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CANONICAL POINT MAPPINGS IN HH

ZAYID ABDULHADI AND WALTER HENGARTNER

We give a complete characterisation of univalent logharmonic mappings from the do-
oo

main D of C such that C \ {D} has countable many components onto 0. = C\ (J {pj}
j=\

where pj is a singleton in C.

1. INTRODUCTION

Let D be an arbitrary domain in the extended complex plane C which contains the
point at infinity such that C \ {D} has countably many components. It was shown in [2]
that there exists a univalent harmonic and orientation-preserving mapping / which maps
D onto a punctured plane fi and it is normalised by f(z) = z + o(l) as z approaches
infinity. Any complex-valued harmonic map defined on D can be locally expressed as
a sum of an analytic function h and an anti-analytic function g, that is, by / = h + g~.
However, in general, h and g are not globally analytic on D. For instance, there is no
pair of analytic functions h and g on \z\ > 1 such that the univalent harmonic mapping
f(z) = z — (l/z) + 2ln \z\ can be written in the form / = h + g~. However, it was shown
in [21 that one may add the additional hypothesis that / = h + g; h,g G H(D) where
H(D) stands for the set of all analytic functions on D.

It is a natural question to ask if we may replace the sum h + ~g by the product h.g.
The answer is yes. Denote by HH the family of all mappings / of the form / = h.g~,
where h and g belong to H(D). Univalent mappings in HH have been studied in [1] for
the case that D is a simply connected domain, for example, the unit disk.

Let p € D be a fixed given point, p ^ 00, and let je(z,p) be a cononical conformal
map from the domain D onto a helical domain of inclination 6 with respect to the radial
direction having the properties Je(p,p) = 0 and jg(z,p) — z + 0(1) as z —> 00. It was
shown in [3] that je is uniquely determined and that we have for arbitrary 9

(1) \ogje(z,p) =e'e\cos(0)\ogjo(z,p) - ism (6) logh/2{z,p)]
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where suitable branches of the logarithms are chosen. In other words, J$(z,p) can be
expressed in a unique way as a function of a univalent radial slit mapping, a univalent
circular slit mapping and 0. Our purpose in this article is to show that

(2) * » > - . - . . . - , „
is the desired univalent canonical point mapping in HH.

2. CANONICAL POINT MAPPINGS

THEOREM 2 . 1 . Let D be a domain of C of countable connectivity containing the
point infinity and let p be a given fixed point in D, p ^ oo. Then there exists a unique
mapping F of the form F = H.G where

(i) H and G are in H(D) such that G=l + 0{l/z) and H = z + 0(1) as

z —> oo.

(ii) 0 i HG(D \ {p}) and G(p) / 0.

(iii) F(p) = 0
oo

(iv) Q = F(D) — C\ \J{Pj} where Pj is a singleton in C. Furthermore, F is

uniquely determined.

REMARK. For the case where D = {\z\ > 1}, the mapping F can be written explicitly as

F{z) =
 Z{\-_VI*\

PROOF: Let je(z,p) be the conformal canonical map from D onto a helical do-
main of inclination 6 with repect to the radial direction, 0 < \6\ ^ 7r/2, normalised by
Jo(z,p) = z + O(l) as z —> oo and Je(p,p) = 0. Define

Then we have locally F e HH(D), F(p) = 0, F(z) = z + 0(1) as z —> oo and F(D)
OO I

= C\ {J{PJ}- Indeed, we have F = HG where H = ^/MT/2 and G = J(h/2)/(jo)

are locally analytic in D. Furthermore, for each component of 3D we have |F | =

\3*/2{z,p)\ — constant and argF = argjo(z,p) = constant.
It remains to show that F = HG is a univalent mapping and it is uniquely deter-

mined.
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Next, consider the locally analytic functions <f>a = (H/(G)e ""), a £ R, defined on

D. By choosing a suitable branch, we get

l o g 0 o = log H - e ^ l o g G = l-/

- e~'a [cos (a) , log jo + i sin (a) log j n / 2 \ •

Therefore, there is locally a suitable branch, specifically, log 4>a = log j _ _ Q . This holds

for any simply connected subdomain of D, from which we conclude that 4>a = j _ Q and

hence, 4>a is a univalent mapping in H{D). Therefore, we get <f>a' ^ 0 for all z £ D and

(3) ^ = ^ _ e-2ia% ± 0 on D for all a £ R .
<pa H G

Furthermore, on putting a = 0 and a = n/2, we conclude that H/G and H.G are globally
analytic functions on D and hence, H and G belong to H{D).

Next, we consider a harmonic branch of L(z) — log F(z) in a simply connected
subdomain of D \ {p}. Then we have

T
 rz " , -f— rz LJ

L ^ - = - a n d L 7 = - = - .

We show that the Jacobian of L,
JL — \LZ | — \Lj\

does not vanish on D. Indeed, if JL{Z0) = 0 then either Lz{z0) = LJ(ZQ) = 0 or H'/H
= eI7(G"/G) for some 7 £ R. Both cases are excluded by (3). Therefore, we have JL 7̂  0
on D. But JL(OO) > 0 from which we conclude that Ji > 0 on D. In other words, L is
locally a univalent orientation preserving map which implies that F is locally univalent
and sense-preserving on D.

Let C = i + ir] = <f>o(z) = H{z)/G{z) and B = <j)0{D). Put W(C) = F o <ftf HO- Then
W G HH{B) and is locally univalent. Furthermore, W maps each radial half-line onto
itself. The local univalence of W and the fact that W(B) is a punctured plane implies
that W is globally univalent map from B onto il. Hence, F is univalent in D.

It remains to show that F is uniquely determined. Suppose F\ and F2 are two maps
having the properties of the theorem. Put Q = Fi/F2. Then Q is a bounded nonvanish-
ing map in HH(D) and each component of 3D is mapped to a point. The corresponding
function ipa{z) = (H1/H2) {Gi/G\)e is a bounded nonvanishing analytic function de-
fined on D and the property

a r g [ ^ r = a r g [ Q ] e i ° (mod 2TT)

implies that &rgipa is constant on each boundary component of D. If argV'a is not
constant on D, then a,Tgtpa(D) is a bounded domain which misses all but countably
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many radial half-lines, which is impossible. Therefore, ipa = constant. Using the fact

that ipa(oo) = 1, we conclude that tpa = 1 for all a € R and all z £ D. Therefore, we

have

for all a € R.
Hj \Gl

Since Gi and G2 are nonvanishing, we conclude that Hi = H2 and Gx = G2, that is,

Fi = F2 and the theorem is proved. D
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