A CHARACTERIZATION OF GROUP RINGS

 AS A SPECIAL CLASS OF HOPF ALGEBRAS
Shuichi Takahashi

(received September 28, 1964)

By a group ring we mean in this paper a ring defined by a finite group G and an integral domain K :

$$
A=K G,
$$

such that A contains G and is freely generated by G over K, so that

$$
\text { K-rank of } A=\text { the order of } G .
$$

The ring $A=K G$ has a co-multiplication

$$
A \xrightarrow{Y} A \otimes_{K}^{A}
$$

defined by

$$
y\left(\sum_{x \in G} \alpha_{x} x\right)=\sum_{x \in G} \alpha_{x}(x \otimes x)
$$

so that A is a Hopf algebra.
Let $B=\hat{A}=\operatorname{Hom}_{K}(A, K)$ be the dual K-module of A.
Then the co-multiplication γ induces a multiplication $\hat{\gamma}$ in B. It is easy to verify that B, under $\hat{\gamma}$, is a commutative strongly semi-simple K-algebra in the following sense:

$$
B=B_{1} \oplus \ldots \oplus B_{n}, \quad B_{i} \simeq K
$$

as algebras over K , and each homomorphism
Canad. Math. Bull. vol. 8, no. 4, June 1965

$$
x_{i} ; B \longrightarrow B_{i} \simeq K
$$

is represented by an invertible element $x_{i} \in A$:

$$
x_{i}(\hat{a})=\hat{a}\left(x_{i}\right) .
$$

The aim of this paper is to show, conversely, that a Hopf algebra whose co-multiplication is commutative and strongly semi-simple is, in fact, a group ring of a suitable finite group G.

Techniques of the proof are taken from those of the Tannaka duality theorem for compact groups ${ }^{1)}$, and, in fact, the above characterization can be seen as a dual formulation of this duality theorem.*)

1. Hopf algebras ${ }^{21}$. Let K be a commutative ring with the identity 1. A K-module A is called a Hopf algebra if there are four K -linear operations

called multiplication, co-multiplication, augmentation and co-augmentation, respectively, such that following diagrams are all commutative:
1)

In particular J. L. Kelley, Duality for compact groups, Proc. N.A.S. 49 (1963) pp. 457-458.
*) The author would like to thank Professor Geoffrey Fox and the referee for their valuable suggestions.
2)

We follow the presentation of S. MacLane, Homology, 1963, pp. 197-198.

$$
A \otimes_{K} A \otimes_{K} \xrightarrow{1 \otimes \mu} A \otimes_{K} A \quad K \otimes_{K} A=A=A \otimes_{K} K
$$

$$
A \otimes_{K} A \longrightarrow A \quad, \quad A \otimes_{K} A \longrightarrow_{\mu} A \leftarrow_{\mu} A \otimes K_{K}^{A}
$$

$$
\begin{equation*}
A \xrightarrow{Y} A \otimes_{K} A \quad A \otimes_{K} A \stackrel{Y}{\leftarrow} A \xrightarrow{Y} A \otimes_{K^{A}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{K} \xrightarrow{\varepsilon} A \quad A \otimes_{K^{A}} \xrightarrow{\delta \otimes \delta} \mathrm{~K} \otimes_{K^{K}} \tag{3}
\end{equation*}
$$

$\mu \downarrow|\mid$
$\underset{\delta}{A} \mathrm{~K}$
$A \otimes{ }_{K} A \xrightarrow{\gamma \otimes Y} A \otimes_{K} A \otimes_{K} A \otimes_{K} A \xrightarrow{1 \otimes \otimes_{1} 1} A \otimes_{K} A \otimes_{K} A \otimes_{K} A$
(4) $\mu \downharpoonright$
$\downarrow \mu \otimes \mu$

where

$$
\tau\left(a_{1} \otimes a_{2}\right)=a_{2} \otimes a_{1} .
$$

Diagrams (1) say that A is an algebra by the multiplication μ, with the identity:

$$
\begin{aligned}
e & =\varepsilon \cdot 1 \in A \\
\mu(a \otimes e) & =\mu(e \otimes a)=a .
\end{aligned}
$$

Diagrams (2) say that A is a co-algebra by the co-multiplication γ, with the co-identity δ.

Diagrams (3) say that the co-multiplication γ operates on the identity e as $\gamma \cdot e=e \otimes e$, and the multiplication μ operates on the co-identity as $\delta \cdot \mu=\delta \otimes \delta$.

Finally, diagrams (4) say that the multiplication μ is a homomorphism of the co-algebra (A, γ), and the co-multiplication is a homomorphism of the algebra (A, μ).
2. Strong semi-simplicity. Suppose K is an integral domain ${ }^{3}$, and A is a finitely generated free K -module. Then

$$
B=\hat{A}=\operatorname{Hom}_{K}(A, K)
$$

is also a finitely generated K -module and the co-multiplication

$$
\gamma: A \longrightarrow A \otimes_{K^{A}}
$$

induces a multiplication $\hat{\gamma}$ on B :

$$
\hat{\gamma}\left(\hat{a}_{1} \otimes \hat{a}_{2}\right)(a)=\left(\hat{a}_{1} \otimes \hat{a}_{2}\right)(\gamma a), \quad \hat{a}_{1}, \hat{a}_{2} \in B, \quad a \in A .
$$

Further, the co-identity δ defines a map $\hat{\delta}: \mathrm{K} \longrightarrow \mathrm{B}$

$$
\hat{\delta} \cdot \alpha(\mathrm{a})=\alpha \cdot \delta \mathrm{a} \in \mathrm{~K}
$$

and $\hat{\delta} \cdot 1 \in B$ is the identity of B.

Suppose B is an absolutely semi-simple commutative K-algebra under $\hat{\gamma}$:

$$
B \simeq B_{1} \oplus \ldots \oplus B_{n}, \quad B_{i} \simeq K
$$

Then the following conditions are equivalent.
3)

Always commutative with the identity 1 .
S_{1}) For all $\hat{a} \in B=\operatorname{Hom}_{K}(A, K), \hat{a} \neq 0$, there exists
$x \in A$ such that x is μ-invertible,

$$
\gamma x=x \otimes x, \quad \text { and } \quad \hat{a}(x) \neq 0
$$

S_{2}) Each $\hat{\gamma}$-homomorphism $x_{i}: B \rightarrow B_{i} \leadsto K$ is representable by a μ-invertible element $x_{i} \in A: x_{i}(b)=b\left(x_{i}\right)$.

$$
\text { Proof of } \left.\left.S_{1}\right) \Rightarrow S_{2}\right) \text {. If } \gamma x=x \otimes x \text {, then the map }
$$

$B \exists b \rightarrow \chi(b)=b(x)$ is a $\hat{\gamma}$-homomorphism. In fact,

$$
\begin{aligned}
& x\left(\hat{\gamma}\left(b_{1} \otimes b_{2}\right)\right)=\hat{\gamma}\left(b_{1} \otimes b_{2}\right)(x)=\left(b_{1} \otimes b_{2}\right)(\gamma x)= \\
& \left(b_{1} \otimes b_{2}\right)(x \otimes x)=b_{1}(x) \cdot b_{2}(x)=x\left(b_{1}\right) x\left(b_{2}\right) .
\end{aligned}
$$

Let

$$
\hat{\delta} \cdot 1=e_{1}+\ldots+e_{n}
$$

be the decomposition of the identity $\hat{\delta} \cdot 1$ of B into idempotent according to the decomposition

$$
\mathrm{B} \simeq \mathrm{~B}_{1} \oplus \ldots \oplus \mathrm{~B}_{\mathrm{n}}, \quad \mathrm{~B}_{\mathrm{i}} \simeq \mathrm{~K}
$$

Then for any \hat{y}-homomorphism $\mathrm{x}: \mathrm{B} \rightarrow \mathrm{K}$,

$$
\begin{aligned}
& 1=x(\hat{\delta} \cdot 1)=\chi\left(e_{1}\right)+\ldots+\chi\left(e_{n}\right) \\
& \quad \chi\left(\hat{\gamma}\left(e_{i} \otimes e_{i}\right)\right)=x\left(e_{i}\right)^{2}=\chi\left(e_{i}\right) \\
& \quad \chi\left(\hat{\gamma}\left(e_{i} \otimes e_{j}\right)\right)=x\left(e_{i}\right) \chi\left(e_{j}\right)=0, \quad i \neq j .
\end{aligned}
$$

So there exists one and only one i such that

$$
x\left(e_{i}\right)=1, \quad x\left(e_{j}\right)=0, \quad j \neq i ;
$$

i.e., X coincides with

$$
x_{i}: B \rightarrow B_{i} \leadsto K
$$

Now, by $\left.S_{1}\right), e_{i} \neq 0$ implies existence of a μ-invertible x, with $\gamma x=x<x$, such that $e_{i}(x) \neq 0$; i.e., the $\hat{\gamma}$-homomorphism x determined by x has the property:

$$
x\left(e_{i}\right)=e_{i}(x) \neq 0
$$

Since $x\left(e_{i}\right)^{2}=x\left(e_{i}^{2}\right)=x\left(e_{i}\right), x\left(e_{i}\right) \neq 0$ implies $x\left(e_{i}\right)=1$ so that $x=x_{i}$. In other words, X_{i} is represented by a μ-invertible element $\mathbf{x} \in A$.

$$
\text { Proof of } \left.S_{2}\right) \Rightarrow S_{1} \text {). If } \hat{a}=\sum_{i} \alpha_{i} e_{i} \neq 0 \text {, then there is }
$$

an i such that $\alpha_{i} \neq 0$. Now, let x_{i} be a μ-invertible element in A such that

$$
x_{i}(b)=b\left(x_{i}\right)
$$

Then

$$
\hat{a}\left(x_{i}\right)=\alpha_{i} e_{i}\left(x_{i}\right)=\alpha_{i} \neq 0
$$

We can show also that

$$
y x_{i}=x_{i} \otimes x_{i}
$$

In fact,

$$
\begin{aligned}
& \left(e_{j} \otimes e_{k}\right)\left(\gamma x_{i}\right)=\hat{v}\left(e_{j} \otimes e_{k}\right)\left(x_{i}\right)= \begin{cases}1 & j=k=i \\
0 & \text { all the other }\end{cases} \\
& \left(e_{j} \otimes e_{k}\right)\left(x_{i} \otimes x_{i}\right)=e_{j}\left(x_{i}\right) e_{k}\left(x_{i}\right)= \begin{cases}1 & j=i=k \\
0 & \text { all the other }\end{cases}
\end{aligned}
$$

i.e.,

$$
\left(e_{j}^{\otimes} \otimes e_{k}\right)\left(\gamma x_{i}\right)=\left(e_{j} \otimes e_{k}\right)\left(x_{i}^{*} x_{i}\right)
$$

and $e_{j} \otimes e_{k}$ from a K-free basis of $B \otimes_{K} B$, so that

$$
\gamma X_{i}=x_{i} \otimes x_{i} .
$$

3. Main theorem. Let K be an integral domain, and A a finitely generated K-algebra. Then A is the group ring of a finite group G over K, if and only if, A has a co-multiplication, so that it is a Hopf algebra (§1), and its dual algebra $\hat{A}=B$ is commutative and strongly semi-simple (§2).

Proof of the necessity. Let G be a finite group and A the group ring over K. Then

is a co-multiplication. Let $e \in G$ be the identity; then

is defined by

$$
\varepsilon \cdot 1=e \in G \subset A
$$

Let $d=\sum_{x \in G} \mathbf{x} \in A$; then $\delta: A \rightarrow K$ is defined by

$$
a \cdot d=(\delta a) \cdot d
$$

Consider the dual algebra $\widehat{A}=B$. One sees easily that

$$
\widehat{A}=\operatorname{Hom}_{K}(A, K) \stackrel{C}{\leftrightarrows}(G, K)
$$

where $C(G, K)$ is the set of all K-valued functions over G, by the mapping

$$
\hat{A} \ni \hat{a} \longrightarrow \hat{a}(x) \in C(G, K) .
$$

Consider the dual multiplication $\hat{\gamma}$ on \hat{A} :
$\hat{\gamma}\left(\hat{a}_{1} \otimes \hat{a}_{2}\right)(x)=\hat{a}_{1} \otimes \hat{a}_{2}(\gamma x)=\hat{a}_{1} \otimes \hat{a}_{2}(x \otimes x)=\hat{a}_{1}(x) \hat{a}_{2}(x)$.
i.e., the multiplication induced on $C(G, K)$ by $\hat{\gamma}$, under the above isomorphism, is pointwise multiplication:

$$
(f \cdot g)(x)=f(x) g(x), \quad x \in G, \quad f, g \in C(G, K),
$$

so that

$$
B=\hat{A} \simeq C(G, K) \simeq B_{1} \oplus \ldots \oplus B_{n}, \quad B_{i} \simeq K
$$

is commutative and absolutely semi-simple. Moreover, each

$$
x_{i}: B \rightarrow B_{i} \simeq K
$$

is given by the homomorphism:

$$
\mathrm{C}(\mathrm{G}, \mathrm{~K}) \rightarrow \mathrm{f} \leadsto \mathrm{x}_{\mathrm{i}}(\mathrm{f})=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right), \quad \mathrm{x}_{\mathrm{i}} \in \mathrm{G}
$$

i.e., represented by a μ-invertible element $x_{i} \in A$.

Proof of the sufficiency. Now A is a Hopf algebra whose dual algebra is commutative and strongly semi-simple. Let

$$
G=\{x \in A \mid x \text { is } \mu \text {-invertible and } \gamma x=x \mathbb{X} x\} .
$$

We are going to show that G is a finite group and A is the group ring of G over K. We divide the proof into seal steps.
I) Let $B=B_{1} \oplus \ldots \oplus B_{n}, B_{i} \simeq K$, and let \#G denote the number of elements in G . Then $\# \mathrm{G}=\mathrm{n}$.

Proof. By §2, there are exactly n K-algebra homomorphisms $X_{i}: B \rightarrow K$, and each $x \in G$ determines such a homomorphism:

$$
x(\hat{a})=\hat{a}(x),
$$

so \# G $\leq n$. But B is strongly semi-simple, so each
$x_{i}: B \rightarrow B_{i} \leadsto K$ is represented by a μ-invertible element x_{i}, which by § 2 , satisfies

$$
\gamma x_{i}=x_{i} \otimes x_{i}
$$

i.e., $x_{i} \in G$. Hence $\# G=n$.
II) $A=K x_{1}+\ldots+K x_{n}, \quad x_{i} \in G$
as K -modules.

Proof. By hypothesis, $B=\mathrm{Ke}_{1}+\ldots+\mathrm{Ke}_{\mathrm{n}}$ is a free K-module of rank n, and, by I)

$$
x_{i}\left(e_{j}\right)=e_{j}\left(x_{i}\right)=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} \quad 1 \leq i, \quad j \leq n\right.
$$

where X_{i} is the $\hat{\gamma}$-homomorphism of B in K, determined by x_{i}. Hence the K-dual module

$$
\hat{B}=\operatorname{Hom}_{K}(B, K)=K_{X_{1}}+\ldots+K_{X_{n}}
$$

is a free K-module of rank n. Consider the K-homomorphism $\Phi: A \rightarrow B$ defined by

$$
\Phi\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\sum_{i=1}^{n} \alpha_{i} x_{i}, \quad \alpha_{i} \in K
$$

Φ is well defined, because $\underset{i}{\Sigma} \alpha_{i} \mathbf{x}_{i}=0$ implies

$$
e_{j}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\alpha_{j}=0 \quad \text { for all } j=1,2, \ldots, n \text {. }
$$

By definition, Φ is onto. But Φ is also injective, in fact,

$$
\sum_{i=1}^{n} \alpha_{i} x_{i}=0 \quad \text { implies } \quad \sum_{i} \alpha_{i} x_{i}\left(e_{j}\right)=\alpha_{j}=0
$$

for all $j=1,2, \ldots, n$. Hence $\Phi: A \sim \widehat{B}$ is an isomorphism of K -modules and.

$$
A=K x_{1}+\ldots+K x_{n}
$$

III) The identity $e=\varepsilon .1$ of A is in G and it is also the identity of G.

Proof. By definition e is μ-invertible, and

$$
\gamma \mathrm{e}=\gamma \cdot \varepsilon \cdot 1=(\varepsilon \otimes \varepsilon)(1 \times 1)=\varepsilon 1 \otimes \varepsilon 1=\mathrm{e} \otimes \mathrm{e}
$$

by the diagrams (3) of Hopf algebras (§1). So $e \in G$. By definition, for all $x \in G \subset A$,

$$
\mu(e \otimes x)=\mu(x \otimes e)=x
$$

IV) $x \in G, y \in G$ imply $x \cdot y=\mu(x \otimes y) \in G$.

Proof. x invertible and y invertible imply $x \cdot y$ invertible. By diagrams of $\S 1$

$$
\begin{aligned}
& (x \cdot y)=\gamma \mu(x \otimes y)=(\mu \otimes \mu)(1 \otimes \tau \otimes 1)(\gamma \otimes \gamma)(x \otimes y) \\
& =(\mu \otimes \mu)(1 \otimes \tau \otimes 1)(\gamma x \otimes \gamma y) \\
& =(\mu \otimes \mu)(1 \otimes \tau \otimes 1)(x \otimes x \otimes y \otimes y) \\
& =(\mu \otimes \mu)(x \otimes y \otimes x \otimes y)=\mu(x \otimes y) \otimes \mu(x \otimes y) \\
& =x \cdot y \otimes x \cdot y,
\end{aligned}
$$

so that $x \cdot y \in G$.
v) $x \in G$ implies $x^{-1} \in G$.

Proof. Let $G=\left\{x_{1}=e, x_{2}, \ldots, x_{n}\right\}$. By IV), $x \in G$ and $x_{i} \in G$ imply $x \cdot x_{i} \in G$, so there is $j=j(i)$ such that $x \cdot x_{i}=x_{j}$. But $x \in G$ is by definition invertible, so $x_{i} \neq x_{j}$ implies $x \cdot x_{i} \neq x \cdot x_{j}$. Hence there exists $x_{i} \in G$ such that $x \cdot x_{i}=e$ and $x^{-1}=x_{i} \in G$.

This finishes the proof of sufficiency. In fact, by III), IV), V), G is a finite group in A under μ-multiplication, and by II) A is generated freely by G over K.

Université de Montréal

