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Although the process of hydrodynamic dispersion has been studied for many years,
the description of solute spreading at early times has proved to be challenging. In
particular, for some kinds of initial conditions, the solute evolution may exhibit a
second moment that decreases (rather than increases, as is typically observed) in
time. Most classical approaches would predict a negative effective hydrodynamic
dispersion coefficient for such a situation. This creates some difficulties: not only
does a negative dispersion coefficient lead to a violation of the second law of
thermodynamics, but it also creates a mathematically ill-posed problem. We outline
a set of four desirable qualities in a well-structured theory of unsteady dispersion as
follows: (i) positivity of the dispersion coefficient, (ii) non-dependence upon initial
conditions, (iii) superposability of solutions and (iv) convergence of solutions to
classical asymptotic results. We use averaging to develop an upscaled result that
adheres to these qualities. We find that the upscaled equation contains a source term
that accounts for the relaxation of the initial configuration. This term decreases
exponentially fast in time, leading to correct asymptotic behaviour while also
accounting for the early-time solute dynamics. Analytical solutions are presented
for both the effective dispersion coefficient and the source term, and we compare
our upscaled results with averaged solutions obtained from numerical simulations;
both averaged concentrations and spatial moments are compared. Error estimates are
quantified, and we find good correspondence between the upscaled theory and the
numerical results for all times.

Key words: mixing and dispersion, general fluid mechanics

1. Introduction

Taylor dispersion, the process of solute spreading in a capillary tube, is the
archetype for hydrodynamic dispersive processes. The primary reason for this is that
it has all of the essential physical features important to hydrodynamic dispersion, and
yet it has a geometry that is simple enough that an analytical approach is feasible.

† Email address for correspondence: brian.wood@oregonstate.edu
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As such, there have been literally thousands of papers on the topic since the early
1950s.

The particular focus of this paper is to address the case of non-uniform initial
distributions of a solute in Taylor dispersion under steady flow conditions. Non-
uniform distributions of solute have a number of applications. A few concrete
examples are (i) the design of exchangers for transient heat transfer (Heris, Esfahany
& Etemad 2007); (ii) the diffusion of solute from an initially spherical input to model
drug delivery in blood flow (Gekle 2017); (iii) pulsed radially non-uniform inputs to
tubular reactors used to promote mixing (Stonestreet & Harvey 2002; Abbott et al.
2013); (iv) the use of phosphorescently tagged particles for fluid velocimetry (Mohand
et al. 2017); and (v) non-uniform injections of chemical solutes in electrophoretic
separations (Liu & Ivory 2013).

The primary issue in unsteady solute dispersion is the transition of the solute
distribution from an initial disequilibrium state, to a state that represents the
quasi-steady Gaussian distribution conditions that are necessary for the Taylor
dispersion regime to be valid. Rather than setting up the problem for a variety
of special cases, we develop a general method that applies to a wide variety of initial
conditions. Our particular interest is to develop a model for unsteady solute dispersion
where the contribution from the initial configuration can be clearly identified. This
contribution can be expected to relax over time in order to recover the classical
Taylor dispersion model.

There are a few useful concepts that can be proposed to help ensure that a theory
for dispersion is well structured (although it is possible to develop theories that do
not adhere to these guidelines). These are as follows:

(i) The effective dispersion coefficient should be positive. Although negative
dispersion coefficients have been proposed, they suffer from a few significant
problems. These include the ill posedness of the resulting balance equation
(i.e. the inverse heat equation (Weber 1981)) and the fundamental incompatibility
with macroscale thermodynamics (Gray & Miller 2009; Gray & Miller 2014,
chap. 10). Negative dispersion coefficients lead to an equation that is no longer
even of the diffusion type because it no longer obeys a strong maximum principle
(Olver 2014).

(ii) The effective dispersion coefficient should be independent of the particular initial
conditions imposed. In other words, the effective dispersion coefficient should
be a function of only the molecular diffusion coefficient, and the structure of
the fluid velocity field. This allows the dispersion coefficient to be defined
strictly on a molecular and hydrodynamic basis, without having to resort
to the incorporation of particular initial configurations of otherwise passive
solutes. If the dispersion coefficient were to be dependent upon particular initial
configurations, one would then lose the principle of linear superposition for an
(otherwise) entirely linear problem. This has substantial ramifications for the
interpretation of initial-configuration-dependent formulations.

(iii) Solutions to the effective convection–dispersion equation should be superposable
in the sense defined by Taylor (1959). This criterion is based on a physical
desideratum outlined by Taylor (1959). Essentially, the argument was that if a
new source was injected after some time had elapsed (the ‘two release’ problem),
the effective dispersion coefficient should be single valued at points where the
two sources overlap. The time-dependent dispersion theories would predict two
different values for the dispersion coefficient at such overlapping points, a
situation to which Taylor (1959) objected.
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(iv) Whatever the theory for preasymptotic dispersion is, the dispersion coefficient
should approach over time the classical asymptotic values that have been
developed in the literature. These classical asymptotic values have been
scrutinized rigorously for decades; there is little uncertainty in those results.

Our goal in this work is to develop a theory that addresses each of these
issues; we seek to make the theory as concrete as possible by expressing results
in analytical form when feasible. We neglect reaction, although the methods proposed
are extendable to that case (cf. Wang et al. 2015). Ultimately, our approach leads to
an upscaled equation for a single chemical species that contains a non-conventional
source term as follows:

∂〈c〉
∂t
=D∗(t)

∂2
〈c〉
∂z2
−U

∂〈c〉
∂z
+ s∗(z, t). (1.1)

Here, c is the concentration of the solute, the angled brackets indicate cross-section
average, D∗ is the effective dispersion coefficient, U is the cross-sectional-averaged
longitudinal velocity and s∗ is a non-conventional source term that is exponentially
decaying in time; z and t are the independent variables representing space and time,
respectively. While this form for a macroscale balance equation may seem unusual,
the source term s∗ is an essential component that arises directly from the upscaling
analysis. This source term creates an overall balance that meets the set of criteria
defined above for a well-structured dispersion process.

The remainder of the manuscript is outlined as follows. In the next section, we give
an overview of the literature on Taylor dispersion, with a specific focus on methods
that have been developed to handle early time evolution from the initial conditions.
This is followed by a presentation of the microscale physics in § 3. In § 4, we define
the upscaling process. In § 5, the problem of closure is presented and integral closure
solutions are described. The closed problem is described in § 6; in this section we
also define the effective dispersion coefficient, D∗, and source term, s∗, and provide
explicit analytical solutions for these quantities. In § 7, we compute solutions to the
dispersion problem for three different initial configurations, and compare the results
derived from the upscaled model with those derived from numerical simulations (NS)
computed at the microscale. Both averaged concentrations and spatial moments are
compared. In § 8 we provide some discussion of the results of the theory applied to
several interesting initial conditions. In § 9, we specifically address the application of
the upscaled balance equation to conditions where the problem superposition is of
interest. Finally, in § 10 a list of conclusions is presented. Supplementary materials
available at https://doi.org/10.1017/jfm.2020.56 have been generated to support this
work; these materials include specific details regarding error analysis, correspondences
between the theory developed here and infinite-order expansion methods and a list of
notation.

2. Background
In this section, we review a subset of the work conducted on the Taylor dispersion

problem. An exhaustive literature review on the subject is challenging because of
the volume of literature represented by this topic; therefore, our review is focused
specifically on studies that seek to provide solutions for early-time behaviour. In the
material that follows, we define the Péclet number by

Pe=
Ua
D
, (2.1)
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where D is the molecular diffusion coefficient, and a is the radius of the tube. Most
studies of Taylor dispersion have adopted this definition for the Péclet number; it can
be thought of as the ratio of the convective to the (radial) diffusive fluxes. This is
slightly different from the work of Taylor (1953), who used the ratio of the diffusive
to convective time scales (this difference is discussed in subsequent sections).

2.1. Review of the literature
For the purposes of the review below, early time is qualitatively defined as the
transient time period during which the relaxation of the initial configuration of the
solute is important to the dynamics of the Taylor dispersion process. It is possible
to broadly characterize the different mathematical approaches for describing Taylor
dispersion in the transient, early-time regime as outlined below.

(i) Kramers–Moyal-like expansions. By far the most popular approach has been the
proposition that the macroscale solution can be expressed as an infinite series of
spatial derivatives of the average concentration. Several variations of this approach
have been attempted, and they are represented in the works of Gill et al. (Gill
& Sankarasubramanian 1970, 1971), Chatwin (O’Hara 1969; Chatwin 1970, 1972),
Degance & Johns (1978a,b) and Mauri (1991). Balakotaiah, Chang & Smith (1995)
used centre manifold theory to develop a macroscale formulation that is identical
to that of Gill & Sankarasubramanian (1970). The resolution of the centre manifold
model was improved by Watt & Roberts (1996) by constructing a multi-mode model
for dispersion in channels. These authors considered a two-component model that
follows the same trend of thought of the zonal models by Chikwendu & Ojiakor
(1985), Chikwendu (1986a,b). The work by Yu (1976, 1979) is interesting in that
it began as a formal eigenfunction expansion for an unsimplified version of the
convection–diffusion equation by assuming that expansions in Bessel functions were
possible. After a formal integral solution was developed, the term arising from the
initial conditions was discarded, and the remaining integrations of the Bessel functions
were expanded in a power series. The result was a solution in an infinite series of
derivatives of all orders, much like the Kramers–Moyal-type expansions discussed
above. Although originally promoted as being more capable than the models of
Gill & Sankarasubramanian (1970), a sequence of comments (Gill & Subramanian
1980; Yu 1980) established that the two methods are, at least to order 3, identical.
The works by Westerterp, Dil’man & Kronberg (1995) and Kronberg, Benneker &
Westerterp (1996) are of this type, but in that work the iterative process was truncated
at order 2. One unique feature of those works is that mixed derivative terms were
maintained, and this ultimately led to a macroscale form that had hyperbolic (rather
than parabolic) features. We note that the work by Gill & Sankarasubramanian (1970)
also derived hyperbolic terms in their approach, but ultimately eliminated those
terms on the basis of their assumed macroscale form. More recently, Wu & Chen
(2014) used an expansion involving spatial derivatives up to ninth order. Although
their results compared well with previously reported numerical results, they did not
recognize that their solutions included significant negative concentrations outside of
a limited domain. This kind of error was corrected in a later paper (Wang & Chen
2016). Other works (Mercer & Roberts 1990, 1994; Balakotaiah et al. 1995) also
considered higher-order expansions and addressed the issue of negative concentrations.

(ii) Direct solutions. In the direct solutions, the focus has been to solve the
convection–diffusion mass balance equation in the tube directly using an eigenfunction
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expansion. This is a challenging task, because the conventional methods (e.g.
separation of variables) used to determine closed-form expressions for the Green’s
function do not work with this problem, primarily because the convection term mixes
both radial and longitudinal independent variables. The first direct solutions appear to
be those of Philip (1963). For that work, however, the solution sought was initially
of the form of a diffusion equation (similar to the more general approach of Gill &
Sankarasubramanian (1970)), which automatically excluded certain forms of the initial
condition (with roughly the same reasoning discussed by Degance & Johns (1980)).
The paper proposed a solution as a series of the confluent hypergeometric functions
1F1. The papers by Tseng & Besant (1970, 1972) assumed the same solution as
did Philip (1963) (and were subject to the same restrictions), but managed to find
simplifications that yielded solutions in terms of Bessel J0 functions, the roots of
the Bessel J1 function and the error function. In the work by Stokes & Barton
(1990), a Fourier transformation method was used, but the results had to be inverted
numerically; as such, it is difficult to compare these results with other efforts.

(iii) Asymptotic (perturbation) solutions. A number of perturbation-type solutions
have been proposed, and it is not possible to cleanly categorize solutions from other
approaches as being free from perturbation-like arguments. However, more classical
perturbation-type expansions have been investigated by Vrentas & Vrentas (1988,
2000). The paper by Lighthill (1966) is of this form, as was the extension proposed
by Chatwin (1976, 1977); both of these solutions required the time to be small
compared to a characteristic diffusive time scale. Fife & Nicholes (1975) conducted a
conventional perturbation analysis, but, importantly, recognized the potential influence
of initial source terms, which is somewhat unique. Phillips and Kaye examined the
asymptotic (but direct) solutions for Pe→∞ for both large z (1996), and short times
(1997); both solutions neglected longitudinal diffusion. Such solutions have generally
been very successful when used in their range of validity (which generally involves
either long or short times, and/or large or small Péclet numbers).

(iv) Moment methods. The early paper by Aris (1956) presented the first moment-
based method for Taylor dispersion. Although the paper purported to eliminate the
constraints proposed by Taylor (1954), in fact the method is technically only suitable
for asymptotic estimates of the dispersion coefficient, although some transient results
were presented for particular initial conditions. Moment methods focus on determining
the spatial moments of the concentration field rather than its mean value (which, quite
usefully, simplifies the analysis), often with the tacit assumption that the effective
parameters of the averaged mass balance equation can be determined directly from
the moments. Again, it is difficult to categorize approaches as uniquely moment
based, since many approaches compute moments regardless of the underpinning
mathematical methods used. A number of researchers have extended moment method
into the preasymptotic regime, including the works of Horn (1971), Chatwin (1977),
Degance & Johns (1978b), Latini & Bernoff (2001) and Dentz & Carrera (2007). The
moment technique has become particularly popular in describing Taylor-like flows in
stratified media (e.g. Fried & Combarnous 1971; Lake & Hirasaki 1981; Valocchi
1989), downstream contaminant release in rivers (Smith 1984), among many others.
The method inherently assumes that a finite number of moments suitably defines the
transport behaviour of the system, an assumption that is technically only true for
specific initial conditions or in the near-asymptotic regime (this issue is discussed
further in § 2.2).
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(v) Non-local formulations. Few non-local formulations (containing terms with either
time or space integrations in the transport equation) have been proposed for this
problem. Although not specific to the Taylor problem, the work of Deng & Cushman
(1995) is of this type, and somewhat set the standard for non-local equations of
the convection–dispersion type (however, in a more general context, the work of
Eringen (1978) was ground-breaking for non-local balance equations). The paper by
Wood & Valdés-Parada (2013) also proposed non-local formulations from the volume
averaging perspective, although they were also not specific to the Taylor dispersion
problem. In the report of Smith (1981a), one of the first non-local formulations to the
Taylor problem was outlined. The developments of that paper were also guided by a
Kramers–Moyal-type expansion, and thus lead to hyperbolic expressions with mixed
derivatives as well as more general convolution-integral expressions (depending on
the order of the truncation, and where in the analysis the truncations are performed).
The work by Jones & Young (1994) also used a variation of this approach, but in
an asymptotic framework (also capitalizing on the centre manifold theory). In this
theory, the results were able to capture some features of the early-time behaviour, but
were not able to capture exponentially decaying-in-time modes; most likely, this was
because the initial condition was not represented as a source term in the averaged
equation.

(vi) Formulations that include an initial condition source. Most studies on Taylor
dispersion have not been overly interested in the relaxation of the initial condition;
often, the only initial conditions examined are either uniform pulses, or delta-like
impulses (Vedel, Hovad & Bruus 2014). Few papers have been developed with the
realization that the initial condition can manifest as a decaying source term in the
averaged mass balance when more complex initial conditions are considered. Philip
(1963) was aware that essentially forcing the upscaled mass balance to be of a
convection–dispersion form would limit the choices available for the initial condition.
The importance of the initial condition was also apparent to Lighthill (1966), although
he was not able to complete a general analysis for his solution. In a series of
papers, Gill and Sankarasubramanian derived macroscale models for unsteady solute
dispersion considering uniform (Gill & Sankarasubramanian 1970) and non-uniform
(Gill & Sankarasubramanian 1971; Sankarasubramanian & Gill 1973) slugs as initial
conditions. Connections between these works and the developments presented here
are derived in additional detail in the supplementary material. The work by Yu (1979)
began by including the initial condition in the macroscale balance, but later this term
was dropped resulting in a final theory that does not have a source arising from
the initial configuration of the system. In the papers by Degance and Johns (1978b,
1980), the influence of the initial condition appeared as part of the theory. However,
this work specifically considered a subset of possible initial conditions that work with
the theory; in particular, separable product forms for the initial condition function
were allowable, but sums of any two such functions were excluded (Degance &
Johns 1978a, § 4). Smith (1981b) identified and described three stages of unsteady
dispersion from a point source using a ray-tracing method. Haber & Mauri (1988)
used a stochastic Markovian particle approach to examine the role of the initial
condition; explicit asymptotic solutions were derived that illustrated that the observed
dispersion coefficient depended upon the initial location of the particles. From a
moment-based approach, the paper by Dentz & Carrera (2007) similarly considered
delta-type impulses placed near the centre versus the wall initially; in that work, a
distinction between local and global dispersion was defined to distinguish between the
dispersion of a single delta impulse versus the dispersion observed for an extended
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source. Meng & Yang (2018) adopted a perspective similar to that of Dentz &
Carrera (2007), but solved for the effective dispersion coefficient via eigenfunction
expansions. They also found that the dispersion coefficient was a function of the
initial configuration. In a sequence of two papers, Wood (2009, equations (17) and
(29)) and Wood & Valdés-Parada (2013) developed theories that explicitly included
the influence of the initial condition as a source term in the averaged mass balance
equation; this process was then used by Ostvar & Wood (2016) to describe the
average diffusion and reaction from an initial (unmixed) configuration. Independently,
Balakotaiah & Ratnakar (2010) also developed balance expressions specifically for the
Taylor dispersion problem in which source terms arising from the initial conditions
were employed; a Kramers–Moyal-like expansion was used, but truncated at second
order. This model had the ability to predict significant skewness in the distribution
(Ratnakar & Balakotaiah 2011). While not unique to the models discussed, the
prediction of skewness is an important check on the physics of the solution, since
skewness should become non-zero at early times (even if the initial condition is
symmetric), and it should asymptotically approach zero in the long-time regime.

In the remainder of the background section, we elaborate a little more on two
specific issues that arise in the previous work summarized above: (i) The use of
infinite-order (Kramers–Moyal-type) expansions, and (ii) the neglect of source terms
arising from the initial condition.

2.2. Comments regarding Kramers–Moyal-type expansions
There are two significant problems with the infinite Kramers–Moyal-type expansions.
First, because of the specific macroscale representation that is chosen, the resulting
theory generates dispersion coefficients that may depend upon the initial condition
(Degance & Johns 1980). Second, research on the positivity of such series was
apparently not known to progenitors of this approach. It is now known that such series
either (i) converge exactly at second order and are strictly positive, or (ii) require
all terms in order to converge and remain strictly positive (Marcinkiewicz 1939;
Pawula 1967). Although Kramers–Moyal expansions do (under appropriate conditions)
converge, they do not converge in a highly physical way when strictly positive results
are sought (as in the case of concentration). In other words, any finite truncation of a
Kramers–Moyal expansion of order greater than two generates results that are negative
in some parts of the domain. This problem has been discussed in the literature (e.g.
Risken & Vollmer 1979), but it is not generally well recognized in many disciplines
outside of physics. The fact that negative concentrations are essentially guaranteed
to occur for truncated expansions does not negate the usefulness of such expansions
(Risken & Vollmer 1979), but it does demand careful analysis and cautiousness when
interpreting results. The problem of negative concentrations is most acute at early
times (cf. Wood & Valdés-Parada (2013, § 7)). Some of the problems associated
with the Kramers–Moyal expansion can be eliminated by the recognition that such
expansions can often be represented by non-local convolution expressions (Mercer &
Roberts 1990, 1994). It is easy to show that a general non-local transport formulation
can be written as an infinite-order expansion of local derivatives (this is illustrated
in the supplementary material), although the converse of this is not always true.
However, given that the macroscale equation form adopted in most of these examples
is posited as an ansatz (e.g. Gill & Sankarasubramanian (1970, equations (5) and
(8))), then it might be reasonable to start directly with the convolution rather than
the series form. For the specific problem of Taylor dispersion investigated in this
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paper, we are able to show that the solution is generally of a convolution form,
giving further support that this kind of approach might have a stronger physical
basis. Regardless, the non-local formulations generally avoid the problems associated
with negative concentrations, and, in appropriate limits, reduce to more familiar local
macroscale equations.

2.3. Influence of the initial conditions
As the review of the literature above suggests, the importance of the initial
configuration at early times has been identified (although not resolved) previously.
The problem can be most easily thought about in the context of layered media which,
although not a tube, is still frequently represented as a Taylor dispersion process, (e.g.
Fried & Combarnous 1971; Gelhar, Gutjahr & Naff 1979; Lake & Hirasaki 1981;
Chikwendu & Ojiakor 1985; Chikwendu 1986a,b). Consider an initially uniform slug
of solute in a system of horizontal layers of alternating high and low conductivity that
is transported by a forward-flow/reverse-flow transport cycle. If a constant pressure
gradient is applied for a short period of time such that the mean flow is right to
left, the solute is displaced more in the high-velocity layers than in the low ones,
leading to a spatially staggered final condition. Now, suppose the flow is stopped,
and the pressure gradient reversed. The staggered configuration is the initial condition
for a new transport process. Assuming that the total time interval is small enough
so that transverse diffusion does not spread the solute very much between layers,
the resulting motion is largely reversible. Upon reversing the flow field, a seemingly
spread-out initial condition converges to become more organized (and less spread out).
In the limit of zero diffusion, the final result of this first forward and then reversed
transport would be exactly identical to the initial condition.

This kind of process creates some conceptual problems. Seemingly, the second
moment of the process described above first increases and then, upon flow reversal,
decreases in time. If one interprets the effective dispersion coefficient as being the
classical one half of the time rate of change of the second spatial moment, then one
predicts a negative dispersion coefficient for the second half of the cycle. This problem
has been recognized in part as one that involves the distinction between spreading
and mixing (e.g. Dentz & Carrera 2007). However, one is still left with a macroscale
equation that contains an apparent dispersion coefficient that can be negative under
some conditions. The problem is of the inverse heat equation type, which is known
to be ill posed (Weber 1981). The solutions to such problems are lossy in general
and can lead to significant problems in interpretation. Of more importance, however,
is that such expressions are inconsistent with macroscale thermodynamics (Gray
& Miller 2009; Gray & Miller 2014, chap. 10; Miller et al. 2018). Thus, if one
hopes to solve problems in a manner consistent with the thermodynamics appropriate
to the upscaled system, a negative dispersion coefficient is not a suitable choice.
The use of higher-order diffusive-type equations (such as the method of Gill &
Sankarasubramanian (1970)) does not entirely remediate this problem. Although there
are more degrees of freedom in these kinds of expansions to accommodate the
influence of initial conditions, the fundamental problem is that the initial conditions
enter the problem as source terms that are independent of the spatial derivatives
of the average concentration. Thus, some initial configurations, when forced to
fit a transport equation that contains no term representing a source, may predict
non-physical behaviour for the dispersion coefficient, depending upon the underlying
theory.
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FIGURE 1. A subset of the domain, V , geometry indicating coordinate directions and
example vectors. Each vector (e.g. r, z and y) can be expressed in a cylindrical
coordinate system for analytical or numerical computations. Note the distinction between
the coordinates r and z versus the vectors r and z. In this figure and the figures that
follow, the aspect ratio of the radial, r, to longitudinal, z, coordinates has been increased
to improve the presentation of results.

3. Problem formulation
One of the primary purposes of this work is to examine the early-time dispersion

process in the context of an averaging theory, but maintaining the influence of the
initial configuration throughout the averaging process. Our proposed model seeks to
remedy the problems identified above by assuring that both the concentration and the
dispersion coefficient remain positive over the entire (time and space) domain of the
problem.

We consider passive transport of a chemical species in a cylindrical domain
specified by r ∈ V , where r ≡ (r, θ, z) (figure 1). For the cases considered in this
analysis, we assume that the solute does not interact significantly with the external
boundaries perpendicular to the axis of the tube. Thus, for concreteness, we set the
external planes perpendicular to the tube axis at locations z→±∞, respectively. The
initial solute distribution is assumed to be a known function of position denoted by
ϕ(r, θ, z). The transport equations at the microscale for a solute in terms of molar
concentrations can be written in cylindrical coordinates as

Microscale mass balance

∂c
∂t
+ vz(r)

∂c
∂z
=

D
r
∂

∂r

(
r
∂c
∂r

)
+

D
r2

∂2c
∂θ 2
+D

∂2c
∂z2

, (3.1a)

B.C.1 −D
∂c
∂r
= 0 at r= 0, a, (3.1b)

B.C.2a c→ 0 z→±∞, (3.1c)

B.C.2b −D
∂c
∂z
→ 0 z→±∞, (3.1d)

I.C. c(r, θ, z, 0)= ϕ(r, θ, z). (3.1e)

Here, and for the equations that follow, ‘B.C.’ indicates a boundary condition, and
‘I.C.’ an initial condition. For the formulation given by (3.1a)–(3.1e), it has been
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assumed that the mole fraction of the solute is small enough compared to unity
so that Fick’s law is applicable. In addition, the following reasonable assumptions
have been made in order to simplify the volume averaging process: (i) the fluid
flow is incompressible, Newtonian, and steady; and (ii) the fluid pressure at the
external boundaries is uniform leading to a θ -symmetric velocity field given by the
well-known expression depending only on the distance, r, from the centreline of the
tube

vz(r)= 2U
(

1−
r2

a2

)
. (3.2)

With this information, the problem is fully specified.

4. Upscaling process
4.1. Preliminaries

In this paper, we upscale (or coarse grain) the system concentration field dynamics by
simple spatial averaging against a weighting function. The underlying assumption in
this approach is that the system can be sensibly represented by governing equations
at more than one scale of resolution due to the multiscale (in space, time or
both) characteristics of the system. Practically, this means that there exist averaging
operators that sufficiently smooth spatial fluctuations in concentration such that an
averaged behaviour is useful for understanding the system evolution. In this work, the
averaging process is a somewhat modified form of volume averaging theory (which
is frequently applied to porous materials, (Whitaker 1999)), but we do not stress this
point further.

In the remainder of this paper, we adopt cylindrical coordinates (figure 1); thus, for
any function ψ , we have ψ(r)= ψ(r, θ, z). The symbol z (set in bold font) is used
exclusively to indicate the centroid of the averaging domain; therefore, this vector
always has the component form z = (0, 0, z). The averaging operator 〈·〉 for Taylor
dispersion is often defined with respect to weighting function w by (Degance & Johns
1978a)

〈ψ〉|(z,t) =

∫
r∈V(z)

ψ(r, t)w(r− z) dV(r). (4.1)

Or, in the cylindrical coordinate system

〈ψ〉|(z,t) =

∫ ζ=∞

ζ=−∞

∫ θ=2π

θ=0

∫ r=a

r=0
ψ(r, θ, ζ , t)w(r, θ, ζ − z)r dr dθ dζ . (4.2)

For this work, we adopt the classical area average, so that w(r− z)=w(r, θ, ζ − z)=
1/(πa2)δ(z − ζ ), which yields the conventional area average (note, other weighting
functions have been adopted for Taylor dispersion, cf. Degance & Johns (1978a))

〈ψ〉|(z,t) =
1

πa2

∫ θ=2π

θ=0

∫ r=a

r=0
ψ(r, θ, z, t)r dr dθ. (4.3)

We refer to the filtered functions 〈ψ〉 as macroscale quantities to distinguish them
from their microscale counterparts, ψ .

In addition to the definition of the averaging operator, it is also useful to define the
following decompositions:

c(r, t)= 〈c〉|(z,t) + c̃(r, t) (4.4a)
vz(r)=U + ṽz(r). (4.4b)
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Here, U = 〈vz〉|z whereas c̃ and ṽz denote spatial deviations from their corresponding
averages. Note that these deviations are defined in a manner that is different
from the conventional definition used in the volume averaging theory. The above
decompositions are the same as those proposed by Gray (1975); that is, the deviations
in each averaging domain are defined relative to the value of the average at the
longitudinal centroid of the tube. There are some advantages to this definition; in
particular, we have the following identities:

〈c̃〉|(z,t) = 0, (4.5a)
〈ṽz〉|z = 0. (4.5b)

We will occasionally use the term cross-sectional average (CSA) to indicate averaged
properties.

4.2. Averaging the microscale balance equation
To obtain the macroscale mass balance equation, we apply the averaging operator
defined above to the microscale balance. Note that, although we have been careful
to explicitly list the independent variables in the definitions above, we do so in
the remainder of the paper only when it is necessary for emphasis or clarity. Upon
applying the averaging operator (4.3) to the microscale mass balance equations, the
upscaled problem takes the form

∂〈c〉
∂t
=D

∂2
〈c〉
∂z2
−U

∂〈c〉
∂z
−

〈
ṽz
∂ c̃
∂z

〉
, (4.6a)

B.C. Macro 1a 〈c〉|(z,t) = 0 z→±∞, (4.6b)

B.C. Macro 1b −D
∂〈c〉
∂z

∣∣∣∣
(z,t)

= 0 z→±∞, (4.6c)

I.C.1 〈c〉|(z,0) = 〈ϕ〉|z. (4.6d)

Several steps have been taken into account in order to derive (4.6a). First,
interchange of the time derivative and the averaging operator is allowed within
the accumulation term due to the fact that the averaging domain does not change
with time. Thus we have 〈

∂c
∂t

〉
=
∂〈c〉
∂t
. (4.7)

Directing our attention to the diffusion term, the microscale boundary conditions lead
to the identity 〈

D
∂2c
∂z2

〉
=D

∂2
〈c〉
∂z2

. (4.8)

For the convection term, we have (on the basis of (4.4a)–(4.5b))〈
vz
∂c
∂z

〉
=U

∂〈c〉
∂z
+

〈
ṽz
∂ c̃
∂z

〉
. (4.9)

Finally, for the two macroscopic boundary conditions given in (4.6b) and (4.6c), we
have imposed the condition that c̃(r, θ, z)→ 0 and ∂ c̃/∂z(r, θ, z)→ 0 as |z|→∞. Up
to this point, we have employed no approximations to the result; the averaged model
represented by (4.6a)–(4.6d) is exact, at least to the extent that the original microscale
balance equations are valid.
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5. Deviation equations

Equation (4.6a) is unclosed because it is not expressed exclusively in terms of the
average concentration. To close the problem, a set of ancillary balances are developed
for the microscale deviations of c̃. Motivated by the definition of the decompositions,
we develop the deviation balance by subtracting the averaged equation (4.6a) from
the microscale equation (3.1a). In addition, the boundary conditions can be developed
by using the decomposition given by (4.4a), and the initial condition is determined by
subtracting the averaged initial condition from its microscale counterpart. The resulting
equations can be written as follows:

∂ c̃
∂t︸︷︷︸

accumulation

+ U
∂ c̃
∂z︸︷︷︸

mean
convection

+ ṽz
∂ c̃
∂z︸︷︷︸

deviation
convection

−

〈
ṽz
∂ c̃
∂z

〉
︸ ︷︷ ︸

non-local
convection

−
D
r
∂

∂r

(
r
∂ c̃
∂r

)
−

D
r2

∂2c̃
∂θ 2
−D

∂2c̃
∂z2︸ ︷︷ ︸

diffusion

=− ṽz
∂〈c〉
∂z︸ ︷︷ ︸

local
convective source

, (5.1a)

B.C.1 −D
∂ c̃
∂r
= 0 at r= 0, a, (5.1b)

B.C.2b c̃→ 0 z→±∞, (5.1c)

B.C.2b −D
∂ c̃
∂z
→ 0 z→±∞, (5.1d)

I.C.1 c̃(r, θ, z, 0)= ϕ̃(r, θ, z)︸ ︷︷ ︸
source

(r, θ, z) ∈ V . (5.1e)

For the developments that follow, it is convenient to adopt a Lagrangian perspective
based upon an inertial frame of reference that moves with the centre of mass with the
system. To this end, let us define z′ = z−Ut, t′ = t, so that

∂

∂t
=
∂

∂t′
+U

∂

∂z′
. (5.2)

We omit the explicit writing of the prime coordinates in the developments that follow
to keep the notation simple. Making the translation to Lagrangian coordinates, the
governing differential equation for the concentration deviations becomes

∂ c̃
∂t
+ ṽz

∂ c̃
∂z
−

〈
ṽz
∂ c̃
∂z

〉
−

D
r
∂

∂r

(
r
∂ c̃
∂r

)
−

D
r2

∂2c̃
∂θ 2
−D

∂2c̃
∂z2
=−ṽz

∂〈c〉
∂z

. (5.3)

In (5.3), the term 〈ṽz(∂ c̃/∂z)〉 is non-local in the variable r. In this context, we use
the term non-local to denote quantities that involve time or space locations in addition
to the local ones. Solutions to this balance equation that maintain the non-local term
are mathematically tractable, but such solutions remain an active area of research
(Chasseigne, Chaves & Rossi 2006; Ignat & Rossi 2007; García-Melián & Rossi
2009).
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a

L0

FIGURE 2. Length scales for the Taylor dispersion problem. The characteristic length
associated with the initial solute configuration (illustrated in red) is L0. Because of solute
spreading, the generic length scale L= L(t) (defined for all times) is asymptotically larger
than L0. This figure is meant to be primarily schematic; the actual initial conditions
examined in this work are smoothed versions of similar configurations.

5.1. Elimination of the non-local term
Rather than maintaining the non-local term, our approach is to develop reasonable
constraints that allow us to neglect its influence. We do this by establishing
characteristic time and length scales, and then developing constraints that indicate
when the desired simplification is valid. Although these time and length scales can be
given formal, computable definitions (e.g. such as defining them by the integral scale
of the fields involved (Wood & Valdés-Parada 2013)), formal evaluation of scales is
usually not necessary.

For the Taylor dispersion problem, there are several distinct length scales that can
be defined. We have identified two important length scales in figure 2. The size of
the macroscale length, L0, is described as being approximately the size of the initial
condition; however, the validity of this estimate depends upon the particular structure
of the initial condition (this is discussed further in § 8.2). The characteristic length of
the radial diffusion process is of the order of the tube radius, a, for this particular
application.

The non-local term and the convection term on the left-hand side of (5.3) are of
the same order of magnitude. Thus, our desired restriction at this juncture would be
to impose

ṽz
∂ c̃
∂z
−

〈
ṽz
∂ c̃
∂z

〉
�

D
r
∂

∂r

(
r
∂ c̃
∂r

)
+ · · · . (5.4)

For complex problems where one wishes to find all possible asymptotically simplified
models, there are specific methods and algorithms that can be followed to construct
the simplified models (see Yip (1996) for a fuller discussion). Because our restriction
is rather simple (and because a full analysis is tedious), we only sketch out the result
here. To start, we note that the left-hand side of (5.4) is always less than or equal to
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ṽz∂ c̃/∂z. Then, we non-dimensionalize and rearrange the problem as follows (where
Z = z/L0, R= r/a, Ṽz = ṽz/U, C̃= c̃/C0 and C0 =max (φ̃)):(

a2U
L0D

)
Ṽz
∂C̃
∂Z
=

1
R
∂

∂R

(
R
∂C̃
∂R

)
+ · · · . (5.5)

Now, we set ε = a2U/(L0D). By assumption, Ṽz∂C̃/∂Z = O(1) and the first term on
the right-hand side of (5.5) is of O(1). Examining

εṼz
∂ c̃
∂Z
=

1
R
∂

∂R

(
R
∂ c̃
∂R

)
+ · · · , (5.6)

it is clear that the left-hand side of this expression (and, hence, the left-hand side
of (5.4)) can be neglected under the conditions

Ua
D

a
L0
� 1 or, equivalently, Pe

a
L0
� 1. (5.7)

The symbols ‘�’ and ‘O’ have the conventional meanings adopted in perturbation
theory (cf. Bender & Orszag (1978, chapters 3.4 and 7)).

A few additional comments are helpful here. First, we note that this approximation
may fail at early times if the concentration gradients in the initial condition are large
(e.g. step functions); for these early-time solutions, the longitudinal derivative term
would need to be maintained. In this work, we consider initial conditions that are
reasonably smooth at t=0 (i.e. the first two derivatives are continuous, and correspond
to a value of L0 that is not much smaller than a). Second, this restriction is almost
certainly overly severe once the relaxation of the initial condition has progressed for
even a relatively small time. Often an approximation such as the inequality (5.4) is
valid, even when the two sides are of the same order of magnitude. We describe the
results of the error involved in this approximation in additional detail in § 8.2, where
we compute it directly to show that the approximation is reasonable for the Péclet
numbers investigated in this paper. It is worth noting that the constraint given in (5.7)
is identical (except for a factor of 4) to the one imposed by Taylor (1954)

PeT =
a2

4D
U
L
� 1. (5.8)

Here, PeT is the Taylor-type Péclet number, which arises naturally when we
non-dimensionalize the transport equation. The diffusion time scale arises from
considerations of the conventional free-field diffusion relationship with variance
σ 2
= 4Dt (and, hence, L ∼

√
4Dt). The convective time scale comes from a simple

estimate of the z−derivative of the initial condition. With the exception of Taylor
(1954) and Aris (1956), the literature has tended to use the definition that is based
on a simple ratio of the convective to diffusive fluxes, of the form (assuming both
convective and diffusive fluxes are characterized by a length scale equal to the tube
radius, a)

Pe=
Ua
D
=

4L
a

PeT . (5.9)

Note that for the simulations reported below with the parameters in table 1, PeT = 1
corresponds to Pe= 80.
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Parameters Value Definition

L0 0.20 m Separation distance between centres of
mass of initial concentration distribution

a 0.01 m Radius of the tube
D 1× 10−9 m2 s−1 Molecular diffusion coefficient for the solute
c0 1 mol m−3 Initial concentration constant in (7.10)
α1 1.1 m Constant for (7.11a)
α2 1.1 m Constant for (7.11b)
β1 0.125 m Constant for (7.11a)
β2 0.325 m Constant for (7.11b)
σ1 0.03 m Constant for (7.11a)
σ2 0.03 m Constant for (7.11b)

TABLE 1. Parameters used in the simulations.

With the approximation given by the inequality (5.4) and the use of Lagrangian
coordinates, the resulting set of equations for c̃ becomes

∂ c̃
∂t
=

D
r
∂

∂r

(
r
∂ c̃
∂r

)
+

D
r2

∂2c̃
∂θ 2
+D

∂2c̃
∂z2
− ṽz(r)

∂〈c〉
∂z

∣∣∣∣
(z,t)︸ ︷︷ ︸

source

(r, θ, z) ∈ V, (5.10a)

B.C.1 −D
∂ c̃
∂r
= 0 at r= 0, a, (5.10b)

B.C.2b c̃→ 0 z→±∞, (5.10c)

B.C.2b −D
∂ c̃
∂z
→ 0 z→±∞, (5.10d)

I.C.1 c̃(r, θ, z, 0)= ϕ̃(r, θ, z)︸ ︷︷ ︸
source

(r, θ, z) ∈ V . (5.10e)

Notice that there are only two source terms in the initial and boundary-value problem.
Thus, it is the interplay of the initial configuration and the local convective source
term appearing in the deviation balance equation that essentially drives the Taylor
dispersion process.

The above simplified closure problem is a local, linear, non-homogeneous parabolic
equation which has well-known solutions. With the conventional assumptions (e.g.
boundedness of the initial condition, integrability of the initial condition, smoothness
of the boundary conditions, etc.), the solution to the problem for solute transport can
be put in an integral formulation as (cf. Polyanin & Nazaikinskii 2015)

c̃(r, θ,z, t)

=

∫ ζ=∞

ζ=−∞

∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
G(r, ρ, θ, ϑ,z, ζ , t)ϕ̃(ρ, ϑ,ζ )ρ dρ dϑ dζ

−

∫ τ=t

τ=0

∫ ζ=∞

ζ=−∞

∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
G(r, ρ, θ, ϑ,z, ζ , t− τ)ṽz(ρ)ρ dρ dϑ

∂〈c〉
∂z

∣∣∣∣
(ζ ,τ )

dζdτ ,

(5.11)

where G(r, ρ, θ, ϑ,z, ζ , t− τ) is the Green’s function for this problem, which solves
the initial and boundary-value problem given in appendix A by (A 2a)–(A 2e).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

56
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.56


889 A5-16 E. Taghizadeh, F. J. Valdés-Parada and B. D. Wood

6. Closed problem
6.1. Non-local solution

Using the unsimplified integral solution defined above by (5.11), we can develop a
non-local but closed macroscale problem that takes the form

∂〈c〉
∂t
=D

∂2
〈c〉
∂z2
+
∂

∂z

∫ τ=t

τ=0

∫ ζ=∞

ζ=−∞

κ(z, ζ , t− τ)
∂〈c〉
∂z

∣∣∣∣
(ζ ,τ )

dζ dτ −U
∂〈c〉
∂z

∣∣∣∣
(z,t)

+ s∗(z, t),

(6.1)
where, for simplicity in notation, we have introduced

κ(z, ζ , t− τ)=
∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
〈ṽzG〉|(ρ,ϑ,z,ζ ,t−τ)ṽz(ρ)ρ dρ dϑ (6.2a)

and

s∗(z, t)=−
∫ ζ=∞

ζ=−∞

∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0

〈
ṽz
∂G
∂z

〉∣∣∣∣
(ϑ,z,ζ ,t)

ϕ̃(ρ, ϑ, ζ )ρ dρ dϑ dζ . (6.2b)

Non-local solutions have been proposed to describe a number of interesting transport
phenomena (cf. Eringen 1978; Smith 1981a; Cushman & Ginn 1993; Deng, Cushman
& Delleur 1993; Neuman 1993; Deng & Cushman 1995). While they have some
advantages, they also come with significant costs. Among these are that (i) analytical
solutions are virtually non-existent, and (ii) because the solution at every point
depends upon every other point in the domain, numerical schemes often have to deal
with full rather than sparse matrices.

6.2. Localized solution
At this juncture in the analysis, we consider the effects of imposing two additional
approximations: (i) the length scale constraint a/L0 � 1, and (ii) a time scale
constraint t∗/T∗ � 1 (where t∗ is a characteristic microscale process time, and
T∗ is a characteristic macroscale process time). In appendix A we show that, for the
Taylor problem in the range of Péclet numbers that we examine, the single constraint

a
L0
� 1 (6.3)

is sufficient to ensure that both the length and time scale constraints are met
(a detailed derivation can be found in Wood & Valdés-Parada (2013)). Note that
this constraint is generally less restrictive (at least for Pe > 1) than the constraint
already imposed by the inequality (5.7). Technically, it is not necessary to impose any
constraints on the problem. However, if we do not impose the inequalities (5.7) and
(6.3), the result is a fully time- and space-non-local theory whose Green’s functions
would be determined by an integro-differential equation with no known analytical
solutions. Such a result would be unlikely to be simpler than directly solving the
microscale balance given by (3.1a)–(3.1e).

With the constraints given by (5.7) and (6.3) in place, the localized solution for
the set of balance equations associated with the solute ((5.10a)–(5.10e)) is given by
(appendix A, (A 22))

c̃(r, θ,z, t)= b(r, t)
∂〈c〉
∂z

∣∣∣∣
(z,t)

+Φ(r, θ,z, t), (6.4)
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where b and Φ are known as closure variables. These functions are defined in terms
of the Green’s function by

b(r, t; ṽz)=−

∫ τ=t

τ=0

∫ ζ=∞

ζ=−∞

∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
G(r, ρ, θ, ϑ, z, ζ , t− τ)ṽz(ρ)ρ dρ dϑ dζ dτ ,

(6.5a)

Φ(r, θ,z, t; ϕ̃)=
∫ ζ=∞

ζ=−∞

∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
G(r, ρ, θ, ϑ, z, ζ , t)ϕ̃(ρ, ϑ, ζ )ρ dρ dϑ dζ .

(6.5b)

We note that both b and Φ are functionals (of ṽz and ϕ̃, respectively); ordinarily,
the explicit dependence on the function will be supressed in the notation unless it is
needed for clarity. In § A.4 we show that Φ is linear in the initial condition deviation
function ϕ̃. We also note that Φ is an exponentially decaying function of time. At
early times, the magnitude of this function can be significant, and can create (apparent)
deviations from Fickian behaviour (especially in the second moment), even though the
spreading process is a Fickian one.

The solution form given by (6.4) is similar in form to the solution proposed by
Paine, Carbonell & Whitaker (1983, equation (30)) for Taylor dispersion. Paine et al.
(1983) correctly predicted that the solution for the deviation concentration should
involve an independent function of time, they did not understand that this function
is related to the initial condition for the problem (see appendix A). A fully local
averaged balance equation can be developed, taking the form:

Local macroscale equation

∂〈c〉
∂t

∣∣∣∣
(z,t)︸ ︷︷ ︸

accumulation

=D∗(t)
∂2
〈c〉
∂z2

∣∣∣∣
(z,t)︸ ︷︷ ︸

diffusive transport

− U
∂〈c〉
∂z

∣∣∣∣
(z,t)︸ ︷︷ ︸

convective transport

+ s∗(z, t)︸ ︷︷ ︸
non-conventional

source

, (6.6a)

B.C. Macro 1a 〈c〉|(z,t) = 0 z→±∞, (6.6b)

B.C. Macro 1b −D
∂〈c〉
∂z

∣∣∣∣
(z,t)

= 0 z→±∞, (6.6c)

I.C.1 〈c〉|(z,0) = 〈ϕ〉|z z→±∞. (6.6d)

Here, the effective parameters are defined by

s∗(z, t)=−
〈
ṽz
∂Φ

∂z

〉
, (6.7a)

D(t)=−〈ṽzb〉, (6.7b)
D∗(t)=D+D(t). (6.7c)

The effective parameters D and D∗ are the hydrodynamic dispersion and the total
dispersion coefficients, respectively. This latter quantity is also called the Taylor
dispersion coefficient, as proposed by Aris (1956). Note that both our non-local and
local averaged equations are unusual in that they contain a source term, s∗. We
also note that the effective dispersion coefficient, D∗ depends only upon the closure
variable b (and, is therefore independent of the initial condition, as shown in § A.3),
whereas the non-conventional source term, s∗ depends only upon the closure variable
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Φ. It is interesting to compare these effective parameters with the results of Mercer
& Roberts (1994, equation (3.2)); the correction terms derived by Mercer & Roberts
(1994) show similarities with the effective parameters defined in (6.7a)–(6.7c).

The role of the source term is to account for the early-time memory of the initial
distribution of the spatial deviations of the concentration. Although it is a source term
in the balance equation, it is easy to show that the integral of this term over the
domain −∞ < z <∞ is identically zero (§ A.3). This indicates that the role of this
term is only to redistribute mass within the domain; no mass is created or destroyed
by this term.

Finally, a few comments regarding the effective parameters s∗ and D∗ are in order.
First, we note that it can be shown that the effective dispersion coefficient, D∗ is a
strictly positive function for all time, regardless of the initial conditions (§ A.5). As
mentioned previously, this is a necessary condition for the problem if one wants the
solution to be consistent with macroscopic scale thermodynamics (Miller et al. 2018).
This has important repercussions for previous works that have suggested the use of
negative dispersion coefficients; this is examined in detail in the Discussion section.
Second, we note that the source term, s∗, like the function Φ, is an exponentially
decreasing function of time (§ A.5). Therefore, Φ decays toward zero as time grows
large enough, recovering the conventional Taylor–Aris theory at asymptotic times.
Although this term does decay to zero in time, the effect of this source term on the
early stages of the diffusion–convection transport phenomenon is significant in some
cases. This is discussed in additional detail in the following sections.

In the remainder of this paper, we adopt a strictly local representation; ultimately,
we are able to show that this is an appropriate approximation for our system and range
of parameters. Readers interested in examining how the non-local formulation can be
solved numerically are directed to the details outlined by Deng et al. (1993).

7. Analytical solutions for the closure variables
Equations (6.5a)–(6.5b) provide the general integral form of the solutions; however,

the Green’s functions for particular cases must be determined and subsequently
integrated to obtain explicit (series-form) solutions for b and Φ. Because the b-field
depends only upon ṽz, the solution for this problem is relatively straightforward. For
Φ, the solution depends explicitly upon the particular initial condition selected.

7.1. Analytical solution for the b-field
In appendix A, the Green’s function for the general problem is identified, and
integrated. The result is (§ A.3)

b(r, t)=
1
4

Ua2

D

(
r2

a2
−

r4

2a4
−

1
3

)
+

2Ua2

D

∞∑
n=1

J3(λn)J0

(
λn

r
a

)
λ3

nJ2
0(λn)

exp
(
−λ2

n
D
a2

t
)
. (7.1)

Note that b is not a function of θ or z. The eigenvalues λn can be computed by solving

J1(λn)= 0, n= 1, 2, 3, . . . . (7.2)

Equation (7.1) is equivalent to equation (16) in the work of Gill &
Sankarasubramanian (1970). We note additionally here that in this derivation, it
has been explicitly assumed that the initial time is represented by t= 0.
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FIGURE 3. Evaluation of the dynamics of the dispersion coefficient using the analytical
solution given in (7.5).

The effective parameters, D∗ and s∗ associated with the upscaled equation are given
by (6.7a) and (6.7c). Substituting the two solutions above for b and Φ as required into
the general expressions for the effective parameters gives the following results (§ A.5):

D∗(t)
D
=

(
1+

1
48

U2a2

D2

)
− 4

U2a2

D2

∞∑
n=1

(
J3(λn)

λ2
nJ0(λn)

)2

exp
(
−λ2

n
D
a2

t
)
, (7.3)

where we note that

1
48

U2a2

D2
= 4

U2a2

D2

∞∑
n=1

(
J3(λn)

λ2
nJ0(λn)

)2

. (7.4)

We can also express this result in a form that is independent of Pe(
D∗(t)
D
− 1
)

Pe−2
=

1
48
− 4

∞∑
n=1

(
J3(λn)

λ2
nJ0(λn)

)2

exp(−λ2
nτ
∗

d ). (7.5)

Here, we have defined the dimensionless diffusion time variable

τ ∗d =
D
a2

t, (7.6)

where a2/D is the diffusive time scale as defined in (B 32). The dispersion coefficient
predicted from this expression is plotted in figure 3. Note that (7.5) is an evolving
function of time, reaching more than 99 % of the expected asymptotic value of 1/48
for τ ∗d & 0.3.

7.2. Analytical solution for the Φ-field
For the Φ field, the final results depend on the particular initial condition that is
investigated. However, we can provide the following general integral solution (the
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solutions for particular initial conditions are discussed in the sections following):

Φ(r, θ, z, t)= B0,0(z, t)+
∞∑

n=0

∞∑
m=1

Bn,m(θ, z, t)Jn

(
λnmr

a

)
exp

(
−
λ2

nmD
a2

t
)
, (7.7)

where, for convenience, we introduced the functions B0,0(z, t) and Bn,m(θ,z, t), which
are defined by

B0,0(z, t)=
1

πa2

∫ ζ=∞

ζ=−∞

G2(z, ζ , t)
∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
ϕ̃(ρ, ϑ, ζ )ρ dρ dϑ dζ (7.8a)

Bn,m(θ, z, t) =
Anλ

2
nm

πa2(λ2
nm − n2)J2

n(λnm)

∫ ζ=∞

ζ=−∞

G2(z, ζ , t)
∫ ϑ=2π

ϑ=0
cos[n(θ − ϑ)]

×

∫ ρ=a

ρ=0
Jn

(
λnm

ρ

a

)
ϕ̃(ρ, ϑ, ζ )ρ dρ dϑ dζ . (7.8b)

Here, G2 is the Green’s function in the axial direction and it is defined in appendix A
(A 4b). The constants An are given by A1 = 1 and An = 2, n> 1. The eigenvalues λnm
are the positive roots of the transcendental equation J′n(λnm)= 0.

The results for the s∗ field depend upon the particular initial configuration that is
specified; therefore, we cannot provide explicit expressions until the initial condition
is identified. In general, the expression is given by (6.7a), which, using (7.7), can be
put in the form

s∗(z, t)=−
∞∑

n=0

∞∑
m=1

∂Bn,m

∂z

〈
ṽzJn

(
λnmr

a

)〉
exp

(
−
λ2

nmD
a2

t
)
. (7.9)

Because s∗ is a source term, the characteristics of the source can have a large impact
on the solution. Explicit analytical expressions for a few specific initial conditions
are derived in the next section. We note that for radially symmetric initial conditions,
these general solutions are simplified somewhat due to symmetry (see § A.4).

As a final note, the functions D∗ and s∗ were developed explicitly for the case where
the initial time is defined by t= 0. If the initial time is some positive value, T1, then
the functions D∗ and s∗ should be specified as functions of the time since injection
of the initial condition, t′, where t′ = t − T1. The important point is that D∗ and s∗
depend on time since injection of the initial condition, not on absolute time.

7.3. Analytical solution for specific initial conditions
For this work, we consider three different initial conditions (illustrated in figure 4,
where flow in the tube is from left to right), and provide the analytical solutions
for s∗ for these three cases. Each initial condition is radially symmetric; this is not
necessary for the general solution developed to this point, but to date we have found
explicit series solutions only for these symmetry conditions (cf. the radially symmetric
solution form for Φ given in § A.4). Each case consists of initial conditions in which
two concentration distributions are separated spatially (specifically, the centre of mass
is separated by L0 = 20 cm, see table 1). In order to avoid the singular points that
arise when differentiating discontinuous initial distributions, these were weighted
in the z-direction by a non-compact smoothing function. For each initial condition
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c (mol m-3)

Case A

FIGURE 4. Three-dimensional representations for the three types of the initial
concentrations. The flow direction is left to right. Case B and C initial configurations
have radial dependence. For visualization purposes, only a portion of the domain is
shown.

considered, the configuration could be decomposed into multiplicative radial and
longitudinal components as follows:

ϕ(r, z)= c0R1(r)Z1(z)+ c0R2(r)Z2(z). (7.10)

This multiplicative decomposition is not a necessary part of the solution, but it does
aid in the subsequent determination of analytical solutions to the closure problem. In
the longitudinal direction, the initial condition function was the same for each of the
three cases, and was specified by

Z1(z)= α1 exp
(
−
(z− β1)

2

σ 2
1

)
, (7.11a)

Z2(z)= α2 exp
(
−
(z− β2)

2

σ 2
2

)
. (7.11b)

The coefficients α1, α2, β1, β2, σ1 and σ2 are given in table 1. The functions R1 and
R2 vary for each of the three cases considered, and are detailed below.

We note that a more accurate value for L0 might be of the order of σ1 and σ2
rather than the spacing between the pulses. Note that with these estimates we have
a/σ1 = a/σ2 = 1/3. While this quantity is less than one, it is in a region of the
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constraint a/L0 � 1 that is somewhat unclear in terms of validity. However, we
explicitly compute errors associated with these approximations in § 8.2; those results
suggest that the approximation of separation of length scales is reasonably well met
for the three problems investigated here.

7.3.1. Case A: radially uniform slugs
For this case, the initial condition is defined by two radially uniform slugs whose

centre of mass is separated by L0. The functions R1 and R2 are given by

R1(r)= 1, (7.12a)
R2(r)= 1 (7.12b)

i.e. there is no variation in the radial direction. For initial conditions with no radial
variation, we have shown in appendix A that the solution for the source term is
s∗(z, t) = 0. This can also be seen through the closure problem for Φ specified
above. When initial conditions contain radially constant concentrations, the deviation
concentrations are identically zero initially. This means that there are no source terms
in the closure for Φ, and the problem generates only the zero solution.

7.3.2. Case B: linear radial distributions
For this case, each part of the initial condition was specified by a linear function.

On the left (centred at z = 12.5 cm) the concentration was maximum in the centre,
and decreased linearly toward the wall. On the right (centred at z = 32.5 cm) the
concentration was greatest at the wall, and decreased linearly toward the centre. The
functions R1 and R2 are given by

R1(r)= 1−
r
a
, (7.13a)

R2(r)=
r
a
. (7.13b)

For this case, the source term has been derived in appendix B. The result is

s∗(z, t) = −4πc0U

[
σ1α1(z−Ξ1(t)− β1)(

σ 2
1 + 4Dt

)3/2 exp
(
−
(z−Ξ1(t)− β1)

2

σ 2
1 + 4Dt

)

−
σ2α2(z−Ξ2(t)− β2)(

σ 2
2 + 4Dt

)3/2 exp
(
−
(z−Ξ2(t)− β2)

2

σ 2
2 + 4Dt

)]

×

∞∑
n=1

H1(λn)

λ3
n

J3(λn)

J0(λn)
exp

(
−
λ2

nD
a2

t
)
, (7.14)

where H1 is the Struve H function (cf. equation (11.1.7) in Abramowitz & Stegun
1965). The quantities Ξ1 and Ξ2 are the functions defining the motion of the centre
of mass of the two portions (left and right) of the initial condition. They are specified
by

Ξ1(t)=


7
5

Ut−
4
15

U
t3/2√

t∗d
, for t< t∗d

Ξ1(t∗d)+U(t− t∗d), for t > t∗d

(7.15a)
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Ξ2(t)=


4
5

Ut+
2

15
U

t3/2√
t∗d
, for t< t∗d

Ξ2(t∗d)+U(t− t∗d), for t > t∗d,
(7.15b)

where t∗d ≡ a2/4D is the diffusive time scale.

7.3.3. Case C: step radial distributions
For the third case, each part of the initial condition is specified by radial step

functions that are complements of one another. The result is an initial condition that
resembles a cylinder (with radius a/2) concentrated on the axis centred at z=12.5 cm,
and a hollow cylinder (with radial thickness equal to a/2) centred at z= 32.5 cm. The
functions R1 and R2 are given by

R1(r)=

1, 0 6 r 6
a
2
,

0,
a
2
< r 6 a,

(7.16a)

R2(r)=

0, 0 6 r 6
a
2
,

1,
a
2
< r 6 a.

(7.16b)

These initial conditions were investigated separately by Degance & Johns (1978b). The
solution for the source term is derived in appendix B, and the result is

s∗(z, t) = 4c0U
[
σ1α1(z−Ξ1(t)− β1)

(σ 2
1 + 4Dt)3/2

exp
(
−
(z−Ξ1(t)− β1)

2

σ 2
1 + 4Dt

)
−
σ2α2(z−Ξ2(t)− β2)

(σ 2
2 + 4Dt)3/2

exp
(
−
(z−Ξ2(t)− β2)

2

σ 2
2 + 4Dt

)]
×

∞∑
n=1

J1(λn/2)J3(λn)

λ2
nJ2

0(λn)
exp

(
−
λ2

nD
a2

t
)
. (7.17)

Examples of this function are plotted in figure 5. Similar to the developments for the
radially linear case, the centre of mass for the left and right components of the initial
condition are given by

Ξ1(t)=


7
4

Ut−
1
2

U
t3/2√

t∗d
, for t< t∗d,

Ξ1(t∗d)+U(t− t∗d), for t > t∗d,
(7.18a)

Ξ2(t)=


3
4

Ut+
1
6

U
t3/2√

t∗d
, for t< t∗d,

Ξ2(t∗d)+U(t− t∗d), for t > t∗d.
(7.18b)

Following the material in appendix B as a guide, it should be relatively easy to
develop analytical solutions for s∗ for other initial conditions of multiplicative form,
assuming that the integration defined by (7.8b) can be computed.
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FIGURE 5. Surfaces representing s∗(z, t) for Case C, Pe= 10 (a) and Pe= 100 (b). Note
that the vertical scales of the left and right figures differ by a factor of 10. As time
increases, the source term is exponentially damped. The magnitude of the source term
is larger for increasing Pe.

8. Results and discussion

The finite element software COMSOL Multiphysics5.3r was used to solve
the microscale partial differential equations (PDEs); we refer to these as NS.
Post-processing of data was done primarily in MATLAB R2017r. The physical
parameters for the simulations are reported in table 2. The spatial dimension
configuration was the two-dimensional axisymmetric case, and the ‘transport of
diluted species’ was selected as the physics package. The software was used to
generate the domain and boundary conditions necessary to solve (3.1a)–(3.1e). An
adaptive mesh refinement was performed in order to increase the mesh resolution near
the area under higher convection. Backward differentiation formulas (BDF) of order
3 or 4 were used with linear multistep methods in the PARDISO solver. Stability
of the solutions was found to be sensitive to the order of the BDF. Both streamline
and cross-wind diffusion were employed as two consistent stabilization methods. The
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Pe Parameter Value Definition

LT 1.60 m Length of the tube
a 0.01 m Radius of the tube

M1(Z1) 0.125 m Centre of mass of initial condition (left portion)
M1(Z2) 0.325 m Centre of mass of initial condition (right portion)

10 1r 4.5× 10−4 m Radial grid dimension (average)
1z 4.5× 10−4 m Axial grid dimension (average)

BDF order 4 Backward differentiation formula order (for time)

100 1r 2.5× 10−4 m Radial grid dimension (average)
1z 2.5× 10−4 m Axial grid dimension (average)

BDF order 3 Backward differentiation formula order (for time)

TABLE 2. Numerical parameters used in the simulations.

streamline diffusion method recovers the streamline upwind Petrov–Galerkin method
and the Galerkin least-squares method. Periodic boundary conditions were applied
at the external boundaries perpendicular to the tube axis, although the domain was
sufficiently long that no significant mass approached the domain ends over the entire
simulation period. A no-flux condition was imposed at the cylinder walls. Computing
averages and moments was done by extracting the results on a grid using MATLABr.
A convergence analysis based on Richardson extrapolation was performed following
Roache (1994, 2003) in order to quantify the stability of numerical results. The
details of the convergence study are summarized in the supplementary material. The
grid convergence index, which provides a relative error estimate of the calculated
solutions, was found to be of the order of 10−5. The estimated convergence errors
were below 2% for all simulations.

8.1. Microscale concentration fields from numerical solution
Visualizations of the microscale concentration field at early times provide some direct
evidence as to why studying Taylor dispersion at early times has been a challenging
process. In figures 6 and 7, visualizations of the concentration field as it evolves from
each of the three initial conditions are shown. To compare the results at different
Péclet numbers, we have chosen the dimensionless time variable

τ ∗ =
tD
a2

Pe, or, equivalently, τ ∗ =
Ut
a
. (8.1)

This facilitates the direct comparison of plots that would, otherwise, have dramatically
different time scales. The downside is that the actual time scale is somewhat obscured;
we provide absolute times parenthetically to help maintain a feeling for the actual
time scales involved. Some caution is necessary when interpreting these plots because
the aspect ratio has been greatly increased for visualization purposes (i.e. the radial
direction is magnified by a factor 10). In addition, to help with the visualization
of the concentration at longer times (where the concentrations would be otherwise
visually undetectable) the concentration field has been normalized and logarithmically
transformed by c′ = log10(c/cA0 + ε), where ε = 0.1, and cA0 = max[c(r, z, t)]. For
reference, the area-averaged concentrations for each case are presented to the right of
the microscale concentration plots.
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FIGURE 6. Dynamics of the microscale and macroscale concentration profiles for the three
cases of initial configuration, Pe=10 (all plots are presented in terms of the dimensionless
time variable τ ∗). Note that the aspect ratio, a/L, has been increased by a factor of 10
to aid visualization.

From figures 6 and 7, it is clear that the concentration evolution at early times
is dominated by the particular initial configuration. Depending upon how the
configuration is distributed across the velocity space, dramatically different kinds
of behaviours can occur, and this is influenced by the relative importance of diffusion
and convection as well as the local shear rate. It is useful to briefly discuss how
this is related to the concept of mixing. In short, mixing is stretching-enhanced
diffusion (Villermaux 2019). The process of mixing in frequently divided into two
conceptual components: (i) convective mixing (Lacey 1954) (or macromixing or
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FIGURE 7. Dynamics of the microscale and macroscale concentration profiles for the
three cases of initial configuration, Pe = 100 (all plots are presented in terms of the
dimensionless time variable τ ∗). Note that the aspect ratio, a/L, has been increased by
a factor of 10 to aid visualization.

stirring) (Villermaux 2019), and (ii) diffusive mixing (or micromixing) (Epstein 1990;
Bourne 2003).

From Newton’s law of viscosity the shear rate is given by (Bird, Stewart &
Lightfoot 2007)

γ̇ =
∂vz

∂r
=

4Ur
a2
, (8.2)

where γ̇ is shear rate. Note that highest convective mixing occurs in places where
shear rate is maximum (the region near the wall). Although the convective transport
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is highest at the centre of tube, it experiences the lowest shear rate and, consequently,
lowest convection-mediated mixing. Radial diffusion conveys solute away from the
centreline, creating diffusive mixing. More correctly, convection and diffusion create
mixing in concert; shearing of the initial solute distribution ultimately creates a
deformed configuration of the solute where diffusion is much more effective. Note
that at small times for some of the initial configurations studied here (specifically
Cases B and C), convection may actually impose conditions that transiently create
less convective mixing before increasing again.

Even for seemingly simple initial conditions (e.g. Case A), we find that the early-
time behaviour can be quite complex. For example, for Pe= 100 at least three peaks
are observable at τ ∗ = 15 (t = 250 min) (figure 7a,b the third peak occurs near z =
0.6 m), even though there were only two peaks initially. At the beginning of the
process, the concentration was uniform across the cross-section where the initial pulses
were placed. Thus as time progresses, the concentration near the centre of the tube
experiences more convection, whereas the solute located near the walls is transported
mainly by diffusion. For Cases B and C, we find that the two initial peaks converge
more rapidly for both Péclet numbers than for Case A; this is because the initial
distribution on the left-hand side for these cases is distributed in the highest-velocity
portion of the flow field (and the converse is true for the right-hand component of the
initial condition). Thus, the centre of mass of the left-hand component catches up with
the right-hand component. The effect of this is even more evident when we examine
the behaviour of the moments of the solute. For Pe= 100, by τ ∗= 60 (t= 1000 min)
we have essentially a single mode concentration field. This is a result, primarily, of
the separation distance of the two components of the initial condition. Were they to
have been separated by a greater distance, the time required to achieve a single modal
concentration distribution in space would be longer.

8.2. Error analysis
In addition to issues of convergence, the numerical results also allow making estimates
for the amount of error induced by the approximation made for the deviation balance
equation. Specifically, we have imposed the following approximations in the analysis
to this point:

ṽz
∂ c̃
∂z
−

〈
ṽz
∂ c̃
∂z

〉
�

D
r
∂

∂r

(
r
∂ c̃
∂r

)
−

D
r2

∂2c̃
∂θ 2
−D

∂2c̃
∂z2
− ṽz

∂〈c〉
∂z
−U

∂ c̃
∂z
, (8.3a)

a� L0, t∗� T∗. (8.3b)

Recall that the first of these two constraints was imposed in § 5 and led to the
constraint Pe(a/L0)� 1. Here, we have used the raw restriction (before generating
the much simpler constraint) so that we can assess numerically the magnitudes of the
terms are being neglected (the left-hand side) versus those retained (the right-hand
side). The second of these constraints was associated with approximating the non-local
solution by a local one (§ 6). For the second of these two constraints, we have shown
in appendix A that the time constraint is automatically as long as a/L0 � 1. It is
clear that the length scale constraint itself is reasonably met (a/L0 ≈ 1/20), thus we
do not pursue the validity of this constraint further.

Therefore, the remaining questions regarding the error associated with the restriction
given by the inequality (8.3a). This is best measured by the error observed between
the upscaled model and the direct microscale numerical results. We can compute each
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of the terms in the inequalities in (8.3a)–(8.3b); however, the dimension of the result
is as large as the numerical solution itself. To generate a reasonable summary metric,
we propose to compute the following error (noting that ˜̃vzc̃= ṽzc̃− 〈ṽzc̃〉 is the spatial
deviation of the quantity ṽzc̃).

ε1(z, t)=

 〈|˜̃vzc̃|〉〈
|Uc̃| +

∣∣∣∣D ∂ c̃
∂z

∣∣∣∣+ ∣∣∣∣D ∂ c̃
∂r

∣∣∣∣+ |ṽz〈c〉|
〉
+ ε0

× 100

 . (8.4)

Here, ε0 is a small number used only to assure that division by zero errors do not
occur. A few plots of the metric ε1(z, t) appear in the supplementary materials. This
metric is still of high dimension, so to further reduce dimension (and generate a
summary metric) we compute the first moment of ε1(z, t) about the z-axis as follows:

εclosure(t)=
1

Aε(t)

∫ z=+∞

z=−∞

1
2
ε2

1(z, t) dz, (8.5a)

Aε(t)=
∫ z=+∞

z=−∞
ε1(z, t) dz. (8.5b)

This result measures the average error arising from the approximations imposed by
the constraints (8.3a) and (8.3b). For interested readers, the detailed results of this
analysis appear in figure 2 of the supplementary materials. A few general conclusions
can be made regarding the error arising from this approximation are summarized as
follows:

(i) The error of the approximation (8.3a) tends to increase as Pe increases.
(ii) The error of the approximation decreases (not necessarily monotonically) with

increasing time.
(iii) The observed error is influenced by the particular initial condition examined.
(iv) The maximum value of εclosure for the Pe= 10 case was less than 10 %, and the

error rapidly decreased (within τ ∗ < 5) to less than 5 %.
(v) The maximum value of εclosure was of the order of 10 %–12 %; this was observed

for Pe= 100.

Overall, these results seem encouraging and reasonable. The comparison of the
averaged result with the numerical results (described below) provide further evidence
that the approximation is valid for the Péclet numbers considered here. For larger
Péclet numbers, the error associated with the approximation given by (8.3a) tends
to increase. For such cases, it may become necessary to solve the closure problems
associated with b and Φ numerically without neglecting terms (an example of the
numerical computation of s∗ is discussed in § 9 and in appendix A § A.6).

On the basis of the numerical results and the discussion above, it is possible to
specify more useful constraints to increase the range of validity of the analysis. We
suggest slightly more liberal constraints of the form

$Pe
a
L0
=O(1), (8.6a)

a
L0
< 1, (8.6b)
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where $ is a unitless parameter; for our analysis $ ≈ 1. These constraints should
generate results that are at least as accurate as those described in the present paper.
We note that (8.6a) is consistent with Mercer & Roberts (1994, equation (2.17)). Our
constraint is identical to theirs when the left-hand side of (8.6a) is multiplied by a
factor of $ = 1/2.2, lending further support of these slightly more liberal constraints
in practice. We note that in the case of Taylor (1954), the value of $ = 1/4 was
adopted; when fixing the value a/L0 ≈ 1/10 as approximated by Taylor (1954),
equations (8.6a)–(8.6b) are also consistent with that work.

8.3. Computation using the upscaled balance equation
The upscaled problem given by (6.6a)–(6.6d) was solved as a one-dimensional model
for the three initial condition cases. Note that the dispersion coefficient is independent
of the initial condition, thus it remains identical for each case. Simulations were
conducted using COMSOL in a manner consistent with what has been described
in § 8.1 for the microscale simulations. The analytical solutions for D∗ and s∗
were computed using a custom-built code constructed in MATLAB; results were
then imported into COMSOL, and interpolated to the grid using built-in routines.
Simulations were assured to be convergent (using the approach described for the
microscale simulations), and the average grid size was 1 × 10−4 m. Other solver
parameters are identical to those reported in § 8.1 and table 2.

In figure 8, the averaged concentrations computed from (i) the numerical solution,
and (ii) the upscaled, one-dimensional equation are compared. For Pe=10, the average
concentration computed from the numerical solution is nearly indistinguishable from
those predicted by the upscaled one-dimensional theory. We defined the following
error metric for the averaged spatial concentration at a specified time, tp by

εmodel(tp, z)=
|〈c〉NS − 〈c〉|
max(〈c〉NS)

× 100, (8.7)

where the maximum in the denominator is taken as the maximum average concentration
observed at time tp. We computed the error from pairs of points separated by the
minimum distance between the curves (as is done in computing total least squares) so
that the error was not skewed by small displacement discrepancies. For the Pe= 10
cases, the maximum error observed was less than 1.5 % for all times and all cases.
For the Pe= 100 cases, the maximum error was less than 7 % for all times and cases.
For reference, plots of the errors are available in the supplementary materials. The
correspondence between the two methods for computing the averaged concentration
provide validation that the approximations given by (8.3a) and (8.3b) are reasonable
for these Péclet numbers.

8.4. Moment analysis
The spatial moments of the concentration field are frequently used to characterize
the behaviour of the concentration field, both because of their appearance in the
underlying theory, and because they provide information about the characteristics
of the concentration distribution. The spatial moments in the z-direction of order n
(n= 0, 1, 2, 3, . . .), Mn, are defined by

M0 =

∫ z=∞

z=−∞

∫ θ=2π

θ=0

∫ r=a

r=0
c(r, θ, z, t)r dr dθ dz, (8.8a)
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FIGURE 8. Comparisons of the predictions of the average concentration. Profiles
were computed by (i) averaging the microscale numerical simulations computed from
(3.1a)–(3.1e) (denoted by NS), and (ii) numerically solving the averaged equation with
the effective parameters D∗ and s∗ (equations (6.6a)–(6.7c)) (denoted by CSA). Results
are for Pe = 10 (a,c,e) and Pe = 100 (b,d, f ). The five fixed times are expressed in the
dimensionless time variable τ ∗.

Mn(t)=
∫ z=∞

z=−∞

∫ θ=2π

θ=0

∫ r=a

r=0
znc(r, θ, z, t)r dr dθ dz. (8.8b)

Often, the centred spatial moments of order n(n= 0, 1, 2, 3, . . .), µn are adopted for
characterization. These are given by

µ0 =M0, (8.9a)

µn(t)=
1
µ0

∫ z=∞

z=−∞

∫ θ=2π

θ=0

∫ r=a

r=0
(z−M1(t))nc(r, θ, z, t)r dr dθ dz. (8.9b)
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For this work, we are primarily interested in the second and third moments;
specifically, we track the centred second moment, which can be expressed by

µ2(t)= σ 2(t)=M2(t)−M2
1(t) (8.10)

and the skewness, which is a normalized centred third moment, specified by

γ1(t)=
µ3(t)

µ
3/2
2 (t)

. (8.11)

In figures 9 and 10 we plot the second centred moment and the skewness as a
function of time for each of the three initial conditions. One interesting feature that
can be observed in these data is the distinct differences between the apparent time
scales for the second centred moment and the skewness to attain their near-asymptotic
behaviour. For the second moment, the asymptotic behaviour is represented by a linear
increase in the moment with increasing τ ∗; for the skewness, the asymptotic behaviour
is the approach to a value of zero (cf. Chatwin 1970). Examining the Pe= 10 plots in
figure 9, the slope of the second moment (dµ2/dt) reaches its asymptotic value for τ ∗
near 2. The skewness, however, continues to show substantial evolution through the
entire period plotted (up to τ ∗ = 60). Similar kinds of behaviour can be observed for
the Pe= 100 data; the second moment is near asymptotic after approximately τ ∗= 20,
whereas the skewness continues to evolve for the entire time period plotted. We have
plotted the skew for both Péclet numbers on a log–log scale for a time interval up to
τ ∗= 300 in figure 11; the long-time dynamics of the skew is more easily seen in that
figure.

For Pe = 100, each of the three initial condition cases more obviously shows
substantial transience in the skew. For each of the cases, the skewness starts at
a negative value, and then crosses the zero to become positive. The approach to
the asymptotic value then occurs slowly from the condition of positive skewness.
Overall, these results indicate that skewness generally increases at early times, and
this increase may ultimately lead to non-monotonic behaviour as the skewness
approaches the asymptotic value. This is consistent with Chatwin (1970), who also
found non-monotonic behaviour in third moment terms. Similar results can be seen
in the Pe= 10 cases (see the inset in figure 11a), although the time scales simulated
do not allow a full analysis of the dynamics of the skewness at this value for Pe.
Because our simulation times do not extend far enough, we cannot accurately assess
the asymptotic behaviour of the skewness (such as those reported by Aris (1956) and
Chatwin (1970)).

These results indicate that the approach to normality should not necessarily be
measured by, for example, the approach of only the second moment to its asymptotic
behaviour (i.e. achieving constant slope). While this is a useful metric, higher-order
measures such as the skew may continue to show substantial evolution over a longer
characteristic time scale indicating that the system as a whole is not necessarily near
its asymptotic state of behaviour.

8.5. Derivative of the second moment
In many theories of dispersion, the time derivative of the second moment is used to
generate a de facto definition of the dispersion coefficient; usually, this is expressed
in one dimension by

Dµ2 =
1
2

dµ2

dt
. (8.12)
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FIGURE 9. Comparisons of the moments for different cases of the initial configuration
for Pe = 10. Moments were computed from two concentration fields as follows: (i) the
microscale numerical simulations computed from (3.1a)–(3.1e) (denoted by NS), and
(ii) the numerical solution of the averaged equation with the effective parameters D∗ and
s∗ (equations (6.6a)–(6.7c)) (denoted by CSA).

Here, we have used the notation Dµ2 to distinguish this value from D∗. While such
definitions are true asymptotically, they are not necessarily true for times that are
near to the initial configuration time. One of the desirable traits for the dispersion
coefficient identified in the Introduction is that it should be positive. This prevents
conflicts with macroscale thermodynamics, and also assures that the resulting balance
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FIGURE 10. Comparisons of the moments for different cases of the initial configuration
for Pe= 100. Moments were computed from two concentration fields as follows: (i) the
microscale numerical simulations computed from (3.1a)–(3.1e) (denoted by NS), and
(ii) the numerical solution of the averaged equation with the effective parameters D∗ and
s∗ (equations (6.6a)–(6.7c)) (denoted by CSA).

equations are well posed. However, there are initial configurations for which the
second moment decreases in time before increasing again. This can be seen in the
curves for µ2 (Cases B and C) for both Pe = 10 and Pe = 100 (figures 9 and 10).
If one were to use the definition above then, for early times, a negative value for
the dispersion coefficient would be produced. As an example, we have computed this
quantity for Pe= 100 and plotted it in figure 12. Note that for Case A, the definition
for Dµ2 is identical to that defined for D∗; this is because s∗ is identically zero for that
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from (3.1a)–(3.1e). The analytical solution produced by the upscaled theory is shown for
comparison. Adopting the conventional definition of dispersion as 1/2dµ2/dt is not valid
at early times for some initial conditions. In general, the definition based on 1/2dµ2/dt
is only valid at asymptotic times. In contrast, the definition proposed using the upscaled
theory presented is valid at all times and for all initial conditions.

case. However, for the other two cases, we have an initial configuration that transiently
reduces the second moment. This occurs because the initial configuration contains two
parts: the first part (on the left) contains mass focused in the high-velocity regions,
and is upstream from the second part. The second part (on the right) contains mass
that is focused near the walls. The net result is that the centre of mass of the
left part of the initial distribution moves faster than the right; thus, the left part
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eventually catches up to the right. This manifests physically as a decrease in the
second moment. Thus the definition given by Dµ2 yields non-physical results for
those cases because the effective dispersion coefficient is negative at some times; in
contrast, D∗(t) presented in (6.6a)–(6.7c) is strictly positive for all times.

These results provide some additional insight into the physical role of the s∗
field. Essentially, this field is a source term that assures that the spreading that is
encoded by the initial configuration is correctly represented at early times. Because
this is independent from the effective dispersion coefficient, there is no need to
posit dispersion coefficients that, for example, violate macroscale thermodynamics by
attaining negative values.

9. Examples addressing the superposition problem
Taylor himself was not necessarily a proponent of dispersion coefficients that

were expressed as functions of time. In particular, he was concerned about possible
paradoxes that could occur when pulses were injected into a system at two different
times (with the question being, ‘which dispersion coefficient applies?’). In his
1959 paper (Taylor 1959) he stated the following about time-dependent dispersion
coefficients (using the term diffusion instead of dispersion as is now more common).

It seems to me that this is an illogical conception. The one thing that
seems to be agreed, whatever theory one may have about diffusion, is that
diffusing distributions are superposable. If therefore you attempt to analyse
the distribution of concentration from two sources which started at different
times by this method, it would be necessary to assume, in places where
the distributions overlapped, that the diffusion constant had two different
values at the same time and at the same point in space.

Because there are many senses in which the concept of superposition may be
applied, we offer the following definition for the superposition of non-homogeneous
partial differential equations (after Olver (2014, appendix B)):

THEOREM. If u1 and u2 are particular solutions to the non-homogenous linear
equation L[u] = f , then u= u1 + u2 solves L[u] = f1 + f2.

Implicit in this definition is the idea the linear operators involved must be the
same over any time and space intervals considered. Because the problem we are
considering involves a parameter, D∗(t), that is a function of time, then the principle
of superposition specified above requires that the two solutions, u1 and u2 be defined
over the same time interval. This is one of the difficulties that has been encountered
for the slightly more restrictive conditions that Taylor (1959) required. For the
situation outlined by Taylor (1959) there was a stated desideratum (on the basis of
physical reasoning) that two solutions defined over different time intervals would be
superposable.

While formulations that do not account for a source term, s∗, lose the ability to be
sensibly superposed, this is not true for the theory that we have presented. In fact, this
is one of the strengths of the proposed theory: superposition is maintained (cf. Mercer
& Roberts 1994). In short, the source term, s∗, and the effective dispersion coefficient,
D∗, work together in a way as to maintain the principle of superposition. The clearest
way to see this is through concrete examples. We present two examples below (with
Pe= 100) where we compute both the microscale and the corresponding macroscale
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solution. Although ordinarily one would not compute the microscale solution, doing
so allows us to compare the average computed directly from the microscale solution
with the average computed from the upscaled balance equations. It also provides an
opportunity to better understand the complicated microscale dynamics involved in the
transport process, which provides useful context for interpreting the upscaled results.

We illustrate superposition using two examples, as follows.
(i) For the first example, we provide a problem that makes the purpose of the source

term, s∗, more apparent. In this example, we consider a single injection, but break the
total time (0< t< Tf ) up into two time intervals. During the first interval (S1 : 0< t<
T1), the initial condition evolves from a uniform slug input to a complex distribution
of space (with non-zero radial gradients). The new configuration at time t=T1 is then
treated as the initial condition for the second time interval (S2 : 0< t′ < T∆). For the
second interval, the time variable is reset such that the initial time for the problem is
equal to t′=0. The problem at this juncture is simply a new initial value problem with
a complicated initial condition. Importantly, for this second interval, the dispersion
coefficient D∗(t′) evolves exactly as indicated by (7.3). In other words, the dispersion
tensor starts at a value of D∗(t′= 0)=D, and grows in time (in variable t′) according
to (7.3). Although for this second time interval the value of the dispersion coefficient
is reset to its zero-time value, the second moment of the solute continues is shown to
grow at the rate that was growing at the end of the first time interval. This illustrates
how the memory of the system is encoded in our solution by the source function, s∗,
rather than in the dispersion coefficient.

(ii) For the second example, we build off of the discussion of superposability
introduced in the first example. We consider specifically the ‘two release’ case
identified by Taylor (1959), where solute is injected first at t= 0 (which we refer to
as I1), and the system is allowed to evolve up to the time t = T1. At time t = T1, a
second solute injection occurs (I2), and the system again is allowed to evolve. For
this problem, we show that if separate transport equations are written for each release
(adopting the notation 〈c1〉 and 〈c2〉 for the first and second injections, respectively),
that these two equations can be superposed to derive a single transport equation for
〈c〉 = 〈c1〉 + 〈c2〉. Notably, for the second time interval, the function D∗ is single
valued everywhere in space, including locations where the two solute injections
overlap. In other words, even though the residence times for the two solute injections
are not equal, they are described by a single upscaled dispersion coefficient. As with
the first example, this example shows in detail how the history of the solutes are
encoded by s∗ rather than by the dispersion coefficient, D∗. This example directly
addresses the objection raised by Taylor (1959); in addressing this question, we show
that our upscaled transport equation is superposable in the sense defined by Taylor
(1959), and that the disturbing problem where the dispersion coefficient appears to
have multiple values at a single point does not occur.

9.1. Macroscale dispersion: example 1
In order to isolate the effect of the s∗ field on the overall solution to the macroscale
equations, we provide an example where its influence can be more readily understood.
In this example, we illustrate that the conventional notion of superposition is still valid
for the upscaled theory outlined previously.

For this example, a single solute injection is simulated as a sequence of two initial
value problems. It is always possible to break initial value problems into parts like
this when superposition is valid. The solution at the end of any one time interval is
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simply a concentration field; this concentration field can then be treated as the initial
condition that is transported over a second time interval via the same balance equation.

For this example, we examine the transport of a single uniform pulse. We allow the
initial condition to evolve until t= T1 = 250 min. The solution at this time, 〈c〉(t=T1,z)
is used to define the initial condition for the second time interval, S2, at starting at
t′ = 0 min, and ending at t′ = T∆ = 750 min. The problem can be stated by the
following sequence of two problems. The two problems can be written as

Time interval 1 solution S1 : 0< t< 250 min

∂〈c〉
∂t
=D∗(t)

∂2
〈c〉
∂z2
−U

∂〈c〉
∂z
+ s1

∗(z, t), (9.1a)

I.C.1 〈c〉|(z,t=0) = c0Z1(z). (9.1b)

Time interval 2 solution S2 : 0< t′ < 750 min

∂〈c〉
∂t′
=D∗(t′)

∂2
〈c〉
∂z2
−U

∂〈c〉
∂z
+ s2

∗(z, t′), (9.1c)

I.C.2 〈c〉|(z,t′=0) = 〈c〉|(z,t=T1). (9.1d)

Note that the second interval is written in terms of a new time variable, t′ = t − T1
such that 0< t′ < T∆. After the solution 〈c〉|(z,t′) is computed, it is straightforward to
translate this solution to the original time variable via t= t′ + T1.

The notable feature of this solution is that the dispersion coefficient has exactly the
same dynamics for each of the two time intervals. To be explicit, recall T1= 250 min,
and Tf = 1000 min; the dispersion coefficients for the two intervals are given by

Interval 1 (0< t< 250 min)

D∗(t)=D
(

1+
1
48

U2a2

D2

)
− 4

U2a2

D

∞∑
n=1

(
J3(λn)

λ2
nJ0(λn)

)2

exp
(
−λ2

n
D
a2

t
)
. (9.2a)

Interval 2 (0< t′ < 750 min)

D∗(t′)=D
(

1+
1
48

U2a2

D2

)
− 4

U2a2

D

∞∑
n=1

(
J3(λn)

λ2
nJ0(λn)

)2

exp
(
−λ2

n
D
a2

t′
)
. (9.2b)

This means that D∗(t = 0) = D at the start of the first time interval, and that
D∗(t′ = 0) = D at the start of the second time interval. For both intervals, the
dispersion coefficient increases from its initial value with identical dependence upon
time according to (9.2a) and (9.2b). In other words, there is no ‘memory’ for the
dispersion coefficient.

We note that for the second time interval, the initial concentration field is not
uniform in the radial direction; this means that the s∗ field is non-zero. This initial
condition is also quite complex (i.e. it involves computing the s∗-field for the initial
condition 〈c〉|(z,t′=0) = c0Z1(z) + 〈c1〉|(z,t=T1)), so there is no analytical solution for the
s∗ field. Thus, s∗ is computed numerically, as described in § A.6. The s∗ field for the
superposed initial condition at time t′ = 0 min is given in figure 13.

This example allows for a unique opportunity to directly assess the effect of the s∗
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FIGURE 13. Spatial and temporal dependence of the source term, s∗ for Pe= 100 at t′=
0 min.

field. To do so, we consider the following three cases for obtaining a solution:

(i) The solution to the problem is determined by a single computation, spanning the
interval 0 6 t 6 1000 min.

(ii) The solution is obtained for two time intervals, where the time intervals are given
by S1 : 0 6 t 6 750 min and S2 : 0 6 t′ 6 750 min. The s∗ field is computed as
specified previously.

(iii) Strictly for comparison, the solution is obtained as the superposition of the two
time intervals described above. The s∗ field, however, is set (incorrectly) to zero
so that the solutions both with and without the s∗ field can be compared. This
corresponds to the form of the time-dependent dispersion equation that is used
frequently (cf. Sankarasubramanian & Gill (1973, equation (11))), and it exhibits
the lack of time translation symmetry pointed out by Taylor (1959).

The second moment is an effective measure for examining the result of these three
cases. In figure 14 we have plotted the results of the solutions as computed for each
of the three cases listed. In these results, we can consider the results from the first
case (the black line in figure 14) to be the ground truth for comparison.

We note that, for the solution computed in two steps with the correct value for
s∗, the second moment is continuous, and it matches the single-step solution almost
identically. This occurs even though the dispersion coefficient returns to its zero-time
value when the problem is restarted at time t = 250 min. This behaviour occurs
because of the unique interplay between the effective dispersion coefficient, D∗, and
the source term given by s∗. Thus, the concern posed by Taylor (1959) about the
paradox of which dispersion coefficient to use (the one at the end of the first time
interval, or the one corresponding to zero elapsed time for the second time interval)
does not arise. The dispersion coefficient is unequivocally defined for both time
periods by (9.2a)–(9.2b), and superposition of the solutions for the two time intervals
leads to a solution that contains no discontinuities in the slope of the second moment.

For Case 3, we note that without the proper s∗ field correction, the second moment
develops a cusp at t= 250 min. In other words, the rate of spreading for the second
time interval is too small, and this occurs because the source term s∗ has been
neglected. This creates a technical problem, because the derivative of the second
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(Case 1) Single-step solution

(Case 2) Two-step solution, first step

(Case 2) Two-step solution, second step

(Case 3) Two-step solution with s* = 0
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800 1000

FIGURE 14. Two-step process for Pe=100. (i) Case 1. The solution solved over the whole
(1000 min) time period. (ii) Case 2 (first step). The solution, S1, for 0< t< 250 min. (iii)
Case 2 (second step) The solution, S2 for 0< t′< 750 min (250< t< 1000 min) with the
source term computed numerically, and illustrated in figure 13. (iv) Case 3. The solution,
S2 for 0< t′ < 750 min with s∗ = 0.

moment does not exist at that point. Additionally, the second moment then grows too
slowly for the remaining time, under-predicting the actual value significantly.

This case not only allows a comparison to better illustrate how the s∗ field
influences the solution to account for the initial distribution of matter, but it helps to
resolve the apparent paradox that troubled Taylor (1959). Specifically, for dispersion
in tubes, the dispersion process is not independent of the initial condition at early
times; however, this dependence is best represented through s∗ rather than D∗. For
initial conditions that are uniform in the radial direction, no additional modification
from conventional theory is needed. However, for initial conditions that are not
uniform in the radial direction, the initial condition itself generates a behaviour that
is accounted for by the appearance of the non-conventional source term s∗ in the
macroscale transport equation. The inclusion of the additional source term is essential
for predicting the correct macroscale dynamics of the system.

9.2. Macroscale dispersion: example 2
In this example, we illustrate through direct deviation and computation that our
solution is superposable in the sense that was desired by Taylor (1959). For this
problem, the system starts with a specified initial condition and progresses for some
time (0< t < T1). Then, a second source is instantaneously injected into the system,
and transport continues over the interval T1 < t < Tf . This situation, then, yields a
condition where two solutes are in the system for varying amounts of time (and,
hence, would experience different time-dependent effective diffusion coefficients).
Taylor’s 1959 concern was the logical incongruity associated with assigning two
different values of the dispersion coefficient at the same point where the solute
bodies overlap. In the following, we show that the framework developed above
avoids this problem.
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9.2.1. The superposition problem for a two release case
This example is much like example 1, except now we consider the case where

there are two injections of solute at two different times. This represents exactly the
conditions that which were addressed by Taylor (1959). In other words, the case of
two releases leads to the problem where two solute distributions, each having been in
the system for different amounts of time, might overlap. The conventional approach
(e.g. Sankarasubramanian & Gill (1973, equation (11))) using a time-dependent
dispersion coefficient (without a source term for correction) would lead to a problem
where two different values of the dispersion coefficient would occur at points where
the solute distributions overlapped. In this example, we illustrate that the balance
equation for the average concentration that we derive can be sensibly superposed.

To start the discussion, we first need to determine mathematically how to handle
a second pulse injected at some time t = T1 after progression from a defined initial
condition at t= 0. The sudden injection of solute into the system at t= T1 introduces
a discontinuity of the solute field in time. Although there are several ways that
this might be represented, the simplest one is to use superposition in the following
way. For the first time interval (0 < t < T1), the system evolves from the specified
initial condition (for these examples, we will use the function Z(z) defined previously
in (7.11a), such that 〈c〉|(z,t=0) = c0Z1(z)). At time t = T1, a new solute source is
instantaneously injected into the system. The new initial condition for the second
time interval is then the superposition of the second pulse configuration with the
configuration of the existing solute distribution field, 〈c〉|(z,T1). This new field forms
an initial condition for the second time interval, beginning at time t= T1 and ending
at time t = Tf . In the comments by Taylor (1959), this is ostensibly what is meant
by the use of the word ‘superposition’. Thus, we consider two problems that together
provide the necessary solution.

To make this concrete, again let T1 = 250 min and Tf = 1000 min. The two
problems can be written as follows. We define the associated independent transport
equations for the solute injections (indicated by I1 and I2) for the entire time interval
(0< t< 1000 min) to be described by

Problem 〈c1〉 I1 : 0< t< 1000 min

∂〈c1〉

∂t
=D∗(t)

∂2
〈c1〉

∂z2
−U

∂〈c1〉

∂z
+ s1

∗(z, t), (9.3a)

I.C.1 〈c1〉|(z,t=0) = c0Z1(z). (9.3b)

Problem 〈c2〉 I2 : 0< t′ < 750 min

∂〈c2〉

∂t′
=D∗(t′)

∂2
〈c2〉

∂z2
−U

∂〈c2〉

∂z
+ s2

∗(z, t′), (9.3c)

I.C.2 〈c2〉|(z,t′=0) = c0Z1(z). (9.3d)

For the second injection, the time coordinate for the second interval is started at
the time t′ = t − T1, as described in example 1. Without this translation, the second
injection would not start with the correct dispersion coefficient, which is D∗(t′= 0)=
D, as indicated by (9.2b).

The boundary conditions are identical to those posed in (3.1a)–(3.1e). For reference,
the microscale solution to this problem is provided for a number of time points in
figure 15. We note that problem 〈c2〉 must be put in the time coordinates for which the
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t = 0 min
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t = 400 min t = 500 min

t = 100 min
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FIGURE 15. Microscale solute distributions in space at selected time points for the
problem consisting of two injected pulses; Péclet number is Pe= 100. The second pulse
is injected at the same location where the first pulse was injected at t= 250 min. These
images are provided only for visualization of the microscale processes (aspect ratio is
1 : 10 as for figures 6 and 7), and for validation of the macroscale equations by comparison
of the directly averaged microscale fields.

injection happens at time equal to zero (this was noted in § 7.2) to properly define D∗
and s∗.

We now explore how these two solutions can be superimposed. First, note that
the classical principle of superposition (Polyanin 2000; Olver 2014) for linear partial
differential equations with time-dependent coefficients requires that the superposition
be defined over the same time interval. Thus, problems I1 and I2 can be equivalently
written as (recalling that for the general problem, the initial condition is represented
by ϕ(z); cf. (3.1e))

Problem 〈c1〉 I1 : 0< t< 1000 min

Interval 1 0< t< 250 min

∂〈c1〉

∂t
=D∗(t)

∂2
〈c1〉

∂z2
−U

∂〈c1〉

∂z
+ s1

∗(z, t), (9.4a)
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I.C.1 〈c1〉|(z,t=0) = c0Z1(z). (9.4b)

Interval 2 0< t′ < 750 min

∂〈c1〉

∂t′
=D∗(t′)

∂2
〈c1〉

∂z2
−U

∂〈c1〉

∂z
+ s1

∗(z, t′), (9.4c)

I.C.2 〈c1〉|(z,t′=0) = 〈c1〉|(z,t=T1)︸ ︷︷ ︸
ϕ1

. (9.4d)

Problem 〈c2〉 I2 : 0< t< 1000 min

Interval 1 0< t< 250 min
〈c2〉 = 0. (9.4e)

Interval 2 0< t′ < 750 min

∂〈c2〉

∂t′
=D∗(t′)

∂2
〈c2〉

∂z2
−U

∂〈c2〉

∂z
+ s2

∗(z, t′), (9.4f )

I.C.2 〈c2〉|(z,t′=0) = c0Z1(z)︸ ︷︷ ︸
ϕ2

. (9.4g)

We make the following important notes about the formulation above.
(i) We have divided Problem 1 into two intervals 0 < t < 250 min and 250 < t <

1000 min. This is not an arbitrary choice; it is necessary to obtain solutions that
involve multiple initial conditions.

(ii) In our formulation, the dispersion coefficient D∗ does not have to ‘remember’
its prior history. Hence, exactly the same function D∗ is used in both intervals. Being
explicit, for the problem for 〈c1〉 in the first time interval, the dispersion coefficient
starts at D∗(t = 0) = D, and grows as predicted by (7.3). When time is restarted in
the second interval, exactly the same behaviour is repeated. The dispersion coefficient
for the second time interval starts at D∗(t= 0)=D, and again grows as predicted by
(7.3). During the second time interval, the source function s∗1 automatically accounts
for the spreading inherent in the second initial condition. This function is essentially
the ‘memory’ in the system, but one that encodes that memory in a local rather than
non-local in time representation.

(iii) The source function, s∗, is linear in the initial condition; this is proved in § A.5.
In other words, we have the following decomposition due to linearity:

s∗(ϕ1 + ϕ2)= s∗(ϕ1)+ s∗(ϕ2). (9.5)

(iv) These features make the two problems superposable; the two problems can be
added to generate one equation that suffices to describe the dispersion process over
the two intervals.

9.2.2. Superposition of the two concentrations
We now show how superposition can be accomplished for the problem of two

releases of solute at two different times. We begin by defining the superposed
concentration 〈c〉 = 〈c1〉 + 〈c2〉. For the first time interval, the superposition is trivial,
noting that 〈c2〉 ≡ 0. Thus, 〈c〉 = 〈c1〉. Superposition for the first interval yields
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Superposition for interval 1 0< t< 250 min

∂〈c〉
∂t
=D∗(t)

∂2
〈c〉
∂z2
−U

∂〈c〉
∂z
+ s1

∗(z, t), (9.6a)

I.C.1 〈c〉|(z,t=0) = c0Z1(z). (9.6b)

Note that the concentration at the final time t = T1 = 250 min, forms the initial
condition for 〈c1〉 during the second interval. For reference, we denote this
concentration by 〈c1〉|(z,t=T1).

Because (9.4d) and (9.4g) are (i) linear, and (ii) defined over the same time interval
0< t′<(Tf −T1), the superposition of these equations is straightforward. Adding (9.4c)
and (9.4f ) yields

Superposition for interval 2 0< t′ < 750 min

∂〈c〉
∂t′
=D∗(t′)

∂2
〈c〉
∂z2
−U

∂〈c〉
∂z
+ s∗(z, t′). (9.6c)

Here, we have used the linearity of the source term: s∗(z, t′; ϕ) = s∗1(z, t′; ϕ1) +

s∗2(z, t′; ϕ2) to generate the single source term field, s∗, for the superposed problem.
The initial condition for the second interval is found by adding the final concentration
from time interval 1, 〈c1〉|(z,t=T1), to the initial condition for the second solute release.

I.C.2 〈c〉|(z,t′=0) = 〈c1〉|(z,t=T1) + c0Z1(z)︸ ︷︷ ︸
ϕ

. (9.6d)

The Taylor dispersion problem is frequently represented by an equation of the form
of (9.4d) and (9.4g), but with s∗1 = s∗2 = 0 (cf. Smith 1981a). Superposition for this
case fails because even if one divides the problem into two time intervals. Upon
restarting time (setting t′= 0) for the second interval, the concentrations 〈c1〉 and 〈c2〉

are represented by two different linear operators (one for 〈c1〉 where D∗(t) begins at
t = T1, and a second for 〈c2〉 where D∗(t′) begins at t′ = 0). In the formulation we
provide, D∗(t) is always given by a single function of time everywhere in the domain;
any ‘time history’ associated with multiple injections at different times is accounted
for strictly through the source term field, s∗. This avoids the possibility of having D∗

being multi-valued at a single spatial location.

9.2.3. Proof of validity of superposition by direct computation
The superposition of 〈c1〉 and 〈c2〉 is given by (9.6a)–(9.6d). For clarity, we

re-emphasize the following regarding the interpretation of these equations:

(i) During the first time interval (0< t < T1) the dispersion coefficient for the time
interval starts at D∗(t = 0) = D, and again grows as predicted by (7.3). This is
described by the single transport equation given by (9.6a,b). Because the radial
derivative of the initial condition for this interval is zero, we have that s∗1(z, t) is
zero.

(ii) For the second time interval, the initial condition is the solution obtained from
the end of the first time interval (at t= T1) plus the initial condition representing
the second solute release. This is described by the single transport equation given
by (9.6c,b).
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FIGURE 16. The macroscopic concentration field predicted by the upscaled problem
statements given by I1 and I2. Continuous lines represents the averaged microscale
simulation results; points represent the solutions to the upscaled equations given by
(9.3a)–(9.3d). The concentration curves are provided as two plots for ease in visualization.
Note that the curve in dark blue at t= 250 min represents the macroscale initial condition
for problem I2 computed by superposition.

(iii) During the second time interval (0< t<T1) the dispersion coefficient for the time
interval starts at D∗(t= 0)=D, and again grows as predicted by (7.3). Note that
the radial derivative of the initial condition for the second time interval is non-
zero, thus there is a contribution from the s∗-field for the second time interval.

The initial condition for this problem is similar to that for Problem 1. In fact, the
s∗ field is identical to that for Problem 1, and is computed numerically as described
for Problem 1.

In figure 16 we have illustrated the solutions for this problem computed by
(i) averaging the microscale numerical solutions directly, and (ii) via the two-step
(superposed) macroscale simulation (solving (9.6a)–(9.6d)) as described above. We
note that the two solutions are in good agreement, and, in particular, the amount of
dispersion predicted by the upscaled model (both before and after the second pulse) is
consistent with the averaged microscale data (for which there are no approximations
of any kind). There is a slight mismatch in between the two solutions near the peaks
for times t= 100, 350 and 500 min. Most likely, these errors are associated with the
approximations in the upscaled equation, as discussed previously (cf. the peaks for
Pe= 100, Case A in figure 8).

In summary, we have provided two examples that meet the desideratum of Taylor
(1959). For each solution, we find that (i) we can define a sensible notion of
superposition for the upscaled equation of the form that we have derived, (ii) the
associated dispersion coefficient is always a single-valued function of space and (iii)
the source terms are superposable, and they generate a field correction that assures
that the proper rate of spreading (or, equivalently, second moment) is achieved.
Because the source terms are responsible for correcting the rate of spreading at early
times, this function is not imposed on the dispersion coefficient. It is this component
of our solution that generates the necessary conditions for the upscaled equation to
be superposable.

10. Conclusions
In this study, we were able to address a long-standing problem of early-time

behaviour from arbitrary initial conditions. The approach we adopted generates
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an effective macroscale balance equation that is consistent with the conventional
one-dimensional convection–dispersion-type equation. One notable difference is that
the formulation presented here also contains an exponentially decaying-in-time source
term that represents memory of the initial condition. Because our results were
compared with numerical simulations, we were able to compute the errors associated
with the approximations made in our development. In short, these approximations are
represented by

(i) Pe
a
L0
=O(1),

(ii)
a
L0
< 1.

In addition, the four guidelines that we proposed in the introduction for generating
a well-structured dispersion theory were met. Specifically, the dispersion coefficient
for Taylor dispersion was shown to be positive, independent of initial conditions,
superposable and converges to the classical result at large times. Of these, the most
important result was illustrating that the non-conventional source term is necessary
to assure that solutions are superposable. This addresses a long-standing problem
about maintaining the principle of superposition when a time-dependent dispersion
coefficient has been defined.
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Appendix A. Solutions to the closure problem
A.1. General integral solutions

The balance for the deviations developed in the body of the paper is given by the
following set of equations:

∂ c̃
∂t
+ ṽz

∂〈c〉
∂z︸ ︷︷ ︸

source

=
D
r
∂

∂r

(
r
∂ c̃
∂r

)
+

D
r2

∂2c̃
∂θ 2
+D

∂2c̃
∂z2

, (A 1a)

−D
∂ c̃
∂r
= 0, at r= 0, a, (A 1b)
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c̃= 0, as z→±∞, (A 1c)

−D
∂ c̃
∂z
= 0, as z→±∞, (A 1d)

c̃(r, θ,z, 0)= ϕ̃(r, θ,z)︸ ︷︷ ︸
source

, (A 1e)

where the sum of terms ṽz∂ c̃/∂z−〈ṽz∂ c̃/∂z〉 has been neglected with respect to radial
diffusion and a Lagrangian frame of coordinates is being used. This problem has
exactly two source terms: one due to macroscopic convection and the second one due
to the initial condition. The solution of this problem can be carried out by means
of integral equations formulations in terms of Green’s functions (Wood & Valdés-
Parada 2013; Polyanin & Nazaikinskii 2015) with the associated Green’s function (G)
satisfying the following initial and boundary-value problem:

∂G
∂t
=

D
r
∂

∂r

(
r
∂G
∂r

)
+

D
r2

∂2G
∂θ 2
+D

∂2G
∂z2
+ δ(r− ρ)δ(θ − ϑ)δ(z− ζ )δ(t− τ), (A 2a)

−D
∂G
∂r
= 0, at r= 0, a, (A 2b)

G= 0, as z→±∞, (A 2c)

−D
∂G
∂z
= 0, as z→±∞, (A 2d)

G= 0, t< τ. (A 2e)

The solution to this problem can be written as

G(r, ρ, θ, ϑ, z, ζ , t, τ )=G1(r, ρ, θ − ϑ, t− τ)G2(z− ζ , t− τ), (A 3)

where, for convenience, the solution is expressed in terms of the Green’s functions
of unsteady polar (G1) and axial coordinates (G2). These Green’s functions are given
by

G1(r, ρ, θ − ϑ, t− τ) =
1

πa2

+
1
π

∞∑
n=0

∞∑
m=1

Anλ
2
nmJn(λnmr/a)Jn(λnmρ/a)
a2(λ2

nm − n2)J2
n(λnm)

× cos[n(θ − ϑ)] exp
(
−
λ2

nmD
a2

(t− τ)
)
, (A 4a)

G2(z, ζ , t− τ)=
1

2
√

πD(t− τ)
exp

[
−
(z− ζ )2

4D(t− τ)

]
. (A 4b)

In (A 4a) An is a constant whose value is 1 for n = 0 and 2 for n = 1, 2, . . . In
addition, λnm are the positive roots of the transcendental equation J′n(λnm) = 0. The
solution of the problem given in (A 1e) can be obtained by using the unsteady version
of Green’s formula and the resulting expression can be written in the form given in
(5.11). Direct substitution of this result into the unclosed macroscale balance equation
yields the closed but non-local model given in (6.1).
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A.2. Localized solutions
The relative advantages and disadvantages of non-local formulations have been
discussed in the body of the paper. Regardless, we are ultimately interested in
finding analytical solutions for the effective parameters that arise from averaging, so
a localized form is desirable. Recall, this is valid when there is separation between
the characteristic space and time scales for the microscale and macroscale variables,
i.e.

a� L0, (A 5a)
t∗� T∗, (A 5b)

where L0 is a measure of the size of the initial configuration in the longitudinal
direction, t∗ is the characteristic time scale for the microscale processes and T∗ is
the characteristic time scale for the macroscale processes.

The length scale constraint is fairly clear in that it is expressed in terms of physical
properties of the system. For the time scales, the restriction is less clear. We can
attempt to (very roughly) characterize these time scales as follows. There are two
reasonable time scales associated with the microscale balance given by (A 1a). First,
the convection term involved in the material time derivative has a time scale that
would be estimated by T∗ =O(L/U). The diffusive time scale in the radial direction
is estimated by t∗ = O(a2/(4D)). If we assume that PeT 6 O(1), then the diffusive
time scale can be used for estimates. For the macroscale equation, (6.6a), estimates
are complicated somewhat by the fact that the length scale of interest, L, is the
longitudinal size of the solution as it spreads. Noting that we are attempting to
generate estimates for the length scale associated with ∂〈c〉/∂z in the convolutions
given by (5.11), we can neglect the convection term (since we are in a moving
coordinate system). The time scale can be estimated from the dispersive time scale,
which we can think of as containing an initial time scale plus a transient time scale.
In other words, we are making the estimate

L2(t)=O(L2
0 + 4tD∗(t)) (A 6)

from which we generate the time scale

T∗ =O
(

L2
0

D∗(0)
+

4D∗(t)t
D∗(0)

)
=O

(
L2

0

D
+ 4t

)
. (A 7)

Recalling t∗=O(a2/(4D)), it is clear that the constraint t∗� T∗ is automatically met
when a� L0. Therefore, the single length scale constraint appears to be sufficient to
justify the analysis, and this has been adopted in the body of the paper. We note that
an alternate analysis of approximations of this sort is available in Mercer & Roberts
(1990, appendix A), where the analysis is carried out in Fourier space in the context
of a centre manifold theory approach to upscaling.

Additional details (and refinements about specific metrics for the time and length
scales) for this approximation can be found in Wood & Valdés-Parada (2013).
Regardless, exact conditions for when this approximation can be imposed are difficult
to define; instead, we opt for the approach here of making the assumption that this
approximation holds, and then examining the fidelity of the results. We do note
that the removal of the axial derivative of the concentration is consistent with the
second-order truncation presented by Gill & Sankarasubramanian (1970). The work
of Gill & Sankarasubramanian (1970) suggests that the higher-order terms are much
smaller than the second-order terms, which provides an independent validation of the
approximation that we have employed.
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A.3. Analytical solutions for the b-field
Assuming that the constraints allowing a local solution are valid, we can extract the
axial derivative of the average concentration from the second integral in (5.11), we
set

b(r, θ, z, t) = −
∫ τ=t

τ=0

∫ ζ=∞

ζ=−∞

∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
G(r, ρ, θ, ϑ,z, ζ , t− τ)ṽz(ρ)ρ dρ dϑ dζ dτ

= −

∫ τ=t

τ=0

∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
G1(r, ρ, θ − ϑ, t− τ)ṽz(ρ)ρ dρ dϑ

×

∫ ζ=∞

ζ=−∞

G2(z− ζ , t− τ) dζ dτ . (A 8)

Note, we can make use of the identity∫ ζ=∞

ζ=−∞

G2(z− ζ , t− τ) dζ = 1, (t− τ 6= 0). (A 9)

It is clear from these results that the b-field is entirely independent of the particular
initial condition adopted. Also, because of symmetry, the velocity deviations do not
depend on the angular direction, θ or longitudinal coordinate, z. Direct integration
leads to a result that is only a function of r and t

b(r, t)=
1
4

Ua2

D

(
r2

a2
−

r4

2a4
−

1
3

)
+

2Ua2

D

∞∑
n=1

J3(λn)J0

(
λn

r
a

)
λ3

nJ2
0(λn)

exp
(
−λ2

n
D
a2

t
)
. (A 10)

A simplification has been used here to decompose the series into the steady and
transient parts, noting

∞∑
n=1

J3(λn)J0(λn
r
a)

λ3
nJ2

0(λn)
=−

1
8

(
r2

a2
−

r4

2a4
−

1
3

)
. (A 11)

It is easy to verify that 〈b〉 = 0. Similarly, as t→∞, we find

− 〈ṽzb〉|t→∞ = −
1
2

U2a2

D

〈(
r2

a2
−

r4

2a4
−

1
3

)(
1
2
−

r2

a2

)〉
=

U2a2

48D
, (A 12)

as expected.

A.4. Analytical solutions for the Φ-field
Following an analysis analogous to that for the b-field, we define the following
functional, Φ(ϕ̃):

Φ(r, θ,z, t; ϕ̃)=
∫ ζ=∞

ζ=−∞

∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
G(r, ρ, θ, ϑ, z, ζ , t)ϕ̃(ρ, ϑ,ζ )ρ dρ dϑ dζ . (A 13)
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Evidently, in order to draw a specific expression for this closure variable it is
necessary to provide a particular initial condition, ϕ̃. Substituting the Green’s function
G into (A 13), and rearranging, we recover the result given in (7.7) of the main text,
which is applicable to a general initial condition

Φ(r, θ, z, t)= B0,0(z, t)+
∞∑

n=0

∞∑
m=1

Bn,m(θ, z, t)Jn

(
λnmr

a

)
exp

(
−
λ2

nmD
a2

t
)
, (A 14)

where the functions B0,0(z, t) and Bn,m(θ,z, t), are defined by

B0,0(z, t)=
1

πa2

∫ ζ=∞

ζ=−∞

G2(z, ζ , t)
∫ ϑ=2π

ϑ=0

∫ ρ=a

ρ=0
ϕ̃(ρ, ϑ, ζ )ρ dρ dϑ dζ , (A 15a)

Bn,m(θ, z, t) =
Anλ

2
nm

πa2(λ2
nm − n2)J2

n(λnm)

∫ ζ=∞

ζ=−∞

G2(z, ζ , t)
∫ ϑ=2π

ϑ=0
cos[n(θ − ϑ)]

×

∫ ρ=a

ρ=0
Jn

(
λnm

ρ

a

)
ϕ̃(ρ, ϑ, ζ )ρ dρ dϑ dζ . (A 15b)

In principle, this expression (combined with (A 15a) and (A 15b)) provides the
integral solution for any initial condition. Regardless of the particular initial condition
chosen, note that Φ is linear in the initial condition function, i.e.

ϕ = 〈ϕ〉 + ϕ̃, (A 16)

hence, multiplying the initial condition by a constant K1 yields

K1ϕ =K1〈ϕ〉 +K1ϕ̃ (A 17)

or
K1ϕ⇒K1ϕ̃. (A 18)

The linearity in the initial condition is then established by

Φ(K1ϕ̃1 +K2ϕ̃2)=K1Φ(ϕ1)+K1Φ(ϕ2), (A 19)

as determined from (A 13).
As mentioned in the main body of the paper, we have found (non-trivial) particular

solutions in analytical form (i.e. no unresolved integrations remain, and the result is
given as a series expression) only for the case of θ -symmetric initial conditions. For
the case of θ -symmetric initial conditions, the resulting expression for the closure
variable Φ simplifies to

Φ(r, z, t)=
∞∑

n=1

Bn(z, t)J0

(
λn

r
a

)
exp

(
−λ2

n
D
a2

t
)
, (A 20)

where Bn(z, t) is defined by

Bn(z, t)=
2

a2J2
0(λn)

∫ ζ=∞

ζ=−∞

G2(z− ζ , t)
∫ ρ=a

ρ=0
ϕ̃(ρ, ζ )J0

(
λn
ρ

a

)
ρ dρ dζ . (A 21)
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Note that in these results Φ is a time-decaying function that depends on t, r and z.
The dependence on the axial direction arises from the initial condition. Furthermore,
we note that if the initial condition is chosen to be independent of r, the consequence
is that Bn(z, 0) = 0 and therefore Φ = 0. As a final note, because 〈J0(λn(r/a))〉 ≡ 0,
we have that 〈Φ〉 ≡ 0 for all admissible initial conditions.

As a final note about the localized solutions, we note that with the developments
above the concentration deviations specified by (5.11) can be put in the local
formulation

c̃(r, θ,z, t)= b(r, t)
∂〈c〉
∂z

∣∣∣∣
(z,t)

+Φ(r, θ,z, t). (A 22)

The local macroscale balance equation is easily found to take the form given in (6.6a)
of the main body of the paper.

A.5. Analytical solutions for the effective coefficients
Recall that the two effective parameters arising in the macroscale equation are

D∗(t)=D− 〈ṽzb〉, (A 23a)

s∗(z, t)=−
〈
ṽz
∂Φ

∂z

〉
. (A 23b)

Note that because Φ is a linear functional of the initial condition ϕ̃ (or, equivalently,
ϕ; see § A.4), then so is s∗(ϕ̃). This is easy to check by direct substitution

s∗(K1ϕ̃1 +K2ϕ̃2) = −

〈
ṽz
∂Φ(K1ϕ̃1 +K2ϕ̃2)

∂z

〉
= −K1

〈
ṽz
∂Φ(ϕ̃1)

∂z

〉
−K2

〈
ṽz
∂Φ(ϕ̃2)

∂z

〉
= K1s∗(ϕ̃1)+K2s∗(ϕ̃2) (A 24)

or, equivalently, this linearity can be expressed in terms of the original initial
conditions (see § A.4)

s∗(K1ϕ1 +K2ϕ2)=K1s∗(ϕ1)+K2s∗(ϕ2). (A 25)

To compute D∗, it is helpful to note the following〈
ṽzJ0

(
λn

r
a

)〉
=

2U
λn

J3(λn). (A 26)

Using this average and the result of (A 12), the value of the effective dispersion
coefficient is found to be

D∗(t)
D
=

(
1+

1
48

U2a2

D2

)
− 4

U2a2

D2

∞∑
n=1

(
J3(λn)

λ2
nJ0(λn)

)2

exp
(
−λ2

n
D
a2

t
)
. (A 27)

Note that, at t= 0, the infinite series can be verified to be absolutely convergent. We
also note that

4
U2a2

D2

∞∑
n=1

(
J3(λn)

λ2
nJ0(λn)

)2

=
1

48
U2a2

D2
(A 28)
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so that at the initial time we have that D∗(t) = D; clearly, this series must be
a monotonically increasing function of time. This also serves to show that the
effective hydrodynamic diffusion coefficient is positive for all possible values of time.
Equation (A 27) is equivalent to equation (19) in Gill & Sankarasubramanian (1970)
(the comparison of solutions requires the identity 4/λnJ2(λn)= J3(λn)).

For computing s∗, (A 23b) is reworked by gathering the functions of the radial
position into the averaging operator; the resulting equation is given in (7.9) of the
main text. For the case in which the initial condition is θ -independent, this result
simplifies to

s∗(z, t)=−
n=∞∑
n=1

∂Bn

∂z

∣∣∣∣
(z,t)

〈
ṽzJ0

(
λn

r
a

)〉
exp

(
−λ2

n
D
a2

t
)
, (A 29)

which can be further reduced, by taking into account the result given in (A 26)

s∗(z, t)=−2U
n=∞∑
n=1

∂Bn

∂z

∣∣∣∣
(z,t)

J3(λn)

λn
exp

(
−λ2

n
D
a2

t
)
. (A 30)

Note that the source term, when integrated over the entire domain, is identically zero.
This is straightforward to show. First note∫ z=∞

z=−∞

∂Φ

∂z
dz=Φ(z)

∣∣∣∣∞
−∞

= 0. (A 31)

Then, we can integrate both sides of s∗ to yield∫ z=∞

z=−∞
s∗(z) dz=−

〈
ṽz(r)

∫ z=∞

z=−∞

∂Φ

∂z
dz
〉
= 0. (A 32)

The condition that the integral of s∗ taken over the entire domain be zero is crucial
to the problem. Without this condition, the macroscale balance given by (6.6a) would
have no well-defined steady-state solution.

A.6. Numerical solutions for Φ
In § 9 of the body of the paper, a method for numerically computing Φ is needed
for examining the problem of superposition. In general, a numerical method for
determining the closure variables (and, hence, the effective parameters) can be found
by substituting the solution form given by (A 22) into the general statement for
the deviation balance ((A 1a)–(A 1e)). The result is the following two initial and
boundary-value problems that can be solved numerically for the closure variables b
and Φ. Because we do not need to solve the balance equation for b numerically
at all for this problem, we present only the result for computing the solution for
Φ numerically. In summary, the value of the Φ field can be found by solving the
following initial and boundary-value problem:

∂Φ

∂t
=

D
r
∂

∂r

(
r
∂Φ

∂r

)
+D

∂2Φ

∂z2
, (A 33a)

∂Φ

∂r

∣∣∣∣
(r,θ,z,t)

= 0, r= 0, a, (A 33b)
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Φ(r, θ, z, t)= 0, for z→±∞, (A 33c)

−D
∂Φ

∂z

∣∣∣∣
(r,θ,z,t)

= 0, for z→±∞, (A 33d)

Φ(r, θ, z, 0)= ϕ̃(r, z). (A 33e)

Appendix B. Particular solution for s∗

As detailed above, the resulting expression for s∗ depends on the particular type
of initial condition in the system by means of Bn(z, 0), as expressed in (A 21). In
this section, an explicit form for Bn(z, 0) (and consequently for s∗) is obtained by
considering the case where the initial condition for the concentration of the solute
is separable. As a matter of convenience, let the initial condition for the solute
concentration be the superposition of two spatial functions.

To start, we impose the following structure on the initial condition, which
summarizes the three case studies of interest here as explained in § 7.3 of the
main text,

ϕ(r, z)= R1(r)Z1(z)+ R2(r)Z2(z), (B 1)

where R1 and R2 are dimensionless piece-wise continuous functions of the radial
position that will be specified later. Averaging then yields

〈ϕ〉(z)= 〈R1〉Z1(z)+ 〈R2〉Z2(z). (B 2)

When subtracted from (B 1), the result gives rise to the following expression for the
initial condition of the spatial deviations:

ϕ̃(r, z)= R̃1(r)Z1(z)+ R̃2(r)Z2(z). (B 3)

For the particular functions adopted here, we consider a linear function in the radial
direction, and a Gaussian type function in the longitudinal direction. Thus we have

Z1(z)= c0α1 exp
(
−
(z− β1)

2

σ 2
1

)
, (B 4a)

Z2(z)= c0α2 exp
(
−
(z− β2)

2

σ 2
2

)
. (B 4b)

Here, α1, and α2 control the magnitude of the function, σ1 and σ2 control the width
and β1 and β2 control the displacement along the z-axis.

B.1. Linear function in radial distributions
For the radial functions R1 and R2, we use the simple linear functions

R1(r)= 1−
r
a
, (B 5a)

R2(r)=
r
a
. (B 5b)

Thus

R̃1(r)=
2
3
−

r
a
, (B 6a)
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R̃2(r)=
r
a
−

2
3
. (B 6b)

It is easy to verify that the deviation function for the initial condition is

ϕ̃(z, r)=
(

2
3
−

r
a

)
c0α1 exp

(
−
(z− β1)

2

σ 2
1

)
+

(
r
a
−

2
3

)
c0α2 exp

(
−
(z− β2)

2

σ 2
2

)
. (B 7)

Noting that R̃2 =−R̃1, then the initial condition can be written as

ϕ̃(z, r)=
(

2
3
−

r
a

)
c0

[
α1 exp

(
−
(z− β1)

2

σ 2
1

)
− α2 exp

(
−
(z− β2)

2

σ 2
2

)]
. (B 8)

Substituting this result into the expression for Bn(z, t) gives

Bn(z, t)=
2

a2J2
0(λn)

∫ ζ=∞

ζ=−∞

G2(z− ζ , t)[Z1(ζ )−Z2(ζ )] dζ
∫ r=a

r=0
R̃1(r)J0

(
λn

r
a

)
r dr. (B 9)

Because R̃1 is a simple linear function, and because of the properties of Bessel
functions, an application of integration by parts is straightforward and leads to
substantial simplification. To start, note that the required integral is∫ r=a

r=0
R̃1J0

(
λn

r
a

)
r dr=

2
3

∫ r=a

r=0
J0

(
λn

r
a

)
r dr−

∫ r=a

r=0

r
a

J0

(
λn

r
a

)
r dr (B 10)

and the first of these two integrals is identically zero by application of (B 21). The
second integral can be evaluated in terms of Struve functions, yielding∫ r=a

r=0
R̃1J0

(
λn

r
a

)
r dr=−

a2π

2λ2
n

H1(λn)J0(λn). (B 11)

Here, H1 is a Struve H function (cf. equation (11.1.7) in Abramowitz & Stegun
(1965), p. 480).

The integral involving G2 is easily computed to be∫ ζ=∞

ζ=−∞

G2(z− ζ , t)[Z1(ζ )− Z2(ζ )] dζ =
c0σ1α1√
σ 2

1 + 4Dt
exp

(
−
(z− β1)

2

σ 2
1 + 4Dt

)
−

c0σ2α2√
σ 2

2 + 4Dt
exp

(
−
(z− β2)

2

σ 2
2 + 4Dt

)
. (B 12)

Inserting this result into (B 9), leads to the following expression for Bn(z, t):

Bn(z, t) = −
c0π

λ2
nJ0(λn)

H1(λn)

[
σ1α1√
σ 2

1 + 4Dt
exp

(
−
(z− β1)

2

σ 2
1 + 4Dt

)

−
σ2α2√
σ 2

2 + 4Dt
exp

(
−
(z− β2)

2

σ 2
2 + 4Dt

)]
. (B 13)
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Finally, recalling the definition of s∗ given by (A 30), the final result of this analysis
is obtained

s∗(z, t) = −4πc0U
[
σ1α1(z− β1)

(σ 2
1 + 4Dt)3/2

exp
(
−
(z− β1)

2

σ 2
1 + 4Dt

)
−

σ2α2(z− β2)

(σ 2
2 + 4Dt)3/2

exp
(
−
(z− β2)

2

σ 2
2 + 4Dt

)] ∞∑
n=1

H1(λn)

λ3
n

J3(λn)

J0(λn)
exp

(
−
λ2

nD
a2

t
)
.

(B 14)

B.2. Step function in radial distributions
Consider the situation in which the radial variation in the initial condition happens as
a step function so that the functions R1 and R2 are defined by

R1(r)=

1, 0 6 r 6
a
2

0,
a
2
< r 6 a

(B 15a)

R2(r)=

0, 0 6 r 6
a
2

1,
a
2
< r 6 a.

(B 15b)

Applying the spatial averaging operator to (B 15b) leads to 〈R1〉 and 〈R2〉 given by

〈R1〉 =
1
4 ; 〈R2〉 =

3
4 , (B 16)

which when subtracted from (B 15b) give, for the deviations, R̃1 and R̃2:

R̃1(r)=


3
4
, 0 6 r 6

a
2

−
1
4
,

a
2
< r 6 a

(B 17a)

R̃2(r)=


−

3
4
, 0 6 r 6

a
2

1
4
,

1
2
< r 6 a.

(B 17b)

For this particular initial condition, note that R̃1(r)=−R̃2(r), consequently the initial
condition for the concentration deviations are now

ϕ̃(r, z)= [Z1(z)− Z2(z)]R̃1(r). (B 18)

Recall that we have

Bn(z, t)=
2

a2J2
0(λn)

∫ ζ=∞

ζ=−∞

G2(z− ζ , t)[Z1(ζ )− Z2(ζ )] dζ
∫ r=a

r=0
R̃1(r)J0

(
λn

r
a

)
r dr.

(B 19)
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On the basis of this initial condition, Bn(z, 0) can be expressed as

Bn(z, 0) =
2

a2J2
0(λn)

∫ ζ=∞

ζ=−∞

G2(z− ζ , t)[Z1(ζ )− Z2(ζ )] dζ

×

[
3
4

∫ r=a/2

r=0
J0

(
λn

r
a

)
r dr−

1
4

∫ r=a

r=a/2
J0

(
λn

r
a

)
r dr
]
. (B 20)

Noting that (Olver et al. 2010)∫
J0

(
λn

r
a

)
r dr=

a
λn

rJ1

(
λn

r
a

)
+ c, (B 21)

then, (B 20) can be simplified to give the following:

Bn(z, 0)=
J1(λn/2)
λnJ2

0(λn)

∫ ζ=∞

ζ=−∞

G2(z− ζ , t)[Z1(ζ )− Z2(ζ )] dζ . (B 22)

Recalling the previous results for the integrals involving Z1 and Z2 given by (B 12),
and the definition of s∗ given by (A 30), the following explicit series solution for s∗
is obtained:

s∗(z, t) = 4c0U
[
σ1α1(z− β1)

(σ 2
1 + 4Dt)3/2

exp
(
−
(z− β1)

2

σ 2
1 + 4Dt

)
−

σ2α2(z− β2)

(σ 2
2 + 4Dt)3/2

exp
(
−
(z− β2)

2

σ 2
2 + 4Dt

)]
×

∞∑
n=1

J1(λn/2)J3(λn)

λ2
nJ2

0(λn)
exp

(
−
λ2

nD
a2

t
)
. (B 23)

B.3. Accounting for convection
For PeT � 1, the solutions above should give sufficient estimates for s∗. However,
recall that the closure problem was transformed into the coordinate system moving
with the velocity of the centre of mass of the system. At asymptotic times, the
distribution of solutes is nearly uniform across the radius; thus, the average fluid
velocity is identically equal to the mass average velocity. However, in this work we
have been investigating the special condition where initially the solute is distributed
in two parts, each with different initial mass averaged velocities. This poses some
difficulty, because in general the averaged velocity of the centre of mass of the solute
is an unknown function of time. This difference between the mass-averaged and
average fluid velocities (and the potential problems that it poses) was also identified
in the work of Gill & Sankarasubramanian (1971), Degance & Johns (1978b), Dentz
& Carrera (2007) and Ratnakar & Balakotaiah (2011).

For initial-condition-type problems, the mass-averaged velocities can be found from
the centre of mass of the moving solute distribution

M0 = 2π

∫ r=a

r=0

∫ z=L

z=0
ϕ(r, z)r dr dz, (B 24a)

M1,z(t)=
2π

M0

∫ r=a

r=0

∫ z=L

z=0
zc(r, z, t)r dr dz. (B 24b)
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In these expressions, the first index indicates the order of the moment, and subsequent
indexes indicate for which coordinate the moments are taken. With these definitions
in place, the mass-averaged solute velocity is defined by

〈vz,M〉 =
∂M1(t)
∂t

. (B 25)

Before moving on, it is worth recalling that, among the simplifications adopted in
this work, it was assumed that the term ṽz∂ c̃/∂z and its spatial average are negligible
in comparison to the radial diffusive term (valid for Pe(a/L0)=O(1)). In the material
that follows, we make corrections to the coordinate used to displace the solutions, but
we do not alter the value U that appears in these solutions. The following constraint
is adopted to indicate under what conditions this assumption is valid:

(〈vz,M〉|t −U)
∂〈c〉
∂z
� ṽz

∂ c̃
∂z

(B 26)

or, making conventional order-of-magnitude estimates, a reasonable constraint is

(〈vz,M〉|t −U)
a
L
�O(ṽz), ∀(z, t). (B 27)

Here, it has been assumed that reasonable estimates of the characteristic lengths of
variations for c̃ and 〈c〉 are a and L, respectively. In the solutions below, it will be
apparent that this constraint is easily met for the particular initial conditions studied.

It is convenient to denote the portion of the total initial mass per unit length of the
tube given by each of the two parts of the initial condition be specified by

m1(z)= 2πZ1(z)
∫ r=a

r=0
R1(r)r dr, (B 28a)

m2(z)= 2πZ2(z)
∫ r=a

r=0
R2(r)r dr. (B 28b)

From the above definitions, the mass weightings for the two portions of the initial
condition are defined as

ω1(r)=
Z1(z)
m1(z)

R1(r)= R1(r)
(

2π

∫ r=a

r=0
R1(r)r dr

)−1

, (B 29a)

ω2(r)=
Z2(z)
m2(z)

R2(r)= R2(r)
(

2π

∫ r=a

r=0
R2(r)r dr

)−1

. (B 29b)

Note that these weightings are distinctly different from the spatial weighting functions
discussed in the main body of the paper. Using these weighting functions, the initial
mass-averaged velocities are given by

〈vz,M〉1(t= 0)= 2π

∫ r=a

r=0
ω(w)1(r)vz(r)r dr, (B 30a)

〈vz,M〉2(t= 0)= 2π

∫ r=a

r=0
ω2(r)vz(r)r dr. (B 30b)

The difficulty now is to determine a time scale for which the initial condition
spreads sufficiently to sample the entire velocity distribution. To this end, consider
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the following rough estimate for the variance of the initial condition corresponding
to an unbounded two-dimensional field:

σ(t)=
√

4Dt. (B 31)

Hence, the interest is to find a time, t∗d , for which σ = a, i.e.

t∗d =
a2

4D
, (B 32)

which is referred to as the diffusive time scale. With this time scale established, it
is now necessary to develop a model that describes how the average velocity of
each of the two non-uniform initial condition contributions (R1 and R2) relaxes from
its initial average to the average fluid velocity over the time t∗d . Since the process
is diffusion driven, a simple square-root-of-time behaviour seems reasonable. Our
proposed model is approximate, but is correct at the initial and asymptotic times.
Essentially, we assume that the average solute velocity transitions from its value at
t= 0 to the average fluid velocity, U, over the time scale t∗d following a t1/2 law.

B.3.1. Linear distribution
For the linear radial distribution in the initial condition, the corresponding weighting

functions are

ω1(r)=
3

a3π
(a− r), (B 33a)

ω2(r)=
3

2a3π
r. (B 33b)

The initial average velocities are given by

〈vz,M〉1(t= 0)= 7
5 U, (B 34a)

〈vz,M〉2(t= 0)= 4
5 U. (B 34b)

Assuming once more a square-root-in-time transition to the fluid velocity over the time
t∗d , the transient velocities associated with the linear initial distributions R1 and R2 are

〈vz,M〉1(t)=


7
5

U −
2
5

U
(

t
t∗d

)1/2

, for t< t∗d,

U, for t > t∗d,
(B 35a)

〈vz,M〉2(t)=


4
5

U +
1
5

U
(

t
t∗d

)1/2

, for t< t∗d,

U, for t > t∗d.
(B 35b)

To help visualize this approximation, in figure 17 the predictions of the centre of
mass velocity resulting from the approximate solution are compared with those from
numerical simulations. The approximate solution qualitatively predicts the dynamics
of the centre of mass and, on quantitative grounds, the results are reasonable. This
analysis provides some guidance for constructing approximate early-time velocities for
other initial conditions.
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FIGURE 17. Modelled transient centre of mass velocities (equations (B 35a)–(B 35b))
versus the centre of mass velocities extracted from the microscale numerical solutions.
Pe= 100.

The corresponding expressions for the translations created by these time-varying
velocity fields are now given by

Ξ1(t)=


7
5

Ut−
4

15
U

t3/2√
t∗d
, for t< t∗d,

Ξ1(t∗d)+U(t− t∗d), for t > t∗d,
(B 36a)

Ξ2(t)=


4
5

Ut+
2

15
U

t3/2√
t∗d
, for t< t∗d,

Ξ2(t∗d)+U(t− t∗d), for t > t∗d.
(B 36b)

Finally, the convected solution for the initial condition considered here can be
represented by

s∗(z, t) = −4πc0U
[
σ1α1(z−Ξ1(t)− β1)

(σ 2
1 + 4Dt)3/2

exp
(
−
(z−Ξ1(t)− β1)

2

σ 2
1 + 4Dt

)
−
σ2α2(z−Ξ2(t)− β2)

(σ 2
2 + 4Dt)3/2

exp
(
−
(z−Ξ2(t)− β2)

2

σ 2
2 + 4Dt

)]
×

∞∑
n=1

H1(λn)

λ3
n

J3(λn)

J0(λn)
exp

(
−
λ2

nD
a2

t
)
. (B 37)

B.3.2. Step distribution
For the step radial distribution, the weighting functions are ω1 = 4F1/(πa2) and

ω2 = 4F2/(3πa2). The associated velocities are given by

〈vz,M〉1(t= 0)= 7
4 U, (B 38a)

〈vz,M〉2(t= 0)= 3
4 U. (B 38b)
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Assuming a square-root-in-time transition to the fluid velocity over the time t∗d , the
transient velocities associated with the initial distributions R1 and R2 are found to be

〈vz,M〉1(t)=


7
4

U −
3
4

U
(

t
t∗d

)1/2

, for t< t∗d,

U, for t > t∗d,
(B 39a)

〈vz,M〉2(t)=


3
4

U +
1
4

U
(

t
t∗d

)1/2

, for t< t∗d,

U, for t > t∗d.
(B 39b)

Denoting the translations created by these time-varying velocity fields by Z(t), it
follows that

Ξ1(t)=


7
4

Ut−
1
2

U
t3/2√

t∗d
, for t< t∗d,

Ξ1(t∗d)+U(t− t∗d), for t > t∗d,
(B 40a)

Ξ2(t)=


3
4

Ut+
1
6

U
t3/2√

t∗d
, for t< t∗d,

Ξ2(t∗d)+U(t− t∗d), for t > t∗d.
(B 40b)

With these definitions in place, the convected solution for the initial condition
considered here can be represented by

s∗(z, t) = 4c0U
[
σ1α1(z−Ξ1 − β1)

(σ 2
1 + 4Dt)3/2

exp
(
−
(z−Ξ1 − β1)

2

σ 2
1 + 4Dt

)
−
σ2α2(z−Ξ2 − β2)

(σ 2
2 + 4Dt)3/2

exp
(
−
(z−Ξ2 − β2)

2

σ 2
2 + 4Dt

)]
×

∞∑
n=1

J1(λn/2)J3(λn)

λ2
nJ2

0(λn)
exp

(
−
λ2

nD
a2

t
)
. (B 41)
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