RANK 1 PRESERVERS ON THE UNITARY LIE RING

W. J. WONG

(Received 6 June 1989)

Communicated by R. Lidl
Dedicated to G. E. (Tim) Wall, in recognition of his distinguished contribution to mathematics in Australia, on the occasion of his retirement

Abstract

The surjective additive maps on the Lie ring of skew-Hermitian linear transformations on a finite-dimensional vector space over a division ring which preserve the set of rank 1 elements are determined. As an application, maps preserving commuting pairs of transformations are determined.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 15 A 57, 15 A 27.

Introduction

Many authors have studied the problem of determining the maps on spaces of matrices which transform rank 1 matrices into rank 1 matrices. For example, Marcus and Moyls [4] found the linear maps on the space of all $n \times n$ matrices over a field having this property, and their result was extended to matrices over any commutative ring, by Waterhouse [7] and McDonald [5]. The present author has considered cases in which the base ring is noncommutative [11, 12]. In another direction, Waterhouse has studied maps on the set of self-adjoint matrices with respect to a nondegenerate quadratic form over a field [8].

In this paper, we determine the additive surjective maps on the unitary Lie ring $\mathbf{U}(V)$ of skew-Hermitian transformations relative to a nondegenerate skew-Hermitian form on a finite-dimensional vector space V over a
(C) 1990 Australian Mathematical Society $0263-6115 / 90 \$$ A $2.00+0.00$
division ring D, which preserve the set of rank 1 elements (Theorem 3.1). A variation is given, determining maps which preserve rank-one-plus-scalar transformations (Theorem 4.1), and this is applied to determine maps which preserve pairs of commuting transformations, in the case that D is commutative (Theorem 6.1).

Among the tools used in the paper is a version of the fundamental theorem of projective geometry (Proposition 2.1) which is slightly sharper than the usual form, as stated, for example, in [2].

It is a great pleasure to dedicate this paper to my friend Tim Wall, to whom I shall always be grateful for the support he gave me as a young mathematician, beginning by encouraging me to participate in the Summer Research Institute in Canberra in 1963. I am particularly happy to be writing on a subject which seems appropriate in view of Tim's interest in the classical groups, and especially in view of his important paper on the unitary groups [6].

1. Rank 1 elements of the unitary Lie ring

Throughout the paper, V will denote an n-dimensional vector space over a division ring D. The additive group of all linear transformations on V will be written $\mathbf{L}(V)$. We shall also need the notion of a semilinear map. If $\sigma: D_{1} \rightarrow D_{2}$ is a homomorphism between two division rings, and V_{1}, V_{2} are vector spaces over D_{1} and D_{2}, respectively, a map $A: V_{1} \rightarrow V_{2}$ is called σ-semilinear if it is additive and

$$
A(a x)=a^{\sigma}(A x),
$$

for all x in V, a in D_{1}. If c is a nonzero element of D, the scalar map $c I: V \rightarrow V$ mapping x to $c x$ is semilinear relative to the inner automorphism σ of D given by $a^{\sigma}=c a c^{-1}$. We sometimes write $c I$ simply as c.

We assume that D is provided with an involutory anti-automorphism J, so that $(a b)^{J}=b^{J} a^{J}$, for all a, b in D, and $J^{2}=1$. An element a of D is said to be symmetric if $a^{J}=a$, skew if $a^{J}=-a$, and we have two additive groups

$$
D_{0}=\left\{a \in D \mid a^{J}=a\right\}, \quad D_{1}=\left\{a \in D \mid a^{J}=-a\right\} .
$$

We shall use the notation $a^{-J}=\left(a^{-1}\right)^{J}$. We also assume that V is provided with a skew-Hermitian form (,), that is, for each x, y in V, there is defined an element (x, y) of D, which is linear in the first variable x, and
which satisfies the identity

$$
(y, x)=-(x, y)^{J} .
$$

(In particular, (x, x) is skew.) The vectors x, y are said to be orthogonal if $(x, y)=0$. The form is taken to be nondegenerate, that is, the only vector which is orthogonal to the whole space V is 0 . A vector x is called isotropic if $(x, x)=0$; otherwise it is called anisotropic. We shall also assume that the form is trace-valued, that is, (x, x) can be expressed in the form $a-a^{J}$, for every x in V. This condition is automatically satisfied if D does not have characteristic 2 , or if J is not the identity on the centre Z of D [2, page 19]. On the other hand, if J is the identity (and so D is commutative), then the condition implies that the form is alternating (symplectic case).

If σ is an automorphism of D, and $A: V \rightarrow V$ is a σ-semilinear map, then there exists a unique map $A^{*}: V \rightarrow V$, such that

$$
(A x, y)=\left(x, A^{*} y\right)^{\sigma},
$$

for all x, y in V. The map A^{*} is $J \sigma^{-1} J$-semilinear, and is called the adjoint of A.

The unitary Lie ring on V is the set

$$
\mathbf{U}(V)=\left\{A \in \mathbf{L}(V) \mid A^{*}=-A\right\} .
$$

This is a Lie ring, with the Lie product $[A, B]=A B-B A$, and will be the main object of our study.

Lemma 1.1. If T is an element of rank 1 in $\mathbf{U}(V)$, then there exist a nonzero vector u of V and a nonzero element a of D_{0} such that

$$
T x=(x, u) a u
$$

for all x in V.
Proof. By nondegeneracy, every linear functional on V has the form $x \rightarrow(x, u)$ for some vecctor u in V. Thus T must have the form

$$
T x=(x, u) v
$$

for some u, v in V. A calculation shows that the adjoint has the form

$$
T^{*} x=-(x, v) u .
$$

Since $T^{*}=-T$, it follows easily that $v=a u$, where $a \in D_{0}$. This proves the lemma.

We shall write $T_{u, a}$ for the rank 1 element corresponding to u and a, as in the lemma, that is,

$$
T_{u, a} x=(x, u) a u
$$

Proposition 1.2. Every element of $\mathbf{U}(V)$ is a sum of elements of rank 1 in $\mathbf{U}(V)$.

Proof. We use induction on the dimension n.
First suppose that $J=1$, the symplectic case. We remark that if x and y are vectors of V such that $(x, y) \neq 0$, then, for $a=(x, y)^{-1}, T_{y, a}$ maps x to y, and z to 0 , for all z orthogonal to y. On the other hand, if $(x, y)=0$, but $x \neq 0$, choose a vector w which is not orthogonal to x. By the remark, there exist rank 1 elements T_{1}, T_{2}, such that $T_{1} x=y+w$, $T_{2} x=-w$. Then $\left(T_{1}+T_{2}\right) x=y$. Let T denote the additive subgroup of $\mathbf{U}(V)$ generated by its rank 1 elements.

Let $A \in \mathbf{U}(V)$, and let x, y be vectors which are not orthogonal to each other. We wish to show that $A \in \mathbf{T}$. From the last paragraph, we may assume that $A x=0$. Then, $(x, A y)=-(A x, y)=0$. If $(A y, y) \neq 0$, the remark above shows that there exists a rank 1 element T in $\mathbf{U}(V)$ such that $T x=0, T y=A y$. Then $A-T$ maps x and y to 0 . If $(A y, y)=0$, then we get a rank 1 element T_{1} such that $T_{1} x=0, T_{1} y=A y-x$. Then $\left(A-T_{1}\right) x=0,\left(A-T_{1}\right) y=x$. Since $(x, y) \neq 0$, there exists a rank 1 element T_{2} such that $T_{2} x=0, T_{2} y=x$. Then $A-T_{1}-T_{2}$ maps x and y to 0 . In any case, we have shown that there exists an element T of \mathbf{T} such that $A-T$ is 0 on the nondegenerate plane P spanned by x and y, so that $A-T$ is essentially an element of $\mathrm{U}(W)$, where W is the $(n-2)$ dimensional orthogonal complement of P in V. By induction, $A-T \in \mathbf{T}$, and so $A \in \mathbf{T}$.

Next, suppose that $J \neq 1$, the "proper" unitary case. Let $A \in \mathbf{U}(V)$. If $A x=0$, for some anisotropic vector x, then A is essentially an element of $\mathbf{U}(W)$, where W is the $(n-1)$-dimensional orthogonal complement of the nondegenerate subspace spanned by x, and we may apply induction.

Suppose $A \neq 0$. As a function of x and $y,(x, A y)$ is a nonzero sesquilinear form on V, with $J \neq 1$. Thus the form is not alternating, so that there exists a vector x such that $(x, A x) \neq 0$. If $a=(x, A x)^{-1}$, then $a \in D_{0}$, and $A-T_{A x, a}$ maps x to 0 . If $n=2$, then $A-T_{A x, a}$ is of rank 1 or 0 . If $n \geq 3$, then we can take x to be anisotropic, by [6, Lemma 2]. We can then apply induction, as in the last paragraph. This proves the proposition.

In the case $J \neq 1$, it can be proved that in fact every element of $\mathbf{U}(V)$ is a sum of elements of the form $T_{u, a}$, where u is anisotropic, except in the case that $n=2$ and D is the field F_{4} of 4 elements. This may be compared with the result of [2, page 41] on the generation of unitary groups by quasi-symmetries.

We shall now characterize lines and planes (one- and two-dimensional subspaces) in V by means of rank 1 elements of $\mathbf{U}(V)$. If x, y, \ldots are vectors, we denote by $\langle x, y, \ldots\rangle$ the subspace of V spanned by x, y, \ldots.

Lemma 1.3. Let u, v be nonzero vectors in V and let a, b be nonzero elements of D_{0}.

Then the image

$$
\operatorname{im}\left(T_{u, a}+T_{v, b}\right)=\langle u, v\rangle,
$$

except when $T_{u, a}+T_{v, b}=0$. In particular, $T_{u, a}+T_{v, b}$ is 0 or is of rank 1 if and only if $\langle u\rangle=\langle v\rangle$.

Proof. If $\langle u\rangle=\langle v\rangle$, the result is clear. Assume that $\langle u\rangle \neq\langle v\rangle$. Then there exists a vector x such that $(x, u) \neq 0,(x, v)=0$. Then $\left(T_{u, a}+T_{v, b}\right) x=(x, u) a u$, so that $u \in \operatorname{im}\left(T_{u, a}+T_{v, b}\right)$. Similarly, $v \in$ $\operatorname{im}\left(T_{u, a}+T_{v, b}\right)$. Thus, $\operatorname{im}\left(T_{u, a}+T_{v, b}\right)=\langle u, v\rangle$, and $T_{u, a}+T_{v, b}$ has rank 2. This proves the lemma.

Lemma 1.4. (i) Let u, v be linearly independent vectors in $V, w=r u+$ $s v$, where $r \neq 0$, and let a, b, c be nonzero elements of D_{0}. Then, $T_{u, a}+$ $T_{v, b}+T_{w, c}$ is of rank 1 if and only if $r a^{-1} r^{J}+s b^{-1} s^{J}+c^{-1}=0$, in which case
$T_{u, a}+T_{v, b}+T_{w, c}=T_{z, d}, \quad$ where $z=-b^{-1} s^{J} r^{-J} a u+v, d=b+s^{J} c s$.
(ii) Suppose $\left|D_{0}\right|>2$, and let u, v, w be nonzero vectors in V. Then, u, v, w are coplanar if and only if there exist nonzero elements a, b, c of D_{0} such that $T_{u, a}+T_{v, b}+T_{w, c}$ is of rank 1.

Proof. (i) Let $T=T_{u, a}+T_{v, b}+T_{w, c}$. Then,

$$
T x=(x, u) z_{1}+(x, v) z_{2},
$$

where $z_{1}=a u+r^{J} c w, z_{2}=b v+s^{J} c w$. Since v, w are linearly independent, $z_{2} \neq 0$. From the linear independence of u and v, it follows as in the proof of Lemma 1.3 that T has rank 1 if and only if z_{1} is a scalar multiple of z_{2}. Since $u=-r^{-1} s v+r^{-1} w$,

$$
z_{1}=-a r^{-1} s v+\left(a r^{-1}+r^{J} c\right) w .
$$

From the linear independence of v and w, z_{1} is a scalar multiple of z_{2} if and only if

$$
z_{1}=-a r^{-1} s b^{-1} z_{2}, \quad a r^{-1}+r^{J} c=-a r^{-1} s b^{-1} s^{J} c .
$$

Multiplying the last equation on the left by $r a^{-1}$ and on the right by c^{-1}, we obtain

$$
c^{-1}+r a^{-1} r^{J}=-s b^{-1} s^{J}
$$

as asserted.
If this equation is now multiplied on the left by $s^{J} c$ and on the right by $r^{-J} a$, we find

$$
s^{J} c r=-\left(b+s^{J} c s\right) b^{-1} s^{J} r^{-J} a,
$$

so $z_{2}=\left(b+s^{J} c s\right) z$, where $z=-b^{-1} s^{J} r^{-J} a u+v$. It follows that $T=T_{z, d}$, for some d. If x is a vector chosen so that $(x, u)=0,(x, v)=1$, then $d z=T x=z_{2}$, so $d=b+s^{J} c s$.
(ii) If two of the lines $\langle u\rangle,\langle v\rangle,\langle w\rangle$ coincide, say $\langle u\rangle=\langle v\rangle$, we can choose a, b so that $T_{u, a}+T_{v, b}=0$. Thus we may assume that $\langle u\rangle,\langle v\rangle,\langle w\rangle$ are distinct.

If u, v, w are coplanar, let $w=r u+s v$, and let a be any nonzero element of D_{0}. Since $\left|D_{0}\right|>2$, we can choose a nonzero element b of D_{0}, such that $r a^{-1} r^{J}+s b^{-1} s^{J} \neq 0$. Take

$$
c=-\left(r a^{-1} r^{J}+s b^{-1} s^{J}\right)^{-1}
$$

Then $T_{u, a}+T_{v, b}+T_{w, c}$ is of rank 1, by part (i).
Conversely, if $T_{u, a}+T_{v, b}+T_{w, c}$ is of rank 1, say

$$
T_{u, a}+T_{v, b}+T_{w, c}=T_{z, d},
$$

then $T_{u, a}+T_{v, b}=T_{z, d}-T_{w, c}$. By Lemma 1.3, $\langle u, v\rangle=\langle z, w\rangle$, so u, v, w are coplanar. This proves the lemma.

We note that the condition $\left|D_{0}\right|>2$ is satisfied in all cases except when $J=1$ and $|D|=2$, or $J \neq 1$ and $|D|=4$, by the following result of Dieudonné [1].

Lemma 1.5 [1, Lemma 1]. If D is not commutative, it is generated by D_{0}, except when D_{0} is the centre Z of D, and D is a quaternion division algebra over Z, of characteristic different from 2 .

2. Fundamental theorem of projective geometry

We shall use a form of the fundamental theorem of projective geometry similar to that in [3].

Proposition 2.1. Let V_{1}, V_{2} be n-dimensional vector spaces over division rings D_{1}, D_{2}, respectively, where $n \geq 3$. Suppose that there is a mapping $L \rightarrow L^{\prime}$ from the set of all lines in V_{1} into the set of all lines in V_{2}, with the properties
(i) the lines L^{\prime} span the vector space V_{2},
(ii) if $L_{1} \subseteq L_{2}+L_{3}$, then $L_{1}^{\prime} \subseteq L_{2}^{\prime}+L_{3}^{\prime}$.

Then there exist a homomorphism $\sigma: D_{1} \rightarrow D_{2}$, and a σ-semilinear monomorphism $P: V_{1} \rightarrow V_{2}$, such that $\left\langle P V_{1}\right\rangle=V_{2}$, and $L^{\prime}=\langle P L\rangle$, for all lines L in V_{1}. In particular, the mapping $L \rightarrow L^{\prime}$ is injective.

Proof. By (i), there exist lines L_{1}, \ldots, L_{n} in V_{1}, such that $V_{2}=L_{1}^{\prime} \oplus$ $\cdots \oplus L_{n}^{\prime}$. We assert that, for $1 \leq m \leq n, L_{1}+\cdots+L_{m}$ is a direct sum, and, if L is any line in $L_{1}+\cdots+L_{m}$, then L^{\prime} is a line in $L_{1}^{\prime} \oplus \cdots \oplus L_{m}^{\prime}$. We prove this by induction, the assertion being trivial for $m=1$. Assume it is true for a value of m less than n. Since L_{m+1}^{\prime} is not in $L_{1}^{\prime} \oplus \cdots \oplus L_{m}^{\prime}, L_{m+1}$ is not in $L_{1}+\cdots+L_{m}$, and so the sum $L_{1}+\cdots+L_{m}+L_{m+1}$ is direct. If L is a line in $L_{1}+\cdots+L_{m}+L_{m+1}$, then there is a line M in $L_{1}+\cdots+L_{m}$, such that $L \subseteq M+L_{m+1}$. Applying the induction hypothesis and (ii), we see that

$$
L^{\prime} \subseteq M^{\prime}+L_{m+1}^{\prime} \subseteq L_{1}^{\prime} \oplus \cdots \oplus L_{m}^{\prime} \oplus L_{m+1}^{\prime}
$$

This proves the assertion.
In particular, the case $m=n$ shows that $V_{1}=L_{1} \oplus \cdots \oplus L_{n}$. We can now apply $[3,1.11]$ to obtain σ and P as required.

If M_{1}, M_{2} are distinct lines in V_{1}, express V_{1} as a direct sum of lines $M_{1}, M_{2}, \ldots, M_{n}$. Then

$$
V_{2}=\left\langle P V_{1}\right\rangle=\left\langle P M_{1}\right\rangle+\left\langle P M_{2}\right\rangle+\cdots+\left\langle P M_{n}\right\rangle=M_{1}^{\prime}+M_{2}^{\prime}+\cdots+M_{n}^{\prime} .
$$

Since V_{2} has dimension $n, M_{1}^{\prime} \neq M_{2}^{\prime}$. Thus the mapping $L \rightarrow L^{\prime}$ is injective. This proves this proposition.

3. Rank 1 preservers

We now state the main theorem of the paper.
Theorem 3.1. Let $F: \mathbf{U}(V) \rightarrow \mathbf{U}(V)$ be a surjective, additive map, such that, whenever A is an element of $\mathbf{U}(V)$ of rank $1, F(A)$ also has rank 1. Suppose that $n \geq 3$, and $\left|D_{0}\right|>2$. Then, there exist an automorphism σ of D, a σ-semilinear automorphism P of V, and a nonzero element c of D_{0}, such that

$$
F(A)=c P A P^{*}
$$

for all A in $\mathbf{U}(V)$.

We remark that, in order for $F(A)$ to be linear, the inner automorphism of D induced by c must be equal to $\sigma^{-1} J \sigma J$.

The rest of the section is devoted to a proof of the theorem. We assume its hypotheses throughout.

Lemma 3.2. There is a mapping $L \rightarrow L^{\prime}$ of the set of all lines of V into itself, such that, if $u \in L, a \in D_{0}$, then $F\left(T_{u, a}\right)=T_{u^{\prime}, a^{\prime}}$, where $u^{\prime} \in L^{\prime}$.

Proof. Suppose that u, v belong to the same line L, and let $F\left(T_{u, a}\right)=$ $T_{u^{\prime}, a^{\prime}}, F\left(T_{v, b}\right)=T_{v^{\prime}, b^{\prime}}$. Since $T_{u, a}+T_{v, b}$ is either 0 or of rank $1, T_{u^{\prime}, a^{\prime}}+$ $T_{v^{\prime}, b^{\prime}}=F\left(T_{u, a}+T_{v, b}\right)$ is either 0 or of rank 1. By Lemma 1.3, u^{\prime} and v^{\prime} belong to the same line L^{\prime}. Thus the mapping $L \rightarrow L^{\prime}$ exists as required. This proves the lemma.

Lemma 3.3. There exist an endomorphism σ of $D, a \sigma$-semilinear monomorphism $P: V \rightarrow V$, and a mapping $h: V \times D_{0} \rightarrow D_{0}$, such that

$$
F\left(T_{u, a}\right)=T_{P u, h(u, a)},
$$

for all $u \in V, a \in D_{0}$. If u, v are linearly independent, then $P u, P v$ are linearly independent.

Proof. We check that the mapping $L \rightarrow L^{\prime}$ satisfies the conditions of Proposition 2.1. It follows from Proposition 1.2 and the surjectivity of F that every element of $\mathbf{U}(V)$ is a sum of elements of the form $F\left(T_{u, a}\right)$. If u belongs to a line L, then the image of V under $F\left(T_{u, a}\right)$ is in L^{\prime}. Thus every element of $\mathbf{U}(V)$ has image in the span of the lines L^{\prime}. Since any vector v is in the image of the element $T_{v, 1}$ of $\mathbf{U}(V)$, it follows that the lines $L^{\prime} \operatorname{span} V$.

Next, suppose that L_{1}, L_{2}, L_{3} are lines such that $L_{1} \subseteq L_{2}+L_{3}$, where we assume that $L_{2} \neq L_{3}$. Choose nonzero vectors u, v, w in L_{2}, L_{3}, L_{1}, respectively, and, by Lemma 1.4, choose nonzero elements a, b, c of D_{0}, such that $T_{u, a}+T_{v, b}+T_{w, c}$ has rank 1. If $F\left(T_{u, a}\right)=T_{u^{\prime}, a^{\prime}}, F\left(T_{v, b}\right)=$ $T_{v^{\prime}, b^{\prime}}, F\left(T_{w, c}\right)=T_{w^{\prime}, c^{\prime}}$, then $T_{u^{\prime}, a^{\prime}}+T_{v^{\prime}, b^{\prime}}+T_{w^{\prime}, c^{\prime}}=T_{z, d}$, for some z, d. If $T_{u^{\prime}, a^{\prime}}+T_{v^{\prime}, b^{\prime}} \neq 0$, it follows from Lemma 1.3 that $\left\langle u^{\prime}, v^{\prime}\right\rangle=$ $\left\langle z, w^{\prime}\right\rangle$, so $w^{\prime} \in\left\langle u^{\prime}, v^{\prime}\right\rangle$, that is, $L_{1}^{\prime} \subseteq L_{2}^{\prime}+L_{3}^{\prime}$.

If $T_{u^{\prime}, a^{\prime}}+T_{v^{\prime}, b^{\prime}}=0$, then F is not injective. Since F is assumed to be surjective, it follows that D must be infinite. By Lemma $1.5, D_{0}$ must have more than 3 elements. As in Lemma 1.4, we can now choose nonzero
elements e, f of D_{0}, such that $T_{u, e}+T_{v, b}+T_{w, f}$ has rank 1 , where $e \neq a$. Then $F\left(T_{u, e}\right)=T_{u^{\prime}, e^{\prime}}$, where $e^{\prime} \neq a^{\prime}$, since $F\left(T_{u, e}-T_{u, a}\right)$ is of rank 1 , not 0 . Now the argument above, with e, f replacing a, c, shows that $L_{1}^{\prime} \subseteq L_{2}^{\prime}+L_{3}^{\prime}$.

By Proposition 2.1, we obtain an endomorphism σ of D, and a σ semilinear monomorphism P of V into itself, such that $L^{\prime}=\langle P L\rangle$, for all lines L in V. This means that $F\left(T_{u, a}\right)$ can be expressed in the form asserted. The last statement follows from the injectivity of the mapping $L \rightarrow L^{\prime}$, given by Proposition 2.1. This proves the lemma.

We may assume that $h(0, a)=0$, for all a. Also, $h(u, 0)=0$, for all u.

Lemma 3.4. There exists a nonzero element c of D_{0} such that

$$
h(u, a)=c a^{\sigma},
$$

for all u in V, a in D_{0}.
Proof. If u is a nonzero vector, application of F to the equation $T_{u, a+b}$ $=T_{u, a}+T_{u, b}$ shows that

$$
h(u, a+b)=h(u, a)+h(u, b) .
$$

Suppose that u, v are linearly independent vectors in V. let $w=u+v$, and choose a in D_{0}, distinct from 0 and -1 . By Lemma 1.4,

$$
T_{u, a}+T_{v, 1}+T_{w, c}=T_{z, d},
$$

where $c=-\left(a^{-1}+1\right)^{-1}, z=-a u+v, d=c+1=(a+1)^{-1}$. Applying F, we find

$$
T_{P u, h(u, a)}+T_{P v, h(v, 1)}+T_{P w, h(w, c)}=T_{P_{z}, h(z, d)} .
$$

Since $P u$ and $P v$ are linearly independent, and $P w=P u+P v$, we see by Lemma 1.4 that $T_{P z, h(z, d)}=T_{z^{\prime}, d^{\prime}}$, where

$$
z^{\prime}=-h(v, 1)^{-1} h(u, a) P u+P v .
$$

Since $P z=-a^{\sigma} P u+P v$, and $P u, P v$ are linearly independent, we have

$$
-h(v, 1)^{-1} h(u, a)=-a^{\sigma} .
$$

This holds also for $a=0$. Since $\left|D_{0}\right|>2$, the set $\left\{a \in D_{0} \mid a \neq-1\right\}$ generates D_{0} as an additive group. Thus,

$$
h(u, a)=h(v, 1) a^{\sigma},
$$

for all a in D_{0}. This holds for every u linearly independent of v; since $h(v, a)=h(u, 1) a^{\sigma}$, by symmetry, we see that, in fact, $h(u, a)=c a^{\sigma}$, for all u, where $c=h(v, 1) \in D_{0}$. Since F does not map $T_{v, 1}$ on $0, c$ must be nonzero. This proves the lemma.

Lemma 3.5. For all a in $D, a^{J \sigma J}=c a^{\sigma} c^{-1}$.

Proof. Let a be a nonzero element of $D, b=a^{J} a$. Then $T_{a u, 1}=T_{u, b}$. Apply the mapping F, using Lemmas 3.3 and 3.4. We obtain $T_{P(a u), c}=$ $T_{P u, d}$, where $d=c b^{\sigma}$. Since $P(a u)=a^{\sigma}(P u)$, we find that

$$
a^{\sigma J} c a^{\sigma}=d=c a^{J \sigma} a^{\sigma}
$$

Cancelling a^{σ} and applying J, we obtain the result.

LEMMA 3.6. The endomorphism σ is an automorphism of D, and P is a σ-semilinear automorphism of V.

Proof. Let u_{1}, \ldots, u_{n} be a basis of V. Since $\langle P V\rangle=V, P u_{1}, \ldots, P u_{n}$ is also a basis of V. Let v_{1}, \ldots, v_{n} be the dual basis, that is, $\left(v_{i}, P u_{j}\right)=$ $\delta_{i j}$. If $u=\sum_{j} b_{j} u_{j}$, then $\left(v_{i}, P u\right)=b_{i}^{\sigma J}$, and a calculation using Lemmas 3.3 and 3.4 shows that

$$
\left(v_{i}, F\left(T_{u, a}\right) v_{j}\right)=\left(a b_{i}\right)^{\sigma J} c b_{j}^{\sigma}
$$

By Lemma 3.5, $\left(a b_{i}\right)^{\sigma J} c=c\left(a b_{i}\right)^{J \sigma}$, so

$$
\left(v_{i}, F\left(T_{u, a}\right) v_{j}\right) \in c D^{\sigma}
$$

Since F is surjective and all elements of $\mathbf{U}(V)$ are sums of elements of rank 1, we find that

$$
\left(v_{i}, A v_{j}\right) \in c D^{\sigma}
$$

for all A in $\mathbf{U}(V)$.
If $d \in D$, let $v=d^{J} P u_{1}+P u_{2}, A=T_{v, 1}$. Then

$$
\left(v_{1}, A v_{2}\right)=\left(v_{1}, d^{J} P u_{1}+P u_{2}\right)=d
$$

Thus, $c D^{\sigma}=D$, so $D^{\sigma}=D$. Hence σ is an automorphism of D, and so P is a semilinear automorphism of V, by [3]. This proves the lemma.

Proof of Theorem 3.1. Since σ is an automorphism of D, the adjoint of P is defined, as a $J \sigma^{-1} J$-semilinear map P^{*} satisfying the identity $(P x, y)=\left(x, P^{*} y\right)^{\sigma}$. From Lemmas 3.3, 3.4 and 3.5 , if $A=T_{u, a}$, then

$$
\begin{aligned}
F(A) x & =(x, P u) c a^{\sigma} P u=\left(P^{*} x, u\right)^{J \sigma J} c a^{\sigma} P u=c\left(P^{*}, x u\right)^{\sigma} a^{\sigma} P u \\
& =c P\left(\left(P^{*} x, u\right) a u\right)=c P A P^{*} x
\end{aligned}
$$

By Proposition 1.2, it follows that $F(A)=c P A P^{*}$, for all A in $\mathbf{U}(V)$. This proves the theorem.

4. Rank-one-plus-scalar preservers

The following result is a variation of Theorem 3.1 which will be of use later. We now assume that D is a finite-dimensional division algebra over a field K, and that the involutory anti-automorphism J of D is linear over K. Then K may be identified as a subset of $D_{0} \cap Z$, and $\mathrm{U}(V)$ is a finitedimensional vector space over K.

Theorem 4.1. Let τ be an automorphism of K, and let $F: \mathbf{U}(V) \rightarrow \mathbf{U}(V)$ be a bijective, τ-semilinear map, such that, whenever A is an element of $\mathrm{U}(V)$ of rank 1, $F(A)$ is the sum of $a \operatorname{rank} 1$ element of $\mathbf{L}(V)$ and a scalar map. Suppose that $n \geq 5$, and $\left|D_{0}\right|>2$. Then, there exist an extension of τ to an automorphism σ of $D, a \operatorname{semilinear~automorphism~} P$ of V, a nonzero element c of D_{0}, and a τ-semilinear map $g: \mathbf{U}(V) \rightarrow Z_{1}=D_{1} \cap Z$, such that

$$
F(A)=c P A P^{*}+g(A) I
$$

for all A in $\mathbf{U}(V)$.
We shall sketch the modifications to the proof of Theorem 3.1 which are needed to prove this result. First we note that if an element A of $L(V)$ has an expression in the form $A=B+C$, where B has rank less than 3 and C is scalar, then, since $n \geq 5, B$ and C are uniquely determined. In particular, if $A \in \mathbf{U}(V)$, so that $B^{*}+C^{*}=A^{*}=-A=-B-C$, then $B^{*}=-B, C^{*}=-C$, and so B and C both belong to $\mathbf{U}(V)$. In particular, $C=d I$, where $d \in Z_{1}$.

It now follows that Lemmas $1.3,1.4$, still hold if "rank 1 " is replaced by "rank 1 plus scalar" (and 0 by "scalar"). A modified Lemma 3.2 holds, in which a mapping $L \rightarrow L^{\prime}$ of lines is found, such that, if $u \in L$, then $F\left(T_{u, a}\right)=T_{u^{\prime}, a^{\prime}}+$ scalar, where $u^{\prime} \in L^{\prime}$. A modified Lemma 3.3 gives a σ semilinear monomorphism P of V into itself, and a mapping $h: V \times D_{0} \rightarrow$ D_{0}, such that $F\left(T_{u, a}\right)=T_{P u, h(u, a)}+$ scalar. Lemmas 3.4 and 3.5 hold. If $a \in K$, and u is any nonzero vector in V then

$$
F\left(T_{u, a}\right)=F\left(a T_{u, 1}\right)=a^{\tau} F\left(T_{u, 1}\right)
$$

This leads to the equation $a^{\sigma}=a^{\tau}$. Thus, σ is an extension of τ. Since D is finite-dimensional over K, it follows that σ is an automorphism of D, and so P is a σ-semilinear automorphism of V. The argument of the proof
of Theorem 3.1 now shows that, if A is an element of rank 1 in $\mathbf{U}(V)$, then $F(A)-c P A P^{*}$ is a scalar map. By Proposition 1.2, the same holds for every element of $\mathbf{U}(V)$, and so F has the form asserted in the theorem.

5. Centralizers

If $A \in \mathbf{L}(V)$, then A defines an additive map $\theta_{A}: \mathbf{U}(V) \rightarrow \mathbf{U}(V)$, given by

$$
\theta_{A}(B)=A B+B A^{*}
$$

If $A \in \mathbf{U}(V)$, then the kernel of θ_{A} is the centralizer

$$
C_{\mathbf{U}(V)}(A)=\{B \in \mathbf{U}(V) \mid A B=B A\}
$$

In this section we shall study this centralizer. From now on we shall assume that, either the characteristic of D is not 2 , or J is not the identity on the centre Z.

Lemma 5.1. (i) There exists an element e of Z such that $e+e^{J}=1$.
(ii) $D=e D_{0} \oplus D_{1}=D_{0} \oplus e^{J} D_{1}$.
(iii) Every element A of $\mathbf{U}(V)$ has the form $A=B-B^{*}$, where $B \in \mathbf{L}(V)$.

Proof. The assumption on D implies that there exists an element a of Z such that $a+a^{J} \neq 0$. Let $e=a\left(a+a^{J}\right)^{-1}$, so that $e+e^{J}=1$.

If $a \in D$, then

$$
a=e\left(a+a^{J}\right)+\left(e^{J} a-e a^{J}\right)
$$

This shows that $D=e D_{0}+D_{1}$. If $a=e b$, where $b \in D_{0}$, and $a \in D_{1}$, then $b=a+a^{J}=0$. Thus $D=e D_{0} \oplus D_{1}$. Since $e^{J} e \in D_{0}, D=D_{0} \oplus D^{J} D_{1}$. The decomposition of an element a of D according to this direct sum is given by

$$
a=\left(e a+e^{J} a^{J}\right)+e^{J}\left(a-a^{J}\right)
$$

If $A \in \mathbf{U}(V)$, then $A=e A-(e A)^{*}$. This proves the lemma.
Every rank 1 element of $\mathbf{L}(V)$ has the form

$$
x \rightarrow(x, v) u
$$

where $u, v \in V$, and the adjoint of this map is the map

$$
x \rightarrow-(x, v) u
$$

Thus the mapping

$$
u \bullet v: x \rightarrow(x, v) u+(x, u) v
$$

is an element of $\mathbf{U}(V)$, and all elements of $\mathbf{U}(V)$ are sums of such elements, by Lemma 5.1. Note that, if $a \in D$, then $(a u) \bullet v=u \bullet\left(a^{J} v\right)$. Also, $u \bullet(a u)=$ 0 , if $a \in D_{1}$. If $V=V_{1} \oplus \cdots \oplus V_{m}$, then $\mathbf{U}(V)$ is a direct sum of all $V_{i} \bullet V_{j}$, $i \leq j$, where $V_{i} \bullet V_{j}$ is the subgroup generated by $\left\{u \bullet v \mid u \in V_{i}, v \in V_{j}\right\}$. In particular, if v_{1}, \ldots, v_{n} is a basis of V, then every element of $\mathbf{U}(V)$ is uniquely expressible in the form

$$
\sum_{i \leq j} v_{i} \bullet a_{i j} v_{j}, \quad a_{i j} \in D, a_{i i} \in e D_{0} .
$$

If $A \in \mathbf{L}(V)$, and V is written as the direct sum of subspaces V_{i} invariant under A, then, since $\theta_{A}(u \bullet v)=(A u) \bullet v+u \bullet(A v)$, each $V_{i} \bullet V_{j}$ is invariant under θ_{A}, and so the kernel of θ_{A} is the direct sum of the kernels of the restrictions of θ_{A} to the various $V_{i} \bullet V_{j}, i \leq j$.

From now on, we shall assume that D is commutative, so that we can use the usual elementary divisor theory for a linear transformation A. If $f(t)$ is an element of the polynomial ring $D[t]$, and $v \in V$, define $f(t) v=f(A) v$. This makes V into a $D[t]$-module. We decompose V into a direct sum of indecomposable submodules

$$
V=V_{1} \oplus \cdots \oplus V_{m} .
$$

Each V_{i} is a cyclic $D[t]$-module. The order of a generator v of V_{i} is the monic polynomial $q_{i}(t)$ of least degree in $D[t]$ such that $q_{i}(t) v=0$, and is equal to the characteristic polynomial of the restriction of A to V_{i}.

If $f(t)=\sum a_{j} t^{j}$, we write $f^{J}(t)=\sum a_{j}^{J} t^{j}$.
Lemma 5.2. If $i \neq j$, then the kernel of the restriction of θ_{A} to $V_{i} \bullet V_{j}$ is isomorphic as a vector space over D_{0} to the space of all polynomials $h(t)$ in $D[t]$, such that $\operatorname{deg} h(t)<\operatorname{deg} q_{j}(t)$, and

$$
h(t) q_{i}^{J}(-t) \equiv 0 \quad\left(\bmod q_{j}(t)\right)
$$

Proof. Set $k=\operatorname{deg} q_{i}(t)$, so that

$$
q_{i}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{k-1} t^{k-1}+t^{k}
$$

Let v, w be generators of V_{i}, V_{j} as cyclic $D[t]$-modules. Since $v, A v, A^{2} v$, $\ldots, A^{k-1} v$ form a basis of V_{i}, every element of $V_{i} \bullet V_{j}$ has a unique expression in the form $\sum_{r=0}^{k-1} A^{r} v \bullet w_{r}$, where the w_{r} belong to V_{j}. Since V_{j} has a basis consisting of the elements $A^{s} w, 0 \leq s<\operatorname{deg} q_{j}(t)$, we see that every element of $V_{i} \bullet V_{j}$ has a unique expression in the form

$$
B=\sum_{r=0}^{k-1} A^{r} v \bullet h_{r}(A) w
$$

where the $h_{r}(t)$ are polynomials of degree less than $\operatorname{deg} q_{j}(t)$. We calculate that

$$
\begin{aligned}
\theta_{A}(B) & =\sum_{r=0}^{k-1}\left(A^{r+1} v \bullet h_{r}(A) w+A^{r} v \bullet h_{r}(A) A w\right) \\
& =\sum_{r=0}^{k-1} A^{r} v \bullet\left(h_{r-1}(A)+h_{r}(A) A-a_{r}^{J} h_{k-1}(A)\right) w
\end{aligned}
$$

where $h_{-1}(t)=0$. It follows that $\theta_{A}(B)=0$, if and only if

$$
h_{r-1}(t)+h_{r}(t) t-a_{r}^{J} h_{k-1}(t) \equiv 0 \quad\left(\bmod q_{j}(t)\right),
$$

for $r=0, \ldots, k-1$. If these congruences hold, then

$$
h_{k-1}(t) q_{i}^{J}(-t)=-\sum_{r=0}^{k-1}(-t)^{r}\left(h_{r-1}(t)+h_{r}(t) t-a_{r}^{J} h_{k-1}(t)\right) \equiv 0 \quad\left(\bmod q_{j}(t)\right)
$$

Conversely, if $h_{k-1}(t)$ is a polynomial of degree less than $\operatorname{deg} q_{j}(t)$, satisfying

$$
h_{k-1}(t) q_{i}^{J}(-t) \equiv 0 \quad\left(\bmod q_{j}(t)\right)
$$

then the congruences determine the $h_{r}(t)$ completely, since $\operatorname{deg} h_{r}(t)<$ $\operatorname{deg} q_{j}(t)$. The correspondence $B \rightarrow h_{k-1}(t)$ gives the asserted isomorphism. This proves the lemma.

Lemma 5.3. The kernel of the restriction of θ_{A} to $V_{i} \bullet V_{i}$ is isomorphic, as a vector space over D_{0}, to the space of all polynomials $h(t)$ in $D[t]$ of degree less than $k=\operatorname{deg} q_{i}(t)$, for which the coefficient of t^{k-1} lies in D_{0}, such that $h(t) q_{i}(t)+h^{J}(-t) q_{i}^{J}(-t)=0$.

Proof. Set $k=\operatorname{deg} q_{i}(t)$, so that

$$
q_{i}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{k-1} t^{k-1}+t^{k}
$$

and let v be a generator of V_{i} as a cyclic $D[t]$-module. Every element of $V_{i} \bullet V_{i}$ is uniquely expressible as a sum of elements of the form $A^{r} v \bullet b A^{s} v$, where $0 \leq r \leq s \leq k-1, b \in D$, and $b \in e D_{0}$ if $r=s$. Thus,

$$
V_{i} \bullet V_{i}=\mathbf{W} \oplus \mathbf{X},
$$

where \mathbf{W} is the set of all sums of elements of the form $A^{r} v \bullet b A^{s} v$, where $0 \leq r \leq s<k-1$, and \mathbf{X} is the set of all sums of all elements of the form $A^{r} v \bullet b A^{k-1} v$, where $0 \leq r \leq k-1$. Let \mathbf{Y} be the image of \mathbf{W} under θ_{A}.

Since

$$
\begin{aligned}
\theta_{A}\left(A^{r} v \bullet b A^{s} v\right) & =A^{r+1} v \bullet b A^{s} v+A^{r} v \bullet b A^{s+1}, \quad \text { if } r+1<s<k-1, \\
\theta_{A}\left(A^{r} v \bullet b A^{r+1} v\right) & =A^{r+1} v \bullet e\left(b+b^{J}\right) A^{r+1} v+A^{r} v \bullet b A^{r+2}, \quad \text { if } r<k-2, \\
\theta_{A}\left(A^{r} v \bullet e b A^{r} v\right) & =A^{r} v \bullet b A^{r+1}, \quad \text { if } r<k-1, b \in D_{0},
\end{aligned}
$$

it follows from Lemma 5.1 (ii) that

$$
V_{i} \bullet V_{i}=\mathbf{Y}+\mathbf{Z}
$$

where \mathbf{Z} consists of the sums of elements of the form $A^{r} v \bullet e b A^{r} v$, where $0 \leq r \leq k-1, b \in D_{0}$, or of the form $A^{r} v \bullet e^{J} b A^{r+1} v$, where $0 \leq r<k-1$, $b \in D_{1}$. Computing dimensions as vector spaces over D_{0}, we have

$$
\begin{aligned}
& \operatorname{dim} \mathbf{X}=\operatorname{dim} \mathbf{Z}=k, \quad \text { if } J=1, \\
& \operatorname{dim} \mathbf{X}=\operatorname{dim} \mathbf{Z}=2 k-1, \quad \text { if } J \neq 1,
\end{aligned}
$$

and so $\operatorname{dim} \mathbf{Y} \geq \operatorname{dim} \mathbf{W}$. Since \mathbf{Y} is an image of \mathbf{W}, $\operatorname{dim} \mathbf{Y}=\operatorname{dim} \mathbf{W}$, and so

$$
V_{i} \bullet V_{i}=\mathbf{Y} \oplus \mathbf{Z}
$$

Let $\phi: \mathbf{X} \rightarrow \mathbf{Z}$ be the map given by θ_{A} followed by projection into \mathbf{Z}. Then the image of θ_{A} is the direct sum of \mathbf{Y} with the image of ϕ, so that the cokernels of θ_{A} and ϕ are isomorphic. It follows that the kernel of θ_{A} is isomorphic with the kernel of ϕ.

We now associate polynomials with the elements of \mathbf{X} and \mathbf{Z}, in the following way. If $B \in \mathbf{X}$,

$$
B=\sum_{r=0}^{k-2} A^{r} v \bullet b_{r} A^{k-1} v+A^{k-1} v \bullet e b_{k-1} A^{k-1} v, \quad b_{r} \in D, \quad b_{k-1} \in D_{0}
$$

we define a polynomial

$$
h_{B}(t)=\sum_{r=0}^{k-1} b_{r}(-t)^{r} .
$$

If $C \in \mathbf{Z}$,

$$
C=\sum_{r=0}^{k-1} A^{r} v \bullet e b_{r} A^{r} v+\sum_{r=0}^{k-2} A^{r} v \bullet e^{J} c_{r} A^{r+1} v, \quad b_{r} \in D_{0}, c_{r} \in D_{1},
$$

we define a polynomial

$$
g_{C}(t)=\sum_{r=0}^{k-1}(-1)^{r+1} b_{r} t^{2 r}+\sum_{r=0}^{k-2}(-1)^{r+1} c_{r} t^{2 r+1}
$$

We now assert that

$$
g_{\phi(B)}(t)=h_{B}(t) q_{i}(t)+h_{B}^{J}(-t) q_{i}^{J}(-t),
$$

for all B in \mathbf{X}.

To show this, it is enough to consider the case where B is of the form $A^{r} v \bullet b A^{k-1} v$. If $r \leq k-2$, then

$$
\begin{aligned}
& \theta_{A}\left(A^{r} v \bullet b A^{k-1} v\right) \\
& \quad=A^{r+1} v \bullet b A^{k-1} v+A^{r} v \bullet b\left(-a_{0} v-a_{1} A v-\cdots-a_{k-1} A^{k-1} v\right)
\end{aligned}
$$

Also, if $b \in D_{0}$,

$$
\theta_{A}\left(A^{k-1} v \bullet e b A^{k-1} v\right)=A^{k-1} v \bullet b\left(-a_{0} v-a_{1} A v-\cdots-a_{k-1} A^{k-1} v\right)
$$

Now it is straightforward, though tedious, to compute $g_{\phi(B)}(t)$ in all cases, and to verify that the asserted relation holds. Since $g_{\phi(B)}(t)=0$ if and only if $\phi(B)=0$, we see that the kernel of ϕ consists of the vectors B in \mathbf{X} for which $h_{B}(t)$ satisfies the condition given in the statement of the lemma. This proves the lemma.

By the elementary divisor theory, each polynomial $q_{i}(t)$ is a power of an irreducible polynomial. It follows that either $q_{i}(t)$ and $q_{j}^{J}(-t)$ are relatively prime or else one divides the other.

Lemma 5.4. (i) If $q_{i}(t)$ and $q_{j}^{J}(-t)$ are relatively prime, then the kernel of the restriction of θ_{A} to $V_{i} \bullet V_{j}$ is 0 .
(ii) If $i \neq j$, and $q_{i}(t)$ and $q_{j}^{J}(-t)$ are not relatively prime, then the kernel of the restriction of θ_{A} to $V_{i} \bullet V_{j}$ is isomorphic which the space of all polynomials $h(t)$ in $D[t]$ for which

$$
\operatorname{deg} h(t)<\min \left\{\operatorname{deg} q_{i}(t), \operatorname{deg} q_{j}(t)\right\}
$$

(iii) If $q_{i}(t)$ and $q_{i}^{J}(-t)$ are not relatively prime, and $k=\operatorname{deg} q_{i}(t)$, then the kernel of the restriction of θ_{A} to $V_{i} \bullet V_{i}$ is isomorphic with the space of all polynomials $h(t)$ in $D[t]$ of the form

$$
h(t)=\sum_{r=0}^{k-1} b_{r} t^{r}
$$

where $b_{k-1}, b_{k-3}, \ldots \in D_{0}, b_{k-2}, b_{k-4}, \ldots \in D_{1}$.
Proof. Suppose that $q_{i}(t)$ and $q_{j}^{J}(-t)$ are relatively prime. If $i \neq j$, the condition

$$
h(t) q_{i}^{J}(-t) \equiv 0 \quad\left(\bmod q_{j}(t)\right)
$$

of Lemma 5.2 implies that $h(t)$ is divisible by $q_{j}(t)$. Since $\operatorname{deg} h(t)<$ $\operatorname{deg} q_{j}(t), h(t)=0$. A similar argument applies in the case $i=j$, by use of Lemma 5.3.

Suppose $q_{i}(t)$ and $q_{j}^{J}(-t)$ are not relatively prime, where $i \neq j$. By symmetry, we may suppose that $\operatorname{deg} q_{j}(t) \leq \operatorname{deg} q_{i}(t)$. Then $q_{j}(t)$ divides $q_{i}^{J}(-t)$, so that the congruence in Lemma 5.2 is automatically satisfied, and the condition on $h(t)$ is just that $\operatorname{deg} h(t)<\operatorname{deg} q_{j}(t)$.

Finally, suppose that $q_{i}(t)$ and $q_{i}^{J}(-t)$ are not relatively prime. Then $q_{i}^{J}(-t)=(-1)^{k} q_{i}(t)$, where $k=\operatorname{deg} q_{i}(t)$. The condition of Lemma 5.3 then becomes

$$
h(t)+(-1)^{k} h^{J}(-t)=0
$$

which is equivalent to $h(t)$ having the form asserted. This proves the lemma.
Lemma 5.5. (i) If A is an element of $\mathbf{L}(V)$ with

$$
\operatorname{dim} \operatorname{ker} \theta_{A}>n^{2}-2 n, \quad J \neq 1,
$$

or

$$
\operatorname{dim} \operatorname{ker} \theta_{A} \geq \frac{1}{2}\left(n^{2}-n\right), \quad J=1
$$

then A is a scalar map, or the sum of a rank 1 transformation with a scalar map.
(ii) If A is a rank 1 element of $\mathbf{U}(V)$, then $C_{\mathbf{U}(V)}(A)=\operatorname{ker} \theta_{A}$ has dimension

$$
\begin{array}{ll}
\operatorname{dim} \operatorname{ker} \theta_{A}=n^{2}-2 n+2, & \text { if } J \neq 1, \\
\operatorname{dim} \operatorname{ker} \theta_{A}=\frac{1}{2}\left(n^{2}-n\right), & \\
\text { if } J=1 .
\end{array}
$$

Proof. Suppose first that $J \neq 1$. From Lemma 5.4, $\operatorname{dim} \operatorname{ker} \theta_{A}$ is equal to the sum of all $\min \left\{\operatorname{deg} q_{i}(t), \operatorname{deg} q_{j}(t)\right\}$, where i, j range over all pairs such that $q_{i}(t), q_{j}^{J}(-t)$ are not relatively prime. If n_{i} is the number of $q_{j}^{J}(-t)$ which are not relatively prime to $q_{i}(t)$, it follows that

$$
\operatorname{dim} \operatorname{ker} \theta_{A} \leq \sum_{i} n_{i} \operatorname{deg} q_{i}(t)
$$

If N is the largest of the n_{i}, then since $\sum_{i} \operatorname{deg} q_{i}(t)=n$, we see that $\operatorname{dim} \operatorname{ker} \theta_{A} \leq N n$. If $\operatorname{dim} \operatorname{ker} \theta_{A}>n^{2}-2 n$, then $N=n$ or $N=n-1$. If $N=n$, then there are n elementary divisors, all equal to $t-a$, for some a. In this case, A is a scalar map. If $N=n-1$, then either there are $n-1$ elementary divisors, all equal to some $t-a$, and one elementary divisor equal to some $t-b$, or else there are $n-2$ elementary divisors, all equal to some $t-a$, and one elementary divisor equal to $(t-a)^{2}$. In this case, A is the sum of a rank 1 transformation and a scalar map.

If $J=1$, a similar argument shows that $\operatorname{dim} \operatorname{ker} \theta_{A} \leq \frac{1}{2}(\mathbf{N}+1) n$, with equality only if $A=0$. If $\operatorname{dim} \operatorname{ker} \theta_{A} \geq \frac{1}{2}\left(n^{2}-n\right)$, then it follows that $N=n$ or $N=n-1$, as before.

If u is a nonzero isotropic vector and a is a nonzero element of D_{0}, then the elementary divisors of $T_{u, a}$ are t^{2} and $t(n-2$ times). If u is anisotropic, the elementary divisors are $t-b$, where $b \in D_{1}$, and t ($n-1$ times). Calculation using Lemma 5.4 gives the value of $\operatorname{dim} \operatorname{ker} \theta_{A}$ as asserted. This proves the lemma.

6. Preservers of commuting pairs

We assume that D is a finite-dimensional extension field over a field K, and that the involutory automorphism J fixes the elements of K. We can now characterize maps preserving zero products in the Lie algebra $\mathbf{U}(V)$ (cf. [9], [10] for the case of the Lie algebra $\mathbf{L}(V)$).

Theorem 6.1. Let τ be an automorphism of K, and let $F: \mathbf{U}(V) \rightarrow \mathbf{U}(V)$ be a bijective, τ-semilinear map, such that, whenever A and B are of elements of $\mathbf{U}(V)$ which commute, $F(A)$ and $F(B)$ commute. Suppose that $n \geq 5$ and $\left|D_{0}\right|>2$. Assume that the characteristic of K is not 2 in the case that $J=1$. Then, there exist an extension of τ to an automorphism σ of D, a σ-semilinear automorphism P of V, a nonzero element of c of D_{0}, and a τ-semilinear map $g: \mathrm{U}(V) \rightarrow D_{1}$, such that σ commutes with $J, P^{*} P$ is a scalar map, and

$$
F(A)=c P A P^{*}+g(A) I,
$$

for all A in $\mathrm{U}(V)$.
Proof. The hypothesis implies that

$$
F\left(C_{\mathbf{U}(V)}(A)\right) \subseteq C_{\mathbf{U}(V)}(F(A)),
$$

and so

$$
\operatorname{dim}_{K} C_{\mathbf{U}(V)}(A) \leq \operatorname{dim}_{K} C_{\mathbf{U}(V)}(F(A)),
$$

From Lemma 5.5 , we see first that F maps the space of scalar maps in $\mathbf{U}(V)$ onto itself, and then that if A has rank 1 , then $F(A)$ must be a sum of a rank 1 element and a scalar map. Theorem 4.1 now shows that F has the form asserted.

The fact that σ commutes with J follows from Lemma 3.5. If A commutes with B, then the fact that $F(A)$ commutes with $F(B)$ shows that
$A P^{*} P B=B P^{*} P A$. Write $Q=P^{*} P$. If u, v are orthogonal, then $A=T_{u, 1}$ commutes with $B=T_{v, 1}$. We compute that

$$
A Q B x=(x, v)(Q v, u) u, \quad B Q A x=(x, u)(Q u, v) v
$$

for all x in V. If u, v are linearly independent, it follows that $(Q v, u)=$ $(Q u, v)=0$. Since the vectors which are orthogonal to u and linearly independent of u generate the hyperplane orthogonal to u, it follows that Q maps this hyperplane on itself. This is true for all hyperplanes, so that Q must be a scalar map. This proves the theorem.

Theorems analogous to our Theorems 4.1 and 6.1 were proved for the space of self-adjoint matrices by Waterhouse [8].

References

[1] J. Dieudonné, 'On the structure of unitary groups', Trans. Amer. Math. Soc. 72 (1952), 367-385.
[2] J. Dieudonné, La géométrie des groupes classiques, (Springer-Verlag, Berlin, 1955).
[3] A. J. Hahn, 'Cayley algebras and the isomorphisms of the orthogonal groups over arithmetic and local domains', J. Algebra 45 (1977), 210-246.
[4] M. Marcus and B. N. Moyls, 'Transformations on tensor product spaces', Pacific J. Math. 9 (1959), 1215-1221.
[5] B. McDonald, R-linear endomorphisms of $(R)_{n}$ preserving invariants, (Mem. Amer. Math. Soc., no 287, Providence, R.I., 1983).
[6] G. E. Wall, 'The structure of a unitary factor group', Inst. Hautes Études Sci. Publ. Math. 1 (1959), 7-23.
[7] W. C. Waterhouse, 'Automorphisms of $\operatorname{det}\left(X_{i j}\right)$: The group scheme approach', $A d v$. in Math. 65 (1987), 171-203.
[8] W. C. Waterhouse, 'Linear transformations on self-adjoint matrices: The preservation of rank-one-plus-scalar', Linear Algebra Appl. 74 (1986), 73-85.
[9] W. Watkins, 'Linear maps that preserve commuting pairs of matrices', Linear Algebra Appl. 14 (1976), 29-35.
[10] W. J. Wong, 'Maps on simple algebras preserving zero products II: Lie algebras of linear type', Pacific J. Math. 92 (1981), 469-488.
[11] W. J. Wong, 'Rank 1 preserving maps on linear transformations over noncommutative local rings', J. Algebra 113 (1988), 263-293.
[12] W. J. Wong, 'Maps on spaces of linear transformations over semisimple algebras', J. Algebra 115 (1988), 386-400.

University of Notre Dame
Notre Dame, Indiana 46556
U.S.A

