A CHARACTERIZATION OF GROUP RINGS AS A SPECIAL CLASS OF HOPF ALGEBRAS

Shuichi Takahashi

(received September 28, 1964)

By a group ring we mean in this paper a ring defined by a finite group G and an integral domain K :

$$A = KG,$$

such that A contains G and is freely generated by G over K, so that

K-rank of A = the order of G.

The ring A = KG has a co-multiplication

 $A \xrightarrow{\gamma} A \otimes_{K} A$

defined by

$$\gamma(\sum_{\mathbf{x}} \alpha_{\mathbf{x}} \mathbf{x}) = \sum_{\mathbf{x}} \alpha_{\mathbf{x}}(\mathbf{x} \otimes \mathbf{x})$$
$$\mathbf{x} \in \mathbf{G} \qquad \mathbf{x} \in \mathbf{G}$$

so that A is a Hopf algebra.

Let $B = \hat{A} = Hom_{\nu}(A, K)$ be the dual K-module of A.

Then the co-multiplication γ induces a multiplication $\widehat{\gamma}$ in B. It is easy to verify that B, under $\widehat{\gamma}$, is a commutative strongly semi-simple K-algebra in the following sense:

 $B = B_1 \oplus \ldots \oplus B_n$, $B_i \simeq K$

as algebras over K, and each homomorphism

Canad. Math. Bull. vol. 8, no. 4, June 1965

465

$$\chi_i : B \longrightarrow B_i \stackrel{\simeq}{\to} K$$

is represented by an invertible element $\mathbf{x}_i \in \mathbf{A}$:

$$\chi_i(\hat{a}) = \hat{a}(x_i) .$$

The aim of this paper is to show, conversely, that a Hopf algebra whose co-multiplication is commutative and strongly semi-simple is, in fact, a group ring of a suitable finite group G.

Techniques of the proof are taken from those of the Tannaka duality theorem for compact groups¹⁾, and, in fact, the above characterization can be seen as a dual formulation of this duality theorem. *)

1. <u>Hopf algebras</u>²⁾. Let K be a commutative ring with the identity 1. A K-module A is called a <u>Hopf algebra</u> if there are four K-linear operations

μ	:	Α	⊗ _K A	\longrightarrow	А	
Y	:		А	>	А	⊗ _K a
ε	:		К	\longrightarrow	A	
δ	:		А	\longrightarrow	K	

called multiplication, co-multiplication, augmentation and <u>co-augmentation</u>, respectively, such that following diagrams are all commutative:

In particular J. L. Kelley, Duality for compact groups, Proc. N.A.S. 49 (1963) pp. 457-458.

^{*)} The author would like to thank Professor Geoffrey Fox and the referee for their valuable suggestions.

²⁾ We follow the presentation of S. MacLane, Homology, 1963, pp. 197-198.

where

 $\tau(a_1 \otimes a_2) = a_2 \otimes a_1.$

Diagrams (1) say that A is an algebra by the multiplication μ , with the identity:

 $e = \varepsilon \cdot 1 \in A$

Diagrams (2) say that A is a co-algebra by the co-multiplication γ , with the co-identity δ .

Diagrams (3) say that the co-multiplication γ operates on the identity e as $\gamma \cdot e = e \otimes e$, and the multiplication μ operates on the co-identity as $\delta \cdot \mu = \delta \otimes \delta$.

Finally, diagrams (4) say that the multiplication μ is a homomorphism of the co-algebra (A, γ), and the co-multiplication is a homomorphism of the algebra (A, μ).

2. Strong semi-simplicity. Suppose K is an integral domain³⁾, and A is a finitely generated free K-module. Then

$$B = \hat{A} = Hom_{K}(A, K)$$

is also a finitely generated K-module and the co-multiplication

 $\gamma: A \longrightarrow A \otimes_{K}^{A}$

induces a multiplication $\widehat{\gamma}$ on B:

$$\widehat{\gamma}(\widehat{a}_1 \otimes \widehat{a}_2)(a) = (\widehat{a}_1 \otimes \widehat{a}_2)(\gamma a), \ \widehat{a}_1, \ \widehat{a}_2 \in B, \quad a \in A.$$

Further, the co-identity δ defines a map $\hat{\delta}: K \longrightarrow B$

 $\hat{\delta} \cdot \alpha(a) = \alpha \cdot \delta a \in K$

and $\delta \cdot 1 \in B$ is the identity of B.

Suppose B is an absolutely semi-simple commutative K-algebra under $\hat{\gamma}$:

$$B \simeq B_1 \oplus \ldots \oplus B_n$$
, $B_i \simeq K$.

Then the following conditions are equivalent.

3) Always commutative with the identity 1.

S₁) For all $\hat{a} \in B = Hom_{K}(A, K)$, $\hat{a} \neq 0$, there exists $x \in A$ such that x is μ -invertible,

$$\gamma x = x \otimes x$$
, and $\hat{a}(x) \neq 0$.

 S_2) Each $\hat{\gamma}$ -homomorphism $\chi_i : B \rightarrow B_i \stackrel{\sim}{\rightarrow} K$ is representable by a μ -invertible element $x_i \in A : \chi_i(b) = b(x_i)$.

<u>Proof of</u> $S_1 \Rightarrow S_2$. If $\gamma x = x \otimes x$, then the map $B \Rightarrow b \Rightarrow \chi(b) = b(x)$ is a $\hat{\gamma}$ -homomorphism. In fact,

$$\chi(\widehat{\gamma}(\mathbf{b}_1 \otimes \mathbf{b}_2)) = \widehat{\gamma}(\mathbf{b}_1 \otimes \mathbf{b}_2)(\mathbf{x}) = (\mathbf{b}_1 \otimes \mathbf{b}_2)(\gamma \mathbf{x}) =$$
$$(\mathbf{b}_1 \otimes \mathbf{b}_2)(\mathbf{x} \otimes \mathbf{x}) = \mathbf{b}_1(\mathbf{x}) \cdot \mathbf{b}_2(\mathbf{x}) = \chi(\mathbf{b}_1) \chi(\mathbf{b}_2).$$

Let

$$\hat{\delta} \cdot 1 = e_1 + \dots + e_n$$

be the decomposition of the identity $\hat{\delta} \cdot 1$ of B into idempotents according to the decomposition

$$B \cong B_{i} \oplus \ldots \oplus B_{n}, \qquad B_{i} \cong K.$$

Then for any $\hat{\gamma}$ -homomorphism $\chi : B \rightarrow K$,

$$1 = \chi(\hat{\delta} \cdot 1) = \chi(e_1) + \dots + \chi(e_n)$$

$$\chi(\hat{\gamma}(e_i \otimes e_i)) = \chi(e_i)^2 = \chi(e_i)$$

$$\chi(\hat{\gamma}(e_i \otimes e_j)) = \chi(e_i) \chi(e_j) = 0, \qquad i \neq j.$$

So there exists one and only one i such that

$$\chi(e_{j}) = 1$$
, $\chi(e_{j}) = 0$, $j \neq i$;

4.69

i.e., χ coincides with

$$\chi_i : B \rightarrow B_i \cong K$$
.

Now, by S_1 , $e_i \neq 0$ implies existence of a μ -invertible x, with $\gamma x = x \otimes x$, such that $e_i(x) \neq 0$; i.e., the $\hat{\gamma}$ -homomorphism χ determined by x has the property:

$$\chi(e_{i}) = e_{i}(x) \neq 0$$
.

Since $\chi(e_i)^2 = \chi(e_i^2) = \chi(e_i)$, $\chi(e_i) \neq 0$ implies $\chi(e_i) = 1$ so that $\chi = \chi_i$. In other words, χ_i is represented by a μ -invertible element $\mathbf{x} \in A$.

<u>Proof of</u> $S_2 \Rightarrow S_1$. If $\hat{a} = \sum_i \alpha_i e_i \neq 0$, then there is an i such that $\alpha_i \neq 0$. Now, let x_i be a μ -invertible element in A such that

$$\chi_i(b) = b(x_i)$$
.

Then

$$\hat{\mathbf{a}}(\mathbf{x}_{i}) = \alpha_{i} \mathbf{e}_{i}(\mathbf{x}_{i}) = \alpha_{i} \neq 0.$$

We can show also that

$$\gamma x_i = x_i \otimes x_i$$
.

In fact,

$$(e_{j} \otimes e_{k})(\gamma x_{i}) = \widehat{\gamma}(e_{j} \otimes e_{k})(x_{i}) = \begin{cases} 1 & j = k = i \\ 0 & \text{all the other} \end{cases}$$

$$(e_{j} \otimes e_{k})(x_{i} \otimes x_{i}) = e_{j}(x_{i})e_{k}(x_{i}) = \begin{cases} 1 & j=i=k \\ 0 & \text{all the other} \end{cases}$$

i.e.,

$$(e_j \otimes e_k)(\gamma x_i) = (e_j \otimes e_k)(x_i \otimes x_i)$$

and $e_j \bigotimes e_k$ from a K-free basis of $B \bigotimes_K B$, so that

$$\gamma x_i = x_i \otimes x_i$$
.

3. <u>Main theorem</u>. Let K be an integral domain, and A a finitely generated K-algebra. Then A is the group ring of a finite group G over K, if and only if, A has a co-multiplication, so that it is a Hopf algebra (§1), and its dual algebra $\hat{A} = B$ is commutative and strongly semi-simple (§2).

Proof of the necessity. Let G be a finite group and A the group ring over K. Then

$$\begin{array}{cccc} A \not \to & \Sigma & \alpha_{\mathbf{x}} & x & \longrightarrow & \Sigma & \alpha_{\mathbf{x}} & (\mathbf{x} \otimes \mathbf{x}) \in A \otimes_{\mathbf{K}} A \\ & \mathbf{x} \in \mathbf{G} & & \mathbf{x} \in \mathbf{G} \end{array}$$

is a co-multiplication. Let $e \in G$ be the identity; then

$$\varepsilon : K \longrightarrow A$$

is defined by

$$\varepsilon \cdot \mathbf{1} = e \in G \subset A$$
.

Let $d = \Sigma \quad x \in A$; then $\delta : A \rightarrow K$ is defined by $x \in G$

$$\mathbf{a} \cdot \mathbf{d} = (\delta \mathbf{a}) \cdot \mathbf{d}$$
.

Consider the dual algebra $\widehat{A} = B$. One sees easily that

$$\widehat{A} = Hom_{K}(A, K) \cong C(G, K)$$
,

where C(G, K) is the set of all K-valued functions over G, by the mapping

$$\widehat{A} \ni \widehat{a} \longrightarrow \widehat{a}(\mathbf{x}) \in C(G, K) .$$

Consider the dual multiplication $\hat{\gamma}$ on \hat{A} :

$$\hat{\gamma}(\hat{a}_1 \otimes \hat{a}_2)(\mathbf{x}) = \hat{a}_1 \otimes \hat{a}_2(\gamma \mathbf{x}) = \hat{a}_1 \otimes \hat{a}_2(\mathbf{x} \otimes \mathbf{x}) = \hat{a}_1(\mathbf{x}) \hat{a}_2(\mathbf{x})$$

i.e., the multiplication induced on C(G,K) by $\widehat{\gamma}$, under the above isomorphism, is pointwise multiplication:

$$(f \cdot g)(x) = f(x)g(x)$$
, $x \in G$, $f, g \in C(G, K)$,

so that

$$B = \hat{A} \stackrel{\sim}{\rightarrow} C(G, K) \stackrel{\simeq}{=} B_1 \oplus \ldots \oplus B_n, \quad B_i \stackrel{\simeq}{=} K$$

is commutative and absolutely semi-simple. Moreover, each

$$\chi_i : B \rightarrow B_i \cong K$$

is given by the homomorphism:

$$C(G, K)
i f \xrightarrow{} \chi_i(f) = f(x_i), \quad x_i \in G$$

i.e., represented by a $\mu\text{-invertible element } \mathbf{x}_i \in A$.

Proof of the sufficiency. Now A is a Hopf algebra whose dual algebra is commutative and strongly semi-simple. Let

$$G = \{x \in A \mid x \text{ is } \mu \text{-invertible and } \gamma x = x \otimes x\}$$
.

We are going to show that G is a finite group and A is the group ring of G over K. We divide the proof into several steps.

I) Let
$$B = B_1 \oplus \ldots \oplus B_n$$
, $B_i \simeq K$, and let #G denote the number of elements in G. Then #G = n.

472

<u>Proof.</u> By §2, there are exactly n K-algebra homomorphisms $\chi_i : B \rightarrow K$, and each $x \in G$ determines such a homomorphism:

$$\chi(\hat{a}) = \hat{a}(x)$$
,

so $\#G \le n$. But B is strongly semi-simple, so each $\chi_i : B \to B_i \cong K$ is represented by a μ -invertible element x_i , which by §2, satisfies

$$\gamma x_i = x_i \otimes x_i$$

i.e., $x_i \in G$. Hence #G = n.

II)
$$A = Kx_1 + \ldots + Kx_n$$
, $x \in G$

as K-modules.

<u>Proof.</u> By hypothesis, $B = Ke_1 + \ldots + Ke_n$ is a free K-module of rank n, and, by I)

$$\chi_{i}(e_{j}) = e_{j}(x_{i}) = \begin{cases} 1 & i=j \\ & 1 \leq i, j \leq n \\ 0 & i \neq j \end{cases}$$

where χ_i is the $\hat{\gamma}$ -homomorphism of B in K, determined by x_i . Hence the K-dual module

$$\hat{\mathbf{B}} = \operatorname{Hom}_{K}(\mathbf{B}, \mathbf{K}) = \mathbf{K}\chi_{1} + \ldots + \mathbf{K}\chi_{n}$$

is a free K-module of rank n. Consider the K-homomorphism $\overline{\Phi}$: A \rightarrow B defined by

$$e_{j}\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) = \alpha_{j} = 0 \quad \text{for all } j = 1, 2, \dots, n.$$

By definition, $\overline{\Phi}$ is onto. But $\overline{\Phi}$ is also injective, in fact,

n

$$\sum_{i=1}^{n} \alpha_{i} \chi_{i} = 0$$
 implies $\sum_{i=1}^{n} \alpha_{i} \chi_{i}(e_{j}) = \alpha_{j} = 0$

for all j = 1, 2, ..., n. Hence $\overline{\Phi} : A \xrightarrow{\sim} \widehat{B}$ is an isomorphism of K-modules and

$$A = Kx_1 + \ldots + Kx_n$$

III) The identity $e = \varepsilon \cdot 1$ of A is in G and it is also the identity of G.

Proof. By definition e is μ -invertible, and

$$\gamma e = \gamma \cdot \epsilon \cdot 1 = (\epsilon \otimes \epsilon)(1 \otimes 1) = \epsilon 1 \otimes \epsilon 1 = e \otimes e$$

by the diagrams (3) of Hopf algebras (§1). So $e \in G$. By definition, for all $x \in G \subset A$,

$$\mu(e \otimes x) = \mu(x \otimes e) = x.$$

IV) $x \in G$, $y \in G$ imply $x \cdot y = \mu(x \otimes y) \in G.$

<u>Proof.</u> x invertible and y invertible imply $x \cdot y$ invertible. By diagrams of §1

 $(\mathbf{x} \cdot \mathbf{y}) = \gamma \mu(\mathbf{x} \otimes \mathbf{y}) = (\mu \otimes \mu)(\mathbf{1} \otimes \tau \otimes \mathbf{1})(\gamma \otimes \gamma)(\mathbf{x} \otimes \mathbf{y})$ $= (\mu \otimes \mu)(\mathbf{1} \otimes \tau \otimes \mathbf{1})(\gamma \mathbf{x} \otimes \gamma \mathbf{y})$ $= (\mu \otimes \mu)(\mathbf{1} \otimes \tau \otimes \mathbf{1})(\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{y} \otimes \mathbf{y})$ $= (\mu \otimes \mu)(\mathbf{x} \otimes \mathbf{y} \otimes \mathbf{x} \otimes \mathbf{y}) = \mu(\mathbf{x} \otimes \mathbf{y}) \otimes \mu(\mathbf{x} \otimes \mathbf{y})$ $= \mathbf{x} \cdot \mathbf{y} \otimes \mathbf{x} \cdot \mathbf{y},$

so that $x \cdot y \in G$.

V) $x \in G$ implies $x^{-1} \in G$.

<u>Proof.</u> Let $G = \{x_1 = e, x_2, ..., x_n\}$. By IV), $x \in G$ and $x_i \in G$ imply $x \cdot x_i \in G$, so there is j = j(i) such that $x \cdot x_i = x_j$. But $x \in G$ is by definition invertible, so $x_i \neq x_j$ implies $x \cdot x_i \neq x \cdot x_j$. Hence there exists $x_i \in G$ such that $x \cdot x_i = e$ and $x^{-1} = x_i \in G$.

This finishes the proof of sufficiency. In fact, by III), IV), V), G is a finite group in A under μ -multiplication, and by II) A is generated freely by G over K.

Université de Montréal