we get under this endomorphism has dimension greater 
t han dim C+ = \ dim C. Since C is either simple or a direct sum of two simple 
algebras of equal dimension, the defined endomorphism is on to and hence a 
semi-automorphism of the algebra C. 

T h e element %iS certainly an t icommutes with (xixt)
2 = p - 1 (x i5 ) (xiS)1 

i = 2, . . . , n. If another element c also has this proper ty c(x\S) commutes 
with all the (xixt)

2 and therefore with C+. Hence c(xiS) = a + fi'e, 
c = (xiS)(a + fie). 

(i) If dim M = 2r + 1 and the extension exists Xi 2 = c = (xiS)(a + fie) 
and (x x

2 ) 2 = (xi5)2(« + i&02 = pQixtfip? + 2afie + ( - l)rfi28) = Q(Xly = 
(xi2) 2 which implies t h a t ei ther a = 0 or fi = 0. B u t if a = 0, (xiS)fie G C+ 
and we do not get a semi-automorphism. Hence 0 = 0 and pa2 = 1, t h a t is, 
p = /x2 and X i s = ju_1(xi5) or Xi 2 = — /x_ 1(xi5). 

Suppose Xi 2 = /x_ 1(xi5), then if x Ç Tkf, x 2 = (Q(xi)~lXi(xix)) 2 = Ç?(xi)_(r 

/ i - 1 (x i5 )p _ 1 (x i5 ) (x5) = / ^ ( x S ) , t h a t is, x 2 = ^(xS). 
(ii) If dim M = 2r and the extension exists (x i 2 ) 2 = ((xiS)(a + fie))2 

= (xi5) 2(a - 0g) (« + j8e) = pQixù'ia2 - ( - 1)r/525) mus t be equal to 
( x i 2 ) 2 = Q{xxy. Hence p(a2 - ( - l)r02<5) = 1 and therefore p = (pa)2 

- ( - l)r(p/5)2ô = ( a i + M ( « i ~ i M = # («i + M , where ax = ap, 0i = 0p 
and iV(ai + jSie) means the norm of a\ + foe. 

Then if p is a norm, say p = A7 (a + fie), t ak ing Xi 2 = p~1(x\S)(a + fie) we 
get an extension of 2 and for any x G ikf we have x 2 = p~l(xS) (a + fie). 

Combining the result (ii) with Theorem 2 we get the 

COROLLARY. When dim M = 2r, the ratio of a similitude is of the form 
p = N(a + fie) = a2 + ( - 1)r~1/S2ô (cf. 6) . 

U p to now it has been seen t h a t to any semi-similitude (5, a) can be associ
a ted a semi-automorphism of C+(M, Q) relative to a which is homogeneous 
of degree 0. If a is the ident i ty S is a similitude and we have an au tomor
phism. 

Our purpose now is to prove t h a t any semi-automorphism of C+(M, Q) 
which is homogeneous of degree 0 is a semi-automorphism associated to a 
semi-similitude. If the semi-automorphism is an au tomorphism it is associated 
to a similitude. In fact, it is sufficient to assume t h a t the semi-automorphism 
takes M[2] into itself to deduce t h a t it is associated to a semi-similitude. 

T h e proof will be decomposed into steps which we present as lemmas. 

L E M M A 4. Any element c £ M [2] whose square is an element of K different 
from zero is the product of two non-isotropic orthogonal vectors of M. 

Proof. Let xi, x2, . . . , xn be an orthogonal basis for M. Then X\X^ XiX3, . . . , 
x\Xn, X2X3, . . . , xw_ixw form a basis of M[2]. 
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If c G M[2], c = J2 KjOLijXiXj. Because we assume tha t c2 = n ^ 0, c~l = fx~1c. 
We are going to prove t h a t c belongs to the Clifford group, t h a t is, the inner 
automorphism defined by c leaves invar iant the subspace M. I t is sufficient 
to prove tha t for xh, h = 1, 2, . . . , n, c~lxhc G M. 

Since 

( j=n i<h 

/ J OujjXfXj / J OtjijXjiXj / J Ot-ijiXiXfi ) Xfi 
ij^h j>h i=l 

j=n i<h \ 

2 2^ Ot-hjXhXj 2 2LZ (XihXiXh) Xfi, 
j>h i=1 / 

- 1 _ - 1 
C XftC — C (

j=n i<h \ 

C 2 /-J OifjjXhXj 2 2^ aihXiXj, I Xh 
j>h 2=1 / ( j=n i<h \ 

cxh + 2Q(xh) J ] othjXj - 2Q(xh) X) <xihXi) = dm + dm 
3>h i = l / 

w h e r e d\w G M a n d d[%] G M[z]. 

Now from (c~lxhc)* = (fjrlcxhc)* = yrlcxhc = c _ 1 x ^ follows ( c - 1 * ^ ) * = 
(d\i] + ^[3])* = d[i] — dm = d[i] + d[3] and d[z] = 0. Therefore c~lxhc G I f 
and defining xG = c_1x^ for any x G AT, G is an orthogonal t ransformation. 
Moreover G is a proper orthogonal involution since c G M [2] C C + and 
C 2 = M-

If Z17 is the minus space of G (cf. 8, 1.2, Lemma 2) , it has even dimension, 
Let 3>i, y2j . . . , 3^ be an orthogonal basis of M such t ha t the 2r first vectors 
form a basis of £/. When M is even dimensional any element of the Clifford 
group defining an inner automorphism which induces on M the rota t ion G 
has the form yyiy2 . . • y<iT, 7 G X" (3, 11.3). Therefore c = yyiy2. . . y2r and 
since c G Af[2], 2r = 2 and c = 73/13/2 = yiyz- When M is odd dimensional, 
let e = yiy2 . . . 3^, then c = (a + /3e)yiy2. . . 3>2o but , since c G Af [2] and 
03/13/2 . . . y2r = 5y2r+i • • . yn £ M[n-2r] y* M[2] because n — 2r is odd, /? = 0, 
and c = ay^y2 = yîyi-

LEMMA 5. Let y\ and y2 be two non-zero vectors of M. Then yiy2 G K if and 

only if y2 = ayi. 

Proof. T h e linear isomorphism of E(M) onto C(M, Q) defined in P a r t I, 
takes 3>i A y2 G E2 into [3/13/2] = 3>i3'2 — 3>23>i G M[2]. On the other hand 
y&2 + 3>23>i = (3>i, y2) G i£, where (3/1, y2) is the bilinear form associated to 
Q. Then 23/13/2 = [^1^2] + (3>i, y 2) G ikf[2] + K. Since we assume t h a t 3/13/2 G i£, 
b ^ ] = 0; therefore 3/1 A y2 = 0, which implies y2 = ayi. 

D E F I N I T I O N 3. The vectors of a set are called properly independent (p.i.) if 
they are non-isotropic and orthogonal to each other. 

L E M M A 6. Let x, y and u, v be two pairs of p.i. vectors. Let Pxy and Puv be 

the two planes spanned by x and y, and u and v, respectively. Then xy and uv 
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anticommute if and only if Pzy C\ Puv = Kz, and the space Kz is non-isotropic 
and its orthogonal complement in Pxy is orthogonal to Puv. 

Proof. T h e plane Puv is non-isotropic. Therefore M = Puv © PUV
L where 

PUVL is the orthogonal complement of Puv. In this decomposition of M, 
x = C\ + dh y = C2 + d%, Ci G Puv, dt G PîiV±, which implies t h a t dt commute 
with uv and Ct an t icommute . Hence if xy and uv an t i commute 

xyuv = (ci + di)(c2 + d2)uv = uv{ — C\ + di){ — c2 + d2) 
xyuv = — uvxy = — uv{c\ + di){c2 + ^2). 

Since wz; has an inverse we have 

( - d + di)(— c2 + d2) = — (a + d1)(c2 + d2) or 2{cxc2 + dxd2) = 0. 

Bu t Cic2 belongs to the subalgebra over K, A, generated by u and v\ dxd2 

belongs to the subalgebra over K, B, generated by the vectors in Puv±, and 
A r\ B = K. Therefore C\C2 + did2 = 0 if and only if C\C2 = JU, d\d2 — — \x> 

Case I. Suppose ci, c2, dif d2 are all different from zero. T h e n by Lemma 5 
c2 = OLCI, d2 = fidi. Therefore x = C\ + d±, y = aci + (3di and since (x, y) = 0 
we get :ry = {/3 — a)ci^i . This implies, by Lemma 3, P ^ = P c l d l and therefore 
£1 G P ^ , PWÎ, / ^ P ^ = Kc\ and the orthogonal complement of C\ in P ^ , 

di G P w / . 

Case / / . Suppose one of the vectors Ci, c2, dh d2, is zero, let us say d2 = 0. 
Since y ^ 0, y = c2 9* 0, Q(c2) = ( ? ( » ^ 0. B u t then ac2 + dxd2 = 0 is 
reduced to C\C2 = 0. Because Q{c2) 9e- 0, c2 has an inverse and c±c2 = 0 implies 
C\ = 0. Therefore x = di, y = c2, Puv C\ Pxy = Kc2 and the orthogonal com
plement of Kc2 in Pxy is d± G PUv±-

In the same way, if c2 = 0, we get d2 9e 0, QW2) 9^ 0 and CiC2 + did2 = 0 
reduces to 6^2 = 0 which implies d± = 0, x = ch y = d2. 

Conversely, if the space spanned by x and 3; contains two non-isotropic 
vectors x' and 3/ such t h a t x' G PM» and y' G PM»-1, X ' an t icommutes with uv 
and 3/ commutes with it. Therefore xy = ax'y' an t icommutes with uv. 

L E M M A 7. Let Xi, x2, . . . , xn be an orthogonal basis of M. Then under any 
semi-automorphism 2 of C{M, Q) or C+(M, Q) taking Xix2} X1X3, . . . , Xixn into 
elements of M{2], the images of these elements can be written in the form y\ y2y 

y\ y a, • • . 1 yi'yn, where yi, y2, . . . , yn are p.i. vectors. 

Proof. By hypothesis (xix*) s = l^h<jahjxhxj1 and since 0 ^ (xix^)2 G K, 
(?}ahjxhXj)2 G K. Hence by Lemma 4 (xix^) s = ttZi where tu zu i = 2, 3, . . . , n 
are p.i. vectors. 

Since to and to an t i commute , by Lemmas 6 and 3, to = {at2 + ^2)3^3 
and ht 22» ^3 are p.i. and yi = {at2 + fiz2) is determined up to a scalar factor. 
By Lemma 3 we know t h a t ^£2 = yi'y2 where y2 = at2 + /3'z2 and y±f y2l y$ 
are p.i. 
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Let us consider ttZi i j& 2, 3. Since it anticommutes with (xix2)
 s = yiji 

and (xix3)s = yx'yz we have ttZi = {atyi + $iy2)u = (a/yi + fii'ysjv where 
yi, y2, u are p.i. and so are yi, 3/3, v. 

Applying again Lemma 3 we get 

nfatyi + pty2) + vu = a/y 1 + 0/3/3. 

If v 9^ 0, u = 5iyi' + 52̂ 2 + ô3̂ 3 and 

(xixz)s = t&i = {aty[ + pty2)u = 71 + 723>i3;2 + 7s3'i3'3 + 743^3 

= (71 + 72 xjx2 + 73 xix3 — Q{yi) 74 X1X2X1X3) 

where <r is the automorphism of K related to 2. But this contradicts the fact 
that S is a semi-automorphism because 1, xix2, #1X3, #2^3, Xixt are linearly 
independent. 

Therefore v = 0 and fit = /3/ = 0 for 3//, y2, y% are p.i. If we write atu = yi 
we have (xixt)

 s = yi'yt and y / , 3/2, y3, yi are p.i. 
To prove that yi, y2, . . . , yn are p.i. it is sufficient to show that they 

form a set of pairwise orthogonal vectors, for since they are non-isotropic 
this would be impossible if they were not independent. 

We know that yi'yt are p.i. and 3//, yj are p.i. Besides if i 9^ j y\y% and 
yi'yj must anticommute; then by Lemma 6 yt and yy- are orthogonal. 

THEOREM 4. Any semi-automorphism 2 of C+{M, Q) mapping M[2] into 
M[2] is associated to a semi-similitude. Moreover, if 2 is an automorphism it is 
associated to a similitude. If dim M > 2 the semi-similitude is defined by 2 up 
to a scalar factor. 

Proof. The elements 1, X ^X 2 j X xX 3 j • • • , • X XXJI , where X\y x2} . . . , Xfi is an 
orthogonal basis of M, form a set of generators of C+(ikf, Q) over K. By 
Lemma 7 this set of generators is taken by 2 into 1, yîy2, yi'y*, . . . , yi'yn 
where yi, y2, . . . , yn are p.i. and the yî and therefore the y/s are defined 
up to a scalar factor, when dim M > 2. 

Let p - Ç(3^i/)~1G(^i)<r, then 

((*i*<)2)2 = - Q{x1YQ{xiy = ((x!x,)s)2 = (yi'y*)2 = - GCviOOCy*) 

and hence 

Q{yi) = PQC**)" * = 2, 3 , . . . , ». 

Take 3>i = P3>/, then (?(:yi) = p2Q(yi) = pQ(^i)0, and define the semi-
similitude (5, a): XcxiXi —» Sa /^ i . 

The semi-automorphism of C+(Af, Q) associated to (5, cr) takes XiX* into 
P~1yiyt — JiJi a n d since it coincides with S on a set of generators over K 
both semi-automorphisms are equal. 

COROLLARY 1. When dim M > 2, there exists an isomorphism between the 
projective group of semi-similitudes {similitudes) and the group of semi-auto
morphisms {automorphisms) of C+{M, Q) leaving invariant the subspace M[2]. 
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This isomorphism takes the projective group of proper similitudes onto the group 
of inner automorphisms of C+(M, Q) leaving invariant M[2]. 

T h e last pa r t of this corollary is a consequence of the proof of Theorem 2. 

COROLLARY 2. If dim M > 2, there exists a homomorphism between the 
group of inner automorphisms of C(M, Q) leaving invariant the sub space M [2] 

and the projective group of similitudes Py(M, Q). The kernel consists of the 
inner automorphisms defined by elements of the centre of C+(M, Q). 

Proof. Any inner automorphism 2 of C(M, Q) taking M[2] into itself induces 
an automorphism on C+(M, Q) uniquely associated to the coset of a similitude 
S in Py(M, Q). T h e mapping of 2 into the coset of 5 is a homomorphism of 
the group of inner automorphisms of C{M, Q) onto Py(M, Q) by Theorem 2. 
T h e inner au tomorphisms which are mapped into the coset of the ident i ty are 
defined by the invertible elements of the centralizer of C+(M, Q) in C(M, Q). 
This centralizer is the centre of C+(M, Q), if dim M = 2r, and if dim M = 2 r + 1 
it is the centre of C which defines the same inner au tomorphisms t h a t the 
centre K of C+ , namely, only the ident i ty . 

Remark. Wi th the exception of the case of the algebra C+(M, Q) when 
dim M = 4, any au tomorphism of C(M, Q) or C+(M, Q) considered as rings, 
taking M\2\ into itself mus t t ake K into itself and therefore it is a semi-
automorphism of C(M, Q) or C+(Mj Q) considered as algebras. 

i n 

T h e Clifford group T of C(M, Q) is the group of invertible elements which 
define inner au tomorphism of C(M, Q) leaving invar ian t the space M. T h e 
t ransformations induced on M for such automorphisms are orthogonal t rans
formations with respect to Q (cf. 3, 2.3). I t is clear then t h a t the elements 
of r define inner au tomorphisms of C(M, Q) which are homogeneous of 
degree 0, with respect to the gradat ion of C(M, Q) defined in par t i. 

D E F I N I T I O N 3. The extended Clifford group G of C(M, Q) is the group of 
invertible elements s of C(M, Q) such that the inner automorphism s~lcs leaves 
invariant the space M[2]. 

W e have seen in pa r t n t h a t the elements of 0 defined inner au tomorphisms 
which induce on C+ au tomorphisms associated to similitudes and therefore 
these automorphisms induced on C+ are homogeneous of degree 0. 

I t is clear t h a t 9 D T and Theorem 3 (i) proves t h a t when M is odd dimen
sional 9 = T. Therefore the only interesting case is when dim M = 2r and 
9 properly contains T. 

From now on it is assumed t h a t dim M = 2r. 
Any automorphism associated to a proper (improper) similitude takes any 

element e Ç M[2r] into e(— e). Hence the inner au tmorphism defined by 
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s G 6 is associated to a proper (improper) similitude if and only if 5 commutes 
(anticommutes) with e, t h a t is, 5 Ç 9+ = 0 H C+ (9~ = 6 H C~). 

Therefore if 5 G 9 either s G 9 + or 5 G 9~. 
Let us recall t h a t there exists a homomorphism X of T into the multipli

cative group of invertible elements of the centre of C(M, Q). If s G T, the 
value \(s) = ss* is called the spin-norm of 5 and also the spin-norm of the 
orthogonal t ransformation of M taking x G M into xG = s-1xs. 

Now we are going to s tudy the values of \(s) = ss* for 5 G 9 . 

L E M M A 8. (i) If dim M = 4r + 2, X(.) z's a homomorphism of 9 wzto X . 

(ii) / / d i m M = 4r, X(.) w a ^ ̂ e elements of 9 into ^ cm/re Z of C+(M, Q). 
The restriction of X(.) to 9 + is a homomorphism of 9 + into this centre. Moreover, 
\(s) G K if and only if s G T. 

Proa/ . When dim ikf = 4r + 2, e* = - e for e G ikf[ 4,+2j. Let 5 ^ 0 and 
x G ikf; the inner automorphism defined by 5 is an extension to C(ikf, Q) of 
an automorphshim of C + associated to a similitude. Therefore by Theorem 3 
(ii) s~xxs = y{a + fie), y G M and (s~lxs)* = s*x(s*)~1 = (y(a + fie))* = 
y (a + #e) = s_1xs, t h a t is, 5*x(s*)_1 = s~lxs, xss* = ss*x for every x G Af. 
Hence \(s) = ss* G X , the centre of C, and X(sis2) = ^1^2^*2^*1 = X(si)X(s2). 

(ii) When dim M = \r, e* = e, e G ikf[4r]. Let Xi, x2, . . . , x4r be an or tho
gonal basis of M. Then S _ 1 X Î X ^ = p~lytyj where yh = x^S, & = 1, . . . , 4r and 
5 is a similitude of rat io p. Hence 

(s^XiXjs)* = (jr^tyj)* = - P~lJiJj = ~ (s^XiXjs); 

( c'~~*-'Y% .-V* Ç 1 ——• . C /Y* .'Y* .1 C I —- 1 o 1/y» /y» , c * C C "Y* • 'Y* . ' /V* ./Y* . Ç Ç 

t h a t is, X(s) = ss* G Z and if $i, s2 € 9 + X(sis2) = ^1^2^*2^*1 = X(si)X(s2). 
Assume now t h a t \(s) = ô G K. Then, for any x G Jl/f, ss*x = xss*; 

s~xxs = s*x(s*)~1 = (s - 1xs)*. But s^xs = y (a + fie) and (3; (a + fie))* = y 
(a + fie) if and only if fi = 0 and ^ T. 

Consider a similitude of ratio p. We know by the corollary of Theorem 3 
t h a t p = A7 (a + fie) and by the theorem t h a t the automorphism of C + associ
ated to 5 can be extended to an automorphism 2 of C such t ha t X s = p _ 1 

(xS)(a + fie). This is an automorphism of the simple algebra C(M, Q) which 
leaves the centre invariant . Therefore there exists an element s G 9 defined 
up to a scalar such t h a t s~xxs = p _ 1 (x5) (a + fie) = (xS)(a + fi'e) where 
d = p - i a , fi' = p~lfi and N(af + fi'e) = p-2X(a + fie) = p"1 . 

D E F I N I T I O N 4. An element s G 9 is said to be associated to the similitude S 
with the factor a + fie if s~lxs = (xS)(a + fie). When the factor is 1, we simply 
say that s G T is associated to the orthogonal transformation S. 

L E M M A 9. Let s G 9 be associated to S with the factor a + fie. Then s~l is 
associated to S~l with the factor (a + fie)~1[(a — fie)-1] if s G 9 + [ s G 9 - ] . 
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Proof, (a) Let s G 0+, x G M. Then s"1 G 0+ and xS~l = ss-^xS^ss'1 

= sx(a: + fie)s~1 = 5X5_1(a + /3e) ; sxs^1 = (x5-1) (a + jfo)-1. 
(b) Let 5 G G", x G M. Then s"1 G G", xS-1 = w 1 ^ ^ 1 ) ^ " 1 = sx(a+fie) 

s~l = ^X5_1(a: — jfo); sxr -1 = (x5 - 1)(« "~ fie)~l. 

LEMMA 10. If dim M — 4r awd s G 0 is associated to S with the factor a+fief 

then 
(i) X(s) = / * ( « + /3e) arcd Xfc"1) = M _ 1 ( ^ + / ^ ) _ 1 if s G 0+ . 

(ii) X(s) = M(« - 0<O «wd X^r1) = M _ 1 ( « + i&O"1 # ^ G 9 -

Prw/ . (i) When s G 0+ , X(s) = ss* = a' + fi'e implies s~l = (a' + fi'e)-^*. 
Since (a' + /3'e)_1s*xs = (xS)(a + fie), s*xs = (s*xs)* = (xS)(a' - fie) {a + 
fie), that is, {{xS){a' - fi'e)(a + fie))* = {a + fie) (a' - fife) (xS) = (xS)(a' 
+ fi'e)(a - fie) = (xS)(af - fi'e)(a + fie), (a' + fi'e)(a - fie) = (a' - fi'e) (a 
+ fie). This shows that if we define the automorphism —-of K + Ke as a + fie 
— a — fie, (a + fi'e) (a — fie) is invariant under this automorphism and 
therefore is an element of K, hence a + fi'e = p,(a + fie). As for s~1 we have 
X(s)X(s-1) = XO"1) = 1 so that Ms'1) = /x"1^ + Pe)-1. 

(ii) When 5 G 0", \(s) = 55* = a' + /3'e implies s"1 = (a' - fi'e)~ls*, 
therefore (a' - fi'e)~ls*xs = (xS) (a + /3e), s*xs = (s*x<>)* = (xS) (a' + fi'e) 
(a + fie) which implies (a + fi'e) (a + fie) = (a! - fi'e) (a - fie) e K and 
a' + fi'e = /x(a - jSe). 

Now 1 = \iss~1) = sr"1^-1)*** = X^-^XW» therefore XOr1) = ^{a + 

Let Kr be the multiplicative group of non-zero elements of K and K'2 

the subgroup of squares of elements of K'. If an element s Ç. V has spin-norm 
X(s) G i£/2, say \(s) = M2, \(n~ls) = fj,~2\(s) — 1. The elements 5 and prxs 
define the same inner automorphism and a fortiori the same orthogonal 
transformation on M. Conversely, if 5 and s' define the same inner auto
morphism on C(M, Q),s' = us and X(s') = \(s)(K'2). 

The group of elements of r + = T P\ C+ of spin-norm 1 is a subgroup 
denoted by T0

+ and called the reduced Clifford group. When the index of 
Q > 0 the commutator group 12 of the orthogonal group coincides with the 
group of orthogonal rotations associated to elements of To+. Therefore an 
orthogonal transformation associated to an element s G T+ belongs to 12 if 
and only if \(s) = 1(K'2). 

PROPOSITION 1. Let Sp be a similitude of ratio p and g G T+ be associated to 
the rotation G defined by xG == p~~l(xSp

2), x G M. Then 
(i) If dim M = 4r + 2, \{g) s P(K'2) if Sp G 7 + and X(g) = l(K'2) if 

Sp G 7~. When index of Q > 0, G G iï if and only if either Sp G y~ or p = 1(X /2). 
(ii) / / dim ikT = 4r, X (g) s 1 (i^/2) if 5P G 7 + awd X (g) s p (i^/2) if Sp G 7". 

M Âê  index of Q > 0, G G 12 i/" awd 0»Z;y if eî Aer 5P Ç 7+ or p = 1 (i^ /2). 

Proof, (i) Let 5 G 0 + be associated to Sp with the factor a + £e, hence 
TV (a + fie) - p"1. Then (s2)-^2 = 5-1(^5p)(a + ^ 5 = (x5p

2) (a + fie)2. This 
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implies t h a t the element g (a + fie) defines the same inner automorphism tha t 
s2, for, since N(a + fie) = p - 1 , (a + /3e)_1g_1xg(a + /3e) = p(a — fie)g~lxg 
(a + fie) = p{a - fie)p~1{xSp

2){a + fie) = xSp
2(a + fie)2. 

Hence s2 = 7g (a + /3e) and X(s2) = (X(s))2 = v2 = \{yg(a + fie)) = 7 2 

p - ^ f e ) . Therefore X(g) s p(X /2) and if p ^ 1(X' 2 ) , G $ 0. 
If s G 0~ is associated to Sp with the factor a + fie, N(a + /3e) = p _ 1 and 

(V)_1X52 = p_ 1(x5p
2) . Therefore s2 = 7g and X(s2) = 72X(g) = y2 implies t h a t 

G G 0 if index of Q > 0. 
(ii) Let s G 6 + be associated to 5 P with the factor a + fie, (.s2)_1xs2 = s - 1 

(x5p)(a + fie)s = (xSp
2)(a + fie)2 and s2 = 7^(0: + fie). Then by Lemma 10 

(i) \(s2) = sss*s* = fi2(a + /3e)2, and on the other hand \(s2) = \(yg(a + 
/3e)) = y2gg*(a + fie) (a + fie)* = y2\(g)(a + fie)2. Therefore fx2(a + fie)2 = 
y2\(g)(a + fie)2, \(g) = 1(K'2), which implies t h a t G G G if index of Q > 0. 

If s G 0~, 5-2x52 = p_ 1(x5p
2) and therefore s2 = yg. Hence \(s2) = \(yg) = 

72X(g) and by Lemma 10 (ii) X(s2) = sss*s* = n2N(a + fie) = M2P_1- which 
proves t h a t \(g) = p(K'2). 

PROPOSITION 2. Let Spl, SP2 be similitudes of ratio pi, p2 respectively. Let 
dg G T + be an element associated to the rotation SP1 SP2 5 P 1

- 1 Sp2
-1 . Then 

A(g) = P1P2 (Kf ) where et = ^ .f ^ _ * = 1, 2. 

Proof. Let $i, s2 be elements of 9 associated to 5P1, SP2 with the factors 
«i + fiie, <*2 + fte, respectively. We consider two different cases. 

Case 1. dim Af = 4r + 2. Then X(siS2Si_1S2_1) = 1. Suppose 

(a) sh s2 G 0 + , (^i525i~1^2~1)_1^i^2^r1^2_1 = (s2sr1S2~1)~1(xSpl)s2sr1s2~
1(ai 

+ fiie) = x5pl5p25p1~
15'p2~

1 by Lemma 9. Therefore s i W i - 1 ^ - 1 = g G T+ and 
Mg) = 1; g is associated to 5pl»S,p25

,p1"~
15p2'~

1. 

(b) si G 0 + , s2 G B~, (^i^2^i_1^2~1)~1^^i^2^i~1^2"~1 = (x5p15p25p1~
15p2~

1) (ax + 
i3ie)(ai — fiie)-1. Therefore SiS2Si~1S2~1 = g(ai + /Sie) and X(g) = pi(K'2). 

(c) 5i G 0~, s2 G 0 + , (5i52^r1^2~1)""1^i^2^r1^2~1 = (x5p15p25p1~
15p2-

1)(a:2 — 
fi2e)(a2 + foe)-1. Hence S i ^ r 1 ^ " 1 = g(<*2 - M and X(g) = p2(i£'2). 

(d) si, s2 G 0~, {sis2si~ls2-
l)-lxsis2si~ls2-

1 = (x5'p15p25p1
_15p2~

1) («i — fiie) 
(a2 + fi2e)(ai + fiie)~l(a2 — fi2e)~\ Hence SiSisrhf-1 = g(ai — fiie)(a2 + ^2e) 
Hg) ^P1P2(K'2). 

Case 2. dim M = 4r. In this case we apply Lemma 9 in the same way it 
was done before, b u t we also need Lemma 10 to compute X ^ i ^ r - 1 ^ - 1 ) . 

(a) su s2 Ç 0 + . Since X(.) is a homomorphism of 0 + into a commuta t ive 
group X(5i^2^i_1^2_1) = 1 and the result is the same as t h a t for the case 1 (a). 

(b) si Ç 0 + , s2 G 0~. As before, S i ^ r 1 ^ " 1 = g(ai + fiie). 

Now X(5i52^r^2_1) = SiS2srlii2~l{pL2 + fi2e)~lsï*s2*si* = ix2~
l(a2 - fiie)'1 

/ii -1(a:i — fiie)-1p.2(a2 — fi2e)ni(ai + fiie) by Lemma 10. Hence 
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x(g(«i + M) - xfe)(ai + M2 = I r t r i r T 
iV(ai + Pie) 

and A (g) = pi. 

(c) si Ç 0~, s2 € 6 + . We know S iWf" 1 ^ - 1 = g(a2 — fi2e) and by Lemma 10 
X(siS2sr1S2~1) = (a2 + foe)-1 («2 - /52e) = X(g)(a2 - /32e)2. Therefore X ( g ) = p 2 

(d) 5 l G G", 52 G 9 - T h e n 
w - 1 - l x {0Ll—f5ie)~ {0L2+ fi2e) w w 0 \ 2 , , ^ N 2 

X ( W I * ) = j ^ + ̂  • i i ^ + ^ j = X ^ - M («• + **) 
and A (g) = pip2. 

COROLLARY 1. The centralizer of an improper similitude Sp of ratio p in the 
group of similitudes is generated by the scalar multiples of Sp and of a subgroup 
of 0 + (the rotation group). 

Proof. If T belongs to the centralizer of Sp in y, SpTS^T"1 = I is the 
ident i ty , 1 Ç T is associated to I and X(l) = 1. If T is a proper simili tude, 
applying the proposition, we get t h a t the rat io of T mus t be a square, say, 
a2. Then xT = a(xG) where G is a rota t ion. 

If T is an improper similitude its rat io , by the proposition, mus t be of the 
form a2 p. Therefore the rat io of TSp"1 is a2 which implies t h a t xT = a(xGSp) 
where G is a rotat ion. 

COROLLARY 2. No element of y~ belongs to the centralizer in the group of 
similitudes y of a proper similitude Sp of ratio p if p fé l(K'2). 

COROLLARY 3. If the index of Q is greater than 0, the first commutator group 
yf of the group of similitudes y consists of the transformations of 0+ associated 
to elements g £ T + such that \(g) = p(K'2), where p is the ratio of some similitude 
of y. The second commutator group y" = 12 if dim M > 4. 

Proof. Since the group 12 C y' contains all the rota t ions defined by elements 
of r 0

+ , any rota t ion associated to an element g Ç T + with spin-norm 
\(g) = p(K'2) belongs to yf if y' contains one with such a spin-norm. Propo
sition 2 shows t h a t if there exists a proper similitude Sp of rat io p, SPUSP~1U~'1 

is a rota t ion with such spin-norm if U Ç y~. 
Conversely, any element of y' is a product of elements of the form SplSP2Spl~

l 

5 P 2
_ 1 associated to a g Ç r + and by the proposition X (g) = pie2p2€1(K'2),ei = 0,1 . 

Hence the product of elements of such form is associated to a g' 6 T + wi th 
spin-norm X(g') = P1P2. . * Pi (K'2), where the p / s are ratios of similitudes 
and therefore P1P2 . . . p* is also the rat io of a similitude. 

T h e last pa r t of the corollary is a consequence of the well-known fact t h a t 
if dim M > 4, index of Q > 0 and F is any subgroup of the orthogonal group 
0(M, Q) such t h a t 12 C F C 0(M, Q) the commuta to r of F is 12 (cf. 5 ; 9 ) . 

In the proof of the next theorem we are going to use another known result 
of the theory of orthogonal groups, namely : the commuta to r group 12 of the 
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orthogonal group 0(M, Q) is generated by the squares of the elements of 
0(M, Q). If dim M > 2, the commutator group of the group of rotations is 
also 12, which is generated by the squares of the rotations. 

THEOREM 5. Let y be the group of similitudes of M with respect to Q, index 
of Q > 0, dim M > 2. Then the commutator group y' of y is the group generated 
by the rotations G of the form xG = p~1(xSp

2), where p is the ratio of Sp. The 
commutator (y+)f of the group of proper similitudes y+ is equal to 12. 

The rotations of the form G, xG = p_1(x5p
2), Sp Ç y+, generate 

(i) y' if dim M = 4r + 2. 
(ii) 12 if dim M = 4r. 

y' = 12 if and only if the ratio of any similitude is a square in Kr. 

Proof. Since the squares of the elements of 0 + , that is, the squares of the 
rotations, generate 12 and we assume index of Q > 0, all the rotations associated 
to elements of r 0

+ belong to the group generated by the G's. But then any 
rotation associated to a g Ç T+ with A(g) = p(K'2), p the ratio of some 
similitude, also belongs to this group by Proposition 1. Conversely, any element 
of the group generated by the G's is a rotation associated to a g Ç V+ with 
\(g) == p(K'2), where p is the ratio of some similitude. Therefore this group 
is yr by the preceding corollary. 

The same argument proves that if we take only the G's defined by proper 
similitudes they generate y' if dim M '= 4r + 2 (Proposition 1 (i)), and 12 
if dim M = 4r (Proposition 1 (ii)). Proposition 2 proves that, when index 
of Q > 0, (y+Y = 12. The last statement is proved by Corollary 3 of Propo
sition 2. 
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