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Abstract

The surjective additive maps on the Lie ring of skew-Hermitian linear transformations on a
finite-dimensional vector space over a division ring which preserve the set of rank 1 elements
are determined. As an application, maps preserving commuting pairs of transformations are
determined.
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Introduction

Many authors have studied the problem of determining the maps on spaces
of matrices which transform rank 1 matrices into rank 1 matrices. For ex-
ample, Marcus and Moyls [4] found the linear maps on the space of all n x n
matrices over a field having this property, and their result was extended to
matrices over any commutative ring, by Waterhouse [7] and McDonald [5].
The present author has considered cases in which the base ring is noncom-
mutative [11, 12]. In another direction, Waterhouse has studied maps on the
set of self-adjoint matrices with respect to a nondegenerate quadratic form
over a field [8].

In this paper, we determine the additive surjective maps on the unitary
Lie ring U(F) of skew-Hermitian transformations relative to a nondegen-
erate skew-Hermitian form on a finite-dimensional vector space V over a
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division ring D, which preserve the set of rank 1 elements (Theorem 3.1).
A variation is given, determining maps which preserve rank-one-plus-scalar
transformations (Theorem 4.1), and this is applied to determine maps which
preserve pairs of commuting transformations, in the case that D is commu-
tative (Theorem 6.1).

Among the tools used in the paper is a version of the fundamental theorem
of projective geometry (Proposition 2.1) which is slightly sharper than the
usual form, as stated, for example, in [2].

It is a great pleasure to dedicate this paper to my friend Tim Wall, to whom
I shall always be grateful for the support he gave me as a young mathemati-
cian, beginning by encouraging me to participate in the Summer Research
Institute in Canberra in 1963. I am particularly happy to be writing on a
subject which seems appropriate in view of Tim's interest in the classical
groups, and especially in view of his important paper on the unitary groups
[6].

1. Rank 1 elements of the unitary Lie ring

Throughout the paper, V will denote an n-dimensional vector space over
a division ring D. The additive group of all linear transformations on V
will be written L(F) . We shall also need the notion of a semilinear map.
If a: Dx —> D2 is a homomorphism between two division rings, and Vy, V2

are vector spaces over D{ and D2 , respectively, a map A: V{ —> V2 is called
a-semilinear if it is additive and

A(ax) = a" (Ax),

for all x in V, a in Z>,. If c is a nonzero element of D, the scalar map
cl: V —• V mapping x to ex is semilinear relative to the inner automor-
phism a of D given by a" = cac~x. We sometimes write cl simply as
c.

We assume that D is provided with an involutory anti-automorphism / ,
so that (ab)J = bJaJ, for all a, b in D, and J2 = 1. An element a of
D is said to be symmetric if a1 — a, skew if a1 — -a, and we have two
additive groups

Do = {a € D\a = a), D{= {a € D\aJ = -a}.

We shall use the notation a~J = (a~l)J . We also assume that V is provided
with a skew-Hermitian form ( , ) , that is, for each x, y in V, there is
denned an element (x, y) of D, which is linear in the first variable x, and
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which satisfies the identity

{y,x) = -{x,y)J.

(In particular, (x, x) is skew.) The vectors x ,y are said to be orthogonal
if (x, y) = 0. The form is taken to be nondegenerate, that is, the only vector
which is orthogonal to the whole space V is 0. A vector x is called isotropic
if {x, x) = 0; otherwise it is called anisotropic. We shall also assume that
the form is trace-valued, that is, {x, x) can be expressed in the form a-a1,
for every x va. V. This condition is automatically satisfied if D does not
have characteristic 2, or if J is not the identity on the centre Z of D [2,
page 19]. On the other hand, if / is the identity (and so D is commutative),
then the condition implies that the form is alternating (symplectic case).

If a is an automorphism of D, and A: V —> V is a cr-semilinear map,
then there exists a unique map A*: V -* V, such that

{Ax,y) = {x,A*y)a,

for all x,y in V. The map A* is /o-^V-semilinear, and is called the
adjoint of A.

The unitary Lie ring on V is the set

U(V) = {A €L{V)\A* = -A}.

This is a Lie ring, with the Lie product [A, B] = AB - BA, and will be the
main object of our study.

LEMMA 1.1. If T is an element of rank 1 in U(F) , then there exist a
nonzero vector u of V and a nonzero element a of Do such that

Tx - {x, u)au,

for all x in V.

PROOF. By nondegeneracy, every linear functional on V has the form
x —» (JC , u) for some vecctor u in V. Thus T must have the form

Tx — (x, u)v,

for some u, v in V. A calculation shows that the adjoint has the form

T*x = -(x, v)u.

Since T* = —T, it follows easily that v = au, where a e Do. This proves
the lemma.

We shall write Tu a for the rank 1 element corresponding to u and a, as
in the lemma, that is,
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PROPOSITION 1.2. Every element of U(V) is a sum of elements of rank 1
in U(F) .

PROOF. We use induction on the dimension n .

First suppose that J = 1, the symplectic case. We remark that if x and
y are vectors of V such that (x, y) ^ 0, then, for a = (x, y)~l, Ty a

maps x \o y, and z to 0, for all z orthogonal to y. On the other hand,
if (x, y) = 0, but x ^ 0, choose a vector w which is not orthogonal to x.
By the remark, there exist rank 1 elements TX,T2, such that Txx = y + w ,
T2x = -w . Then (Tx + T2)x = y. Let T denote the additive subgroup of
U(F) generated by its rank 1 elements.

Let AG\J(V) , and let x, y be vectors which are not orthogonal to each
other. We wish to show that A e T. From the last paragraph, we may
assume that Ax = 0 . Then, (x, Ay) = -(Ax, y) = 0. If (Ay,y)^0, the
remark above shows that there exists a rank 1 element T in U(F) such that
Tx = 0, Ty = Ay. Then A - T maps x and y to 0. If (Ay, y) = 0,
then we get a rank 1 element T{ such that T{x = 0, r ,y = ^y - x . Then
(/* - Tj)x = 0, (A - Tx)y = x. Since (x, y) ^ 0, there exists a rank 1
element T2 such that T2x = 0, T2y = x. Then A - Tx - T2 maps x and
y to 0. In any case, we have shown that there exists an element T of T
such that A - T is 0 on the nondegenerate plane P spanned by x and y,
so that A - T is essentially an element of \](W), where W is the (n - 2)-
dimensional orthogonal complement of P in V. By induction, A - T e T,
and so AeT.

Next, suppose that 7 # 1, the "proper" unitary case. Let A GU(V) . If
4̂x = 0, for some anisotropic vector x, then A is essentially an element of

\J(W), where W is the (n - 1 )-dimensional orthogonal complement of the
nondegenerate subspace spanned by x, and we may apply induction.

Suppose A ^ 0. As a function of x and y, (x, Ay) is a nonzero
sesquilinear form on V, with / ^ 1. Thus the form is not alternating,
so that there exists a vector JC such that (x, Ax) ^ 0. If a = (x, Ax)~l,
then OGD0, and ^ - 7 ^ a maps x to 0. If n - 2, then A - TAx a is of
rank 1 or 0. If n > 3 , then we can take x to be anisotropic, by [6, Lemma
2]. We can then apply induction, as in the last paragraph. This proves the
proposition.

In the case / ^ 1, it can be proved that in fact every element of U(V)
is a sum of elements of the form Tu a , where u is anisotropic, except in
the case that n — 2 and D is the field F4 of 4 elements. This may be
compared with the result of [2, page 41] on the generation of unitary groups
by quasi-symmetries.
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We shall now characterize lines and planes (one- and two-dimensional
subspaces) in V by means of rank 1 elements of U(F) . If x, y, ... are
vectors, we denote by (x, y, ...) the subspace of V spanned by x, y, ... .

LEMMA 1.3. Let u, v be nonzero vectors in V and let a, b be nonzero
elements of Do.

Then the image

im(Tua + Tv b) = (u,v),

except when Tu a + Tv b = 0. In particular, Tu a + Tv b is 0 or is of rank

1 if and only if (u) — (v).

PROOF. If (u) = (v), the result is clear. Assume that (w) ̂  (u).
Then there exists a vector x such that (x, u) ^ 0, (x, v) = 0. Then

(Tu a + Tv b)x = (*' ")au' s o t h a t " € im(Tu a + Tv j) • Similarly, v e
im(Tua + f v J > ) . Thus, im(Tua + Tv b) = (u,v),and fua + TvJ) has rank
2. This proves the lemma.

LEMMA 1.4. (i) Let u, v be linearly independent vectors in V, w — ru +
sv, where r / 0, and let a, b, c be nonzero elements of DQ. Then, Tu a +
Tv,b + Tw,c is °frank l ifand °nly if ra~lrJ + sb~lsJ + c~l = 0, in which
case

where z = -b~lsJr~Jau + v, d = b + sJcs.

(ii) Suppose \D0\ > 2, and let u,v,w be nonzero vectors in V. Then,
u,v,w are coplanar if and only if there exist nonzero elements a, b, c of
Do such that TUta + TVtb + TWtC is of rank 1.

PROOF, (i) Let T = Tua + Tvb + Twc. Then,

Tx = (x, u)zx + (x, v)z2,

where z{ = au + rJcw , z2 = bv + sJcw . Since v, w are linearly indepen-
dent, z2^0. From the linear independence of u and v , it follows as in the
proof of Lemma 1.3 that T has rank 1 ifand only if z, is a scalar multiple
of z2 . Since u = -r~*sv + r~lw ,

z, = -ar~Xsv + (ar~i + r c)w.

From the linear independence of v and w, z, is a scalar multiple of z2 if
and only if

z( = -ar sb z2, ar + r c = —ar sb s c.

https://doi.org/10.1017/S1446788700032419 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032419


404 W. J. Wong [6]

Multiplying the last equation on the left by ra~l and on the right by c~l,
we obtain

- l - l j , - i Jc +ra r = -so s ,

as asserted.
If this equation is now multiplied on the left by sJc and on the right by

r~Ja, we find

s cr — -(b + s cs)b s r a,

so z2 = (b+sJcs)z, where z = -b~xsJ r~J au + v . It follows that T =TZ d,
for some d. If x is a vector chosen so that (x, u) — 0, (x, v) = 1, then
dz = Tx - z2 , so d — b + sJcs.

(ii) If two of the lines («), (v), (w) coincide, say (M) = {v), we can
choose a, b so that Tu a+Tv b — 0. Thus we may assume that (M), (v), (w)
are distinct.

If u, v, w are coplanar, let w — ru + sv , and let a be any nonzero
element of Do. Since |Z>0| > 2 , we can choose a nonzero element b of DQ,
such that ra~xrJ + sb~lsJ ^ 0. Take

c=-(ra~1rJ + sb~lsJ)~l.

Then Tu a + Tv b + Tw c is of rank 1, by part (i).
Conversely, if Tua + TvJ) + Twc is of rank 1, say

Tu,a
 + Tvj, + Twc — Tz d ,

then Tua+Tvb = Tzd-Twc. By Lemma 1.3, (M, V) = ( z , w), so u,v,w
are coplanar. This proves the lemma.

We note that the condition |Z>0| > 2 is satisfied in all cases except when
J = 1 and \D\ = 2, or / ^ 1 and |Z>| = 4, by the following result of
Dieudonne [1].

LEMMA 1.5 [1, LEMMA 1]. If D is not commutative, it is generated by Do,
except when Do is the centre Z of D, and D is a quaternion division algebra
over Z, of characteristic different from 2.

2. Fundamental theorem of projective geometry

We shall use a form of the fundamental theorem of projective geometry
similar to that in [3].
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PROPOSITION 2.1. Let VX,V2 be n-dimensional vector spaces over division
rings Dx, D2, respectively, where n > 3. Suppose that there is a mapping
Z, —• L' from the set of all lines in Vx into the set of all lines in V2, with the
properties

(i) the lines L' span the vector space V2,
(ii) if L, C L2 + L3, then L\ CL'2 + L'3.

Then there exist a homomorphism a: Dx —• D2, and a a-semilinear mono-
morphism P:Vl -> V2, such that (PVX) = V2, and L' = (PL), for all lines
L in Vx. In particular, the mapping L —• L' is injective.

PROOF. By (i), there exist lines Lx, ... , Ln in Vx, such that V2 - L\ ©
• • • © L'n . We assert that, for 1 < m < n , L{-\ \-Lm is a direct sum, and,
if L is any line in L, + h Lm , then L' is a line in L\® ••• ® L'm. We
prove this by induction, the assertion being trivial for m = 1. Assume it is
true for a value of m less than n . Since L'm+1 is not in L\ ©• • -@L'm , Lm+l

is not in L{-\ 1- Lm , and so the sum L{ H h Lm + Lm+l is direct. If L
is a line in Lx-\ h Lm + Lm+l , then there is a line M in L{-\ h Lm ,
such that L C M + Lm+i . Applying the induction hypothesis and (ii), we see
that

This proves the assertion.
In particular, the case m = n shows that Vx = L, © • • • @Ln . We can now

apply [3, 1.11] to obtain a and P as required.
If Mx, M2 are distinct lines in Vx, express Vx as a direct sum of lines

Mx, M2, ... ,Mn. Then

Since V2 has dimension n, M\ ^ M2. Thus the mapping L —> L1 is
injective. This proves this proposition.

3. Rank 1 preservers

We now state the main theorem of the paper.

THEOREM 3.1. Let F: U(F) —• U(F) be a surjective, additive map, such
that, whenever A is an element of U(F) of rank 1, F(A) also has rank 1.
Suppose that n>3, and \D0\ > 2. Then, there exist an automorphism a of
D, a a-semilinear automorphism P of V, and a nonzero element c of Do,
such that

F(A) = cPAP*,
for all A in U(F).
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We remark that, in order for F(A) to be linear, the inner automorphism
of D induced by c must be equal to a~x JaJ.

The rest of the section is devoted to a proof of the theorem. We assume
its hypotheses throughout.

LEMMA 3.2. There is a mapping L —> L1 of the set of all lines of V into
itself, such that, ifueL, aeD0, then F{TU a) = 7 \ a,, where u € L'.

PROOF. Suppose that u, v belong to the same line L, and let F(TU a) =
Tu',a'> F(Tv,b) = Tv',b> • S i n c e Tu,a + Tv,b i s e i t h e r ° orof rank 1, 7 \ ' a , +
7 \ b, = F{TU a + Tv b) is either 0 or of rank 1. By Lemma 1.3, u and v
belong to the same line L'. Thus the mapping L —> L' exists as required.
This proves the lemma.

LEMMA 3.3. There exist an endomorphism a of D, a a-semilinear mono-
morphism P: V —* V, and a mapping h: V x Do —> Do, such that

*" {*u,a> = *Pu,h(u,a) '

for all u € V, a e Do. If u,v are linearly independent, then Pu, Pv are
linearly independent.

PROOF. We check that the mapping L —> ll satisfies the conditions of
Proposition 2.1. It follows from Proposition 1.2 and the surjectivity of F
that every element of U(K) is a sum of elements of the form F(TU a). If
u belongs to a line L, then the image of V under F(TU a) is in L'. Thus
every element of U( V) has image in the span of the lines l!. Since any
vector v is in the image of the element Tv { of U(F) , it follows that the
lines L' span V.

Next, suppose that L{, L2, L3 are lines such that L, C L2 + L3 , where
we assume that L2^ L3. Choose nonzero vectors u, v , w in L2, L3, L , ,
respectively, and, by Lemma 1.4, choose nonzero elements a, b, c of Do,
such that Tua + Tv b + Tw c has rank 1. If F(Tua) = 7\> f l , , F{Tvb) =
Tv',b" F(TWJ = Tw,c,, then 7\>a, + Tv,>b, + Tw,>c, = Tzd, for some
z, d. If Tu, a, + Tv, b, j= 0, it follows from Lemma 1.3 that (u , v') =
(z, w') ,sow'& (U , v'), that is, L\ CL'2 + L'3.

If Tu> a< + Tvi bi — 0, then F is not injective. Since F is assumed to
be surjective, it follows that D must be infinite. By Lemma 1.5, Do must
have more than 3 elements. As in Lemma 1.4, we can now choose nonzero
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elements e, f of Do, such that Tu e + Tvb + Twf has rank 1, where
e^a. Then F(Tu e) = Tu,y , where e ± a', since F(TU e - Tua) is of
rank 1, not 0. Now the argument above, with e, f replacing a, c, shows
that L\ CL'2 + L'3.

By Proposition 2.1, we obtain an endomorphism a of D, and a a-
semilinear monomorphism P of V into itself, such that L' — (PL), for
all lines L in V. This means that F(TU a) can be expressed in the form
asserted. The last statement follows from the injectivity of the mapping
L —> L', given by Proposition 2.1. This proves the lemma.

We may assume that h(0, a) — 0, for all a. Also, h(u, 0) = 0, for all
u.

LEMMA 3.4. There exists a nonzero element c of Do such that

h{u, a) = ca",

for all u in V, a in Do.

PROOF. If u is a nonzero vector, application of F to the equation Tu a+b

= Tu,a + Tu,b shows that
/?(«, a + b) = h(u, a) + h(u, b).

Suppose that u, v are linearly independent vectors in V. let w — u + v ,
and choose a in DQ, distinct from 0 and - 1 . By Lemma 1.4,

Tu,a + Tv,l + Tw,c ~ Tz,d'

w h e r e c = - { a ~ x + I ) " 1 , z — - a u + v, d = c + I = ( a + l ) ~ l . A p p l y i n g
F, we find

*pu,h(u,a) "*• Pv,h(v,l) + ^Pw,h(w,c) ~ *Pz,h(z,dy

Since Pu and Pv are linearly independent, and Pw = Pu + Pv , we see by
Lemma 1.4 that TPz h,z d, = Tz> d,, where

z =-h(v, l)~1h(u,a)Pu + Pv.

Since Pz = -a"Pu + Pv , and Pu, Pv are linearly independent, we have

-h{v,\)-xh{u,a) = -a".
This holds also for a = 0. Since |Z>0| > 2 , the set {a e DQ\a / - 1}
generates Do as an additive group. Thus,

h(u, a) = h(v, \)ac,
for all a in Do. This holds for every u linearly independent of v ; since
h(v, a) = h{u, \)a" , by symmetry, we see that, in fact, h(u, a) — caa , for
all u, where c — h{v, 1) e DQ . Since F does not map Tv ( on 0, c must
be nonzero. This proves the lemma.
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LEMMA 3.5. For all a in D, aJaJ = ca"c~x.

PROOF. Let a be a nonzero element of D, b — a1 a. Then Tau x - Tu b .
Apply the mapping F, using Lemmas 3.3 and 3.4. We obtain Tp, . c =
TPu d , where d = cba . Since P(au) = a°{Pu), we find that

aJ a , Jo a

a ca = a = ca a .

Cancelling a" and applying / , we obtain the result.

LEMMA 3.6. The endomorphism a is an automorphism of D, and P is a
a-semilinear automorphism of V.

PROOF. Let M, , . . . , « „ be a basis of V. Since {PV) = V, Pux,... , Pun

is also a basis of V. Let vx, ... ,vn be the dual basis, that is, {vi, Pu ) =

S(J . If u = Y^j bjUj , then (vi, Pu) = b°J , and a calculation using Lemmas
3.3 and 3.4 shows that

By Lemma 3.5, (abf'c = ciabf" , so

Since F is surjective and all elements of U( V) are sums of elements of rank
1, we find that

(u., AVj) € cDa,

for all A in U(F).
If d e D, let v = dJPul +Pu2, A = Tvl. Then

(« , , Av2) = (v , , dJPul + Pu2) = d.

Thus, cDa = D, so Da = D. Hence a is an automorphism of D, and so
P is a semilinear automorphism of V, by [3]. This proves the lemma.

PROOF OF THEOREM 3.1. Since a is an automorphism of D, the ad-
joint of P is defined, as a 7<T~'./-semilinear map P* satisfying the identity
(Px ,y) = (x, P"y)a . From Lemmas 3.3, 3.4 and 3.5, if A = Tu a , then

F(A)x = (x, Pu)caaPu = (P*x, u)JaJca"Pu - c(P*, xu)°a Pu

= cP((P*x, u)au) = cPAP*x.
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By Proposition 1.2, it follows that F(A) = cPAP*, for all A in U(F) . This
r\rr\vf*G tV»A tViAr*r#»mproves the theorem.

4. Rank-one-plus-scalar preservers

The following result is a variation of Theorem 3.1 which will be of use
later. We now assume that D is a finite-dimensional division algebra over a
field K, and that the involutory anti-automorphism / of D is linear over
K. Then K may be identified as a subset of Do n Z , and U(F) is a finite-
dimensional vector space over K.

THEOREM 4.1. Let x be an automorphism of K, and let F: U(F) —• U(F)
be a bijective, x-semilinear map, such that, whenever A is an element of U(F)
of rank 1, F{A) is the sum of a rank 1 element of L(F) and a scalar map.
Suppose that n> 5, and \DQ\> 2. Then, there exist an extension of x to an
automorphism a of D, a a-semilinear automorphism P of V, a nonzero
element c of Do, and a x-semilinear map g: U(F) —> Z, — Dx n Z , such
that

for all A in U(F).

We shall sketch the modifications to the proof of Theorem 3.1 which are
needed to prove this result. First we note that if an element A of L(F)
has an expression in the form A — B + C, where B has rank less than 3
and C is scalar, then, since n > 5, B and C are uniquely determined.
In particular, if Ae\J(V), so that B* + C* = A* = -A = -B - C, then
B* = -B, C* = -C, and so B and C both belong to U(F) . In particular,
C = dl, where d e Z , .

It now follows that Lemmas 1.3, 1.4, still hold if "rank 1" is replaced
by "rank 1 plus scalar" (and 0 by "scalar"). A modified Lemma 3.2 holds,
in which a mapping L —> L' of lines is found, such that, if u e L, then
F(TU a) — Tu, a» + scalar, where u e L'. A modified Lemma 3.3 gives a a-
semilinear monomorphism P of V into itself, and a mapping h: Kx / ) 0 ->
Do, such that F(TU a) = TPuh[ua) + scalar. Lemmas 3.4 and 3.5 hold. If
a g K, and u is any nonzero vector in F then

This leads to the equation a" = ax. Thus, a is an extension of x. Since D
is finite-dimensional over K, it follows that a is an automorphism of D,
and so P is a cr-semilinear automorphism of F . The argument of the proof
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of Theorem 3.1 now shows that, if A is an element of rank 1 in U(V), then
F(A) - cPAP* is a scalar map. By Proposition 1.2, the same holds for every
element of U(F) , and so F has the form asserted in the theorem.

5. Centralizers

If A e L(F) , then A defines an additive map 6A: U(F) ->• U(F) , given
by

dA(B) = AB + BA*.

If ^ e U ( F ) , then the kernel of 6A is the centralizer

) = {Be\J(V)\AB =

In this section we shall study this centralizer. From now on we shall assume
that, either the characteristic of D is not 2, or J is not the identity on the
centre Z .

LEMMA 5.1. (i) There exists an element e of Z such that e + eJ = 1.
(ii) D = eD0 e D, = DQ ® eJDx.
(iii) Every element A ofV(V) has the form A = B-B*, where BeL(V).

PROOF. The assumption on D implies that there exists an element a of
Z such that a + a3 ^ 0. Let e - a(a + aJ)~l, so that e + eJ = 1.

If a e D, then
a = e(a + a ) + (e a-ea ).

This shows that D — eD0 + D{. If a = eb, where b e Do, and ae D{, then
b = a + aJ = 0 . Thus D = eDQ e D{ . Since eJe e Do, Z) = Z>0 e DJD{ .
The decomposition of an element a of D according to this direct sum is
given by

a - (ea + eJaJ) + eJ(a - aJ).

If AE.V(V) , then A = eA - (eA)*. This proves the lemma.
Every rank 1 element of L( V) has the form

x-*{x,v)u,

where u, v 6 V, and the adjoint of this map is the map

x —> -{x, v)u.

Thus the mapping
u • v: x —> (x, v)u + (x, u)v
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is an element of U(F) , and all elements of U(F) are sums of such elements,
by Lemma 5.1. Note that, if a e D, then (au)»v = u»(aJv). Also, u»{au) =
0, if a e Z),. If V = V{ e • • • e Vm , then U(F) is a direct sum of all V^Vj,
i < j , where Vt • Vj is the subgroup generated by {u»v\ue Vt,v e vS .
In particular, if v{, . . . , vn is a basis of V, then every element of U(K) is
uniquely expressible in the form

Y,vi*aijvj> au€D> auGeDo-
><)

If A e L(F) , and V is written as the direct sum of subspaces Vi invariant
under A, then, since 8A(u»v) — (Au)»v + ie{Av), each Vt»Vj is invariant
under 6A , and so the kernel of 6A is the direct sum of the kernels of the
restrictions of 6A to the various V^Vj, i < j .

From now on, we shall assume that D is commutative, so that we can use
the usual elementary divisor theory for a linear transformation A. If f{t) is
an element of the polynomial ring D[t], and v € V, define f(t)v = f(A)v .
This makes V into a D[f]-module. We decompose V into a direct sum of
indecomposable submodules

Each Vt is a cyclic D[t]-modu\e. The order of a generator v of Vt is the
monic polynomial qt{t) of least degree in D[t] such that qt(t)v = 0, and is
equal to the characteristic polynomial of the restriction of A to V{.

If fit) = E « / . we write 7 V

LEMMA 5.2. If i ^ j , then the kernel of the restriction of 6A to Vi • V. is
isomorphic as a vector space over Do to the space of all polynomials h{t) in
D[t], such that degh{t) < deg<?;(0, and

h{t)qf(-t) = 0 (mod 0,(0).

PROOF. Set k = deg0,.(O , so that

qt(t) = ao + axt + a/ + ••• + ak_/~l + th.

Let v, w be generators of V(, Vj as cyclic Z)[r]-modules. Since v, Av, A2v,
..., A ~lv form a basis of Vi, every element of V( • V- has a unique ex-
pression in the form ^2r~Q Arv • wr, where the wr belong to Vj. Since Vj
has a basis consisting of the elements Asw , 0 < s < deg# (0 , we see that
every element of Vt • Vj has a unique expression in the form

k-\

r=0
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where the hr(t) are polynomials of degree less than deg<?,(*). We calculate
that

fc-i
dA(B) = ^2(Ar+lv • hr(A)w + Arv • hr(A)Aw)

r=0
k-l

= J2A'V* iK-M) + hM)A - ar
hk-M))w>

r=0

where h_x{t) = 0. It follows that 6A{B) = 0, if and only if

K_x{t) + hr(t)t- aJ
fhk_x(t) = 0 (mod q.(t)),

for r = 0 , . . . , k - 1. If these congruences hold, then

k-\

hk_x(t)qf (-t) = - ^ ( - ^ ( V i W + hM)1 - arhk-i(1)) - ° (m o d QjW)-
r=0

Conversely, if hlc_1(t) is a polynomial of degree less than degqj(t), satisfying

^_,(/)#,• (-t) = 0 (mod qj(t)),

then the congruences determine the hr(t) completely, since dtghr{t) <
degqj(t). The correspondence B —> hk_{(t) gives the asserted isomorphism.
This proves the lemma.

LEMMA 5.3. The kernel of the restriction of 6A to F. • Vt is isomorphic, as
a vector space over DQ, to the space of all polynomials h(t) in D[t\ of degree
less than k = dt%qt(t), for which the coefficient of tk~x lies in Do, such that

PROOF. Set k = degqt{t), so that

qt{t) = ao + a]t + a/ + ••• + ak_/~x + tk,

and let v be a generator of Vt as a cyclic D[t]-mod\ile. Every element of
V{ • Vi is uniquely expressible as a sum of elements of the form Arv • bAsv,
where 0 < r < s < f c - l , beD, and beeDo if r = s. Thus,

where W is the set of all sums of elements of the form Arv • bAsv , where
0<r<s<k—I, and X is the set of all sums of all elements of the form
Arv • bAk~xv , where 0 < r < k - 1. Let Y be the image of W under 0..
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Since
n I A' 1 AS \ i^+l i AS .r , .S+l T , i ,

0A(A v • bA v) = A v • bA v + A v • bA , ifr+l<s<k—1,

dA(Arv • bAr+iv) = Ar+iv • e(b + bJ)Ar+iv + Arv • bAr+1, ifr<k-2,

9A(Arv • ebA'v) = Arv • bAr+1, if r < k - 1 , b e Do,

it follows from Lemma 5.1 (ii) that

where Z consists of the sums of elements of the form Arv • ebArv , where
0 < r < k - 1, b e Do, or of the form Arv »eJbAr+lv , where 0 < r < k - 1,
b e Dx. Computing dimensions as vector spaces over DQ , we have

dimX = dimZ = k, i f / = l ,

dim X = dim Z = 2k - 1, if J ^ 1,

and so dim Y > dim W. Since Y is an image of W, dim Y = dim W, and
so

V. • V. = Y © Z.

Let <j>: X —> Z be the map given by BA followed by projection into Z . Then
the image of 6A is the direct sum of Y with the image of <j>, so that the
cokernels of 0A and <p are isomorphic. It follows that the kernel of 6A is
isomorphic with the kernel of <t>.

We now associate polynomials with the elements of X and Z , in the
following way. If B e X,

k-2

r=Q

we define a polynomial
A:— 1

If CeZ,
k-l

C = / A V • 60 A
r=0

we define a polynomial

8cW ~

We now assert that

for all B in X.

'v +

k-l

r=0

)(t)

k-2

^2ArveJ

r=0

r+U 2r
( - 1

-hB{t)qi{t)

>reD0, creDx,

r=0
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To show this, it is enough to consider the case where B is of the form
Arv • bAk~lv. If r<k-2, then

0A(ArvbAk~xv)

= Ar+lvbAk~lv + Arvb(-aov - axAv ak_lA
k~lv).

Also, if beD0,

dA(Ak~lv • ebAk~xv) = Ak~lv • b(-aov - a{Av ak_lA
k~lv).

Now it is straightforward, though tedious, to compute g ^ C O in all cases,
and to verify that the asserted relation holds. Since g^BAt) = 0 if and only
if <t>{B) = 0, we see that the kernel of (f> consists of the vectors B in X
for which hB(t) satisfies the condition given in the statement of the lemma.
This proves the lemma.

By the elementary divisor theory, each polynomial q((t) is a power of an
irreducible polynomial. It follows that either qt(t) and qU-t) are relatively
prime or else one divides the other.

LEMMA 5.4. (i) If q((t) and qJj{-t) are relatively prime, then the kernel
of the restriction of 6A to Vi • V. is 0.

(ii) If i £ j , and qt{t) and qU-t) are not relatively prime, then the
kernel of the restriction of 6A to Vl*Vi is isomorphic which the space of all
polynomials h(t) in D[t] for which

degh(t) < min{deg<7,.(0,

(iii) If qt(t) and qf(-t) are not relatively prime, and k = de$qt(t), then
the kernel of the restriction of 8A to V( • V( is isomorphic with the space of
all polynomials h(t) inD[t] of the form

r=0

where bk_x, bk_3, . . . e Z>0, bk_2, bk_4, . . . € D , .

P R O O F . S u p p o s e t ha t qt(t) a n d qJ{-t) a re relatively p r i m e . If / ^ 7 , t h e
c o n d i t i o n

h{t)qf(-t) = 0 (mod 0,(0)

of Lemma 5.2 implies that h(t) is divisible by #-(0- Since dtgh(t) <
degtf^O , h(t) = 0. A similar argument applies in the case i = j , by use of
Lemma 5.3.
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Suppose q^t) and qj(-t) are not relatively prime, where i ^ j . By
symmetry, we may suppose that degfy(f) < degq^t). Then q^t) divides

qf (-t), so that the congruence in Lemma 5.2 is automatically satisfied, and
the condition on h(t) is just that degh(t) < degqAt).

Finally, suppose that qt{t) and qj{—t) are not relatively prime. Then

qf(-t) - (-l)kqt(t), where k = degqt(t). The condition of Lemma 5.3
then becomes

which is equivalent to h(t) having the form asserted. This proves the lemma.

LEMMA 5.5. (i) If A is an element ofL(V) with

or

dim ker 6,>n-2n, J / 1,

d i m k e r ^ > \{n -n), J - l ,

then A is a scalar map, or the sum of a rank 1 transformation with a scalar
map.

(ii) If A is a rank 1 element of U(K), then CV,VAA) — ker 6A has dimen-

sion

=n2-2n + 2,
2 - w ) , ifJ=\.

PROOF. Suppose first that J ^ \. From Lemma 5.4, dim ker 6A is equal
to the sum of all min{deg<?((0, deg#-(f)} , where /, j range over all pairs

such that qt(t), qU-t) are not relatively prime. If nt is the number of

qJj{-i) which are not relatively prime to qt(t), it follows that

dim ker 6A <

If N is the largest of the nf, then since Z),deg^(r) = n, we see that
d imker^ < Nn. If d imke r^ > n2 -2n, then N = n or N = n - l . If
N — n, then there are n elementary divisors, all equal to t - a, for some
a. In this case, A is a scalar map. If N = n - 1, then either there are n-l
elementary divisors, all equal to some t — a, and one elementary divisor
equal to some t - b, or else there are n — 2 elementary divisors, all equal to
some t - a, and one elementary divisor equal to (t - a)2 . In this case, A is
the sum of a rank 1 transformation and a scalar map.
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If J = 1, a similar argument shows that dimkerfl^ < j(N + l)n, with
equality only if A = 0. If d i m k e r ^ > \{n2-n), then it follows that N = n
or N = n - 1, as before.

If M is a nonzero isotropic vector and a is a nonzero element of Do,
then the elementary divisors of Tu a are t2 and / (« - 2 times). If u
is anisotropic, the elementary divisors are t - b, where b e D{, and t
(n - 1 times). Calculation using Lemma 5.4 gives the value of d imker^ as
asserted. This proves the lemma.

6. Preservers of commuting pairs

We assume that D is a finite-dimensional extension field over a field K,
and that the involutory automorphism J fixes the elements of K. We can
now characterize maps preserving zero products in the Lie algebra U(F) (cf.
[9], [10] for the case of the Lie algebra L(F)).

THEOREM 6.1. Let x bean automorphism of K, and let F: U(F) —• U(K)
be a bijective, x-semilinear map, such that, whenever A and B are of elements
of \J(V) which commute, F(A) and F(B) commute. Suppose that n>5
and \D0\ > 2. Assume that the characteristic of K is not 2 in the case that
J = 1. Then, there exist an extension of x to an automorphism a of D, a
a-semilinear automorphism P of V, a nonzero element of c of Do, and a
x-semilinear map g: U(F) —» Dx, such that a commutes with J, P*P is a
scalar map, and

F(A) = cPAP* + g(A)I,

for all A in U(F) .

PROOF. The hypothesis implies that

F(CV{V)(A))CCV(V)(F(A)),

and so
dim^ CV{V){A) < dinij. CV{V)(F(A)),

From Lemma 5.5, we see first that F maps the space of scalar maps in U(F)
onto itself, and then that if A has rank 1, then F(A) must be a sum of a
rank 1 element and a scalar map. Theorem 4.1 now shows that F has the
form asserted.

The fact that a commutes with / follows from Lemma 3.5. If A com-
mutes with B, then the fact that F(A) commutes with F(B) shows that
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AP*PB = BP'PA . Write Q = P*P. If u, v are orthogonal, then A = TU>1

commutes with B — Tv , . We compute that

AQBx = (x, v)(Qv , u)u, BQAx = {x, u){Qu, v)v,

for all x in V. If u, v are linearly independent, it follows that (Qv, u) —
(Qu, v) = 0 . Since the vectors which are orthogonal to u and linearly
independent of u generate the hyperplane orthogonal to u, it follows that
Q maps this hyperplane on itself. This is true for all hyperplanes, so that Q
must be a scalar map. This proves the theorem.

Theorems analogous to our Theorems 4.1 and 6.1 were proved for the
space of self-adjoint matrices by Waterhouse [8].
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