
Appendix 2 
Homogeneous Lorentz transformations 

and their representations 

We present here a brief discussion of the homogeneous Lorentz transfor­
mations and some of their finite dimensional representation matrices. 

A2.1 The finite-dimensional representations 

The generators of rotations Ji and boosts Ki, introduced in (1.2.1), can 
be shown (see, for example, Gasiorowicz, 1967) to satisfy the following 
commutation relations: 

If we now define 

[Jj,Jk] = iEjkllz 

[Jj,Kk] = iEjkzKz 

[kj,Kz] = - iEjkzlz. 

A l(A .A) B = 2 J -zK 

(A2.1) 

(A2.2) 

then A, B behave like angular momentum operators, and they commute 
with each other: 

The most general Lorentz transformation is of the form 

U(9,(X) = exp ( -i9 · J- i(X · K.). 

(A2.3) 

(A2.4) 

The vector 9 specifies a positive rotation through angle () about an axis 
along 9. The vector (X specifies a pure boost of speed f3 = tanh rx along the 
direction of (X. 
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438 Appendix 2 Homogeneous Lorentz transformations 

Equation (A2.4) can be rewritten as 

U(9,~) = exp [-A·(~+ i9) + B · (~- i9)] 

= exp [-iA · (9- i~)J exp [-iB · (9 + i~)J (A2.5) 

the last step following because the A1 commute with the iJ1. 
As discussed in Appendix 1, the (21 + !)-dimensional representation 

matrices of the rotation group are the matrix elements of the rotation 
operator. Here we are not using the Euler angles to specify the rotation, but 
that is irrelevant. The matrix E0~)m(9) representing the rotation operator 

U[(r(9)] = e-iJ·9 

is given by 

rM(I) (n) =I· 'I -iJ·9I · ) ;;:pm'm .:~ \J,m e J,m (A2.6) 

with - j ::::; m, m' ::::; j and j = integer or half-integer. 
From (A2.5) and (A2.6) we see that we can represent the Lorentz 

transformation U(9,~) by the (2A + 1)(2B +!)-dimensional matrix 

rM(A,B) ( n ) _ rM(A)( n · )rM(B)( n + · ) 
;;:p a'b',ab .:~, ~ = ;;:p a' a 1:1 - ~~ ;;:p b' b 1:1 l~ (A2.7) 

where A,B are integer or half-integer, -A::::; a,a'::::; A, -B::::; b,b'::::; B. 
Note that the operators A, B are here represented by hermitian matrices 
E0(A,B), so these matrices are only unitary if p = 0, i.e. for pure rotations. 
Generally they are not irreducible for pure rotations; they behave like the 
product of representations of spin A® spin B. 

It is clear from the product structure of (A2.7) and from the theory 
of addition of angular momentum that if we take the direct product 
of two representations (A1, Bt) and (A2, B2) then the Clebsch-Gordan 
decomposition will be of the general form 

(A1, Bt) ® (A2, B2) = (A1 + A2, B1 + B2) EB (A1 + A2- 1, B1 + B2) EB 

.. · EB (IA1 - A2l, B1 + B2) EB (A1 + A2, B1 + B2- 1) 

.. · EB (A1 + A2, IB1 - B21) 

· · · EB (IA1 - A2l, IB1 - B2l). 

Perhaps the simplest representations are (s, 0) and (0, s), where 

rM(s,O) ( n ) _ s: rM(s) ( n · ) 
;;:p a'b',ab .:~, ~ - Ub'b::LJ a' a 1:1- l~ • 

Clearly the b, b' labels are irrelevant and we may use 

rM(s,O)( n ) _ rM(s) ( n · ) 
;;:p a' a .:~, ~ - ;;:p a' a 1:1 - l~ · 

(A2.8) 

(A2.9) 

(A2.10) 
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Appendix 2.2 Spinors 439 

Similarly we may take 

E0b?t:l(.9,ot) = E0~t(.9 + iot). (A2.11) 

Note that from (A2.6) and (A2.7) that 

E0(o,s\l) = E0(s.oJ(l-l)t = [E0(s,o)(l)tr1 
(A2.12) 

for an arbitrary Lorentz transformation l. 
Now, as mentioned in subsection 2.4.2, for a pure rotation the complex 

conjugate representation E0(s)* is equivalent to E0(s) (E0(s)' ~ E0(sl), i.e. there 
exists a unitary matrix C, which depends on s but not upon the parameters 
of the rotation, such that 

E0(s)' (.9) = CE0(s\.9)c-1 

with C*C = (-1)2s and etc= 1. Conventionally one takes 

C.u' = (-l)s-""6;,,-A' 

Then from (A2.7) one can see that 

E0(A,B)' ( .9, ot) = C E0(B,A) ( .9, ot )C-1 

where here Cis a direct product of the matrices in (A2.14): 

In particular E0(0,s)' is equivalent to E0(s,O). 

A2.2 Spinors 

(A2.13) 

(A2.14) 

(A2.15) 

(A2.16) 

The case of s = 1/2 is especially important, because of its relevance to 
the Dirac equation and the spinor calculus. There are four sets of 2 x 2 
representation matrices of interest: E0(1/2,0l; E0(0,l/2l*, which is equivalent 
to E0(1/2·0); E0(0,l/2); and E0(1/2,o)* which is equivalent to E0(0,l/2l. It is easy 

to check that (A2.13) and (A2.14) correspond to 

(i0"2)E0(1/2,0)(i0"2)-1 = E0(0,1/2)* 

Since we shall only discuss s = 1/2 it is conventional to define 

E0 = E0(1/2,0) 

and then to introduce 

D b = tM = t))c(l/2,0) 
a - ::LJ ab - ::LJ ab 

D. b = E0(1/2,0)* _ E0* 
a-ab -ab 

(A2.17) 

(A2.18) 

(A2.19) 

(A2.20) 

i.e. a 'dot' on a row or column label signifies use of the complex conjugate 
representation. 
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440 Appendix 2 Homogeneous Lorentz transformations 

We can then define two kinds of two-component spinors Xa and Xa such 
that if the reference frame undergoes some Lorentz transformation, then 
the components of the spinors in the transformed frame are, analogously 
to (1.1.15), 

X~ = DabXb (A2.21) 

X~= DabXb (A2.22) 

where we have used the shorthand notation X~ for (Xa)s' used in Chapter 
L 

One can introduce a kind of 'metric spinor' 

€ab = €ab = (iG'2)ab 

= ( ~1 ~) 
ab = € = €ab 

and then define the 'contravariant' spinors 

xa = €abxb 

and 
xa = €abxb. 

Note that the inverse of (A2.25), for example, is 
b b Xa = -€abX = €baX 

since 
be !>.C €ab€ = -ua. 

(A2.23) 

(A2.24) 

(A2.25) 

(A2.26) 

(A2.27) 

(A2.28) 

The minus sign in (A2.28) has the peculiar effect that if x and 1J are two 
spinors then 

xrx1Jrx = -Xrx1Jrx. 

Now using (A2.21) and (A2.25) one finds 

Conventionally one defines 

so that (A2.30) becomes 

and from (A2.12) 

xa' = .@~~1/2)* xb. 

Da = I'M(O,l/2t 
b - ::LJ ab 

(A2.29) 

(A2.30) 

(A2.31) 

(A2.32) 

(A2.33) 
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Similarly, for (A2.26), under transformation of the reference frame 

xtl = ~~~1/2lxc. (A2.34) 

One defines 
Da. = ~(0,1/2) 

b- ab (A2.35) 

so that (A2.34) reads 

xa' = Dabxb (A2.36) 

and by (A2.12) 

Dab= [(~-1)tLb· (A2.37) 

Let us summanze the transformation laws for the various two­
component spinors introduced: 

Xa : ~(1/2,0) 

Xa : ~(1/2,0)' ~ ~(0,1/2) 

xa : ~(0,1/2)' ~ ~(1/2,0) 
(A2.38) 

xa: ~(0,1/2). 

An important question is how to form invariants from these. The Clebsch­
Gordan decomposition (A2.8) tells us that both (1/2, 0) ® (1/2, 0) and 
(0, 1/2) ® (0, 1/2) will contain the invariant representation (0, 0). 

Hence if Xa and IJb are spinors of type (1/2,0) then we expect some 
linear combination rbXaiJb to be invariant. In fact the combination is just 

abx X a 
€ aiJb = aiJ 

smce 

X~1Ja 1 = Dab Da cXbl]c 

= ~ ab [ ( ~-1) T] ac Xbl]c = Xal]a 

i.e. it is indeed invariant. 
Similarly 

ab a 
€ Xa1Jb = Xa1J 

is invariant. 

(A2.39) 

(A2.40) 

(A2.41) 

Finally, by using complex conjugation, we can build up an invariant 
out of spinors ~a of type (1/2, 0) and (a of type (0, 1/2). Namely, under 
transformation of the reference frame, writing (A2.21), (A2.36) and (A2.37) 
in matrix form, the spinors transform as 

and 
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so that 

(A2.42) 

i.e. is invariant. 

A2.3 Connection between spinor and vector representations 

Let All be a 4-vector. Under a Lorentz transformation l applied to the 
reference frame, the components of All in the transformed frame are (see 
(1.2.14)) 

(A2.43) 

where All' is short for (Ail)s1• 

The All v are the transformation matrices for the vector representation 
and are the basic blocks for building up tensor representations, the latter 
being generally reducible. 

We shall now demonstrate that the representation EC(1/ 2,112) is equivalent 
to the vector representation. This is a result of great importance since it 
gives a fundamental connection between spinors and 4-vectors. 

Firstly, from the form of Clebsch-Gordan decomposition (A2.8) we 
have that 

EC'(1/2,0) ® EC'(0,1/2) = EC'(1/2,1/2). 

But from (A2.15), EC(0,1/ 2) is equivalent to EC(1/ 2,or. Hence 

EC'(1/2,0)* ® EC'(1/2,0) ~ EC'(1/2,1/2). 

(A2.44) 

(A2.45) 

We thus need to show that transformation under the left-hand side of 
(A2.45) is equivalent to the vector transformation. Hence if ~ is a two­
component spinor of type (1/2, 0) we need to prove the existence of a set 
of coefficients Cllab such that Cllab~~~b transforms like a vector. But it is 
well known that if one adds the two-dimensional unit matrix to a set of 
Pauli matrices to form 

all= (J,u) 

then 

transforms as a 4-vector, i.e. 

Vll' = tt allt =All v vv. 

This is easily shown for rotations or pure boosts upon using 

eiS·a/2 =cos(} /2 + iB ·a sin(} /2 

(A2.46) 

(A2.47) 

(A2.48) 

(A2.49) 
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and 

err.·u 12 = cosh rx/2 + & · a sinh rx/2. 

Of course we can write (A2.47) in the form 

Vfl = ( afl)ab ~~ ~b, 

(A2.50) 

(A2.51) 

which casts an interesting new light on the matrices all. The elements (all)ab 

are the elements of the transformation matrix from the (1/2, 0)* ®(1/2, 0) o:::; 

(1/2, 1/2) representation to the equivalent usual 4-vector representation. 
Note that we have been a little cavalier with the group-theoretical 

aspects. Strictly speaking, the representations (A, B) with which we have 
been dealing are representations of the group S L(2, c), whereas the 4-vector 
representation is the vector representation of the group 0(1, 3). 

For a detailed discussion of the spinor calculus and its use in construct­
ing relativistic wave equations the reader is referred to Carruthers (1971), 
where there is also a treatment of the unitary (hence, infinite-dimensional) 
representations of the homogeneous Lorentz group. For applications to 
supersymmetry see Sohnius (1985). 
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