ON EARLE'S mod n RELATIVE TEICHMÜLLER SPACES

BY
ROBERT ZARROW

§1. In this paper we answer an open question of C. J. Earle ([2] §3.3 remarks (a) and (b)) in several cases. We first give some definitions and state some results which are given in greater detail in [2].

We let X be a smooth surface of genus $g \geq 2$ and let $M(X)$ be the space of smooth complex structures with the C^{∞} topology. If $\mu \in M(X)$ let X_{μ} denote the Riemann surface determined by μ. The group ($\mathrm{Diff}^{+}(X)$) $\operatorname{Diff}(X)$ is the group of (orientation preserving) diffeomorphisms of X. Also $\operatorname{Diff}_{n}^{+}(X)=\left\{f \in \operatorname{Diff}^{+}(X)\right.$: f induces the identity on $\left.H_{1}(X, \mathbb{Z} / n \mathbb{Z})\right\}$.

The group $\operatorname{Diff}(X)$ acts on $M(X)$ by pullback: If $\mu \in M(X), f \in \operatorname{Diff}(X)$ then $\mu \cdot f \in M(X)$ has the property that $f: X_{\mu \cdot f} \rightarrow X_{\mu}$ is conformal. With this action $\operatorname{Diff}_{n}^{+}(X)$ acts freely on $M(X)$ ([3], [4] or [6]). If H is a finite subgroup of $\operatorname{Diff}(X)$ then let $M(X)^{H}=\{\mu \in M(X): \mu \cdot f=\mu\}$. We let $N_{n}(H)$ be the normalizer of H in $\operatorname{Diff}_{n}^{+}(X)$ and let $N^{+}(H)$ be the normalizer of H in $\operatorname{Diff}^{+}(X)$. Then we define $T_{n}(X)=M(X) /$ Diff $_{n}^{+}(X), T_{n}(X, H)=M(X)^{H} / N_{n}(H), R(X)=$ $M(X) / \operatorname{Diff}^{+}(X)$, and $R(X, H)=M(X)^{H} / N^{+}(H)$. These spaces we call the mod n Teichmüller space, the $\bmod n$ relative Teichmüller space, the Riemann space and the relative Riemann space. The space $T_{n}(X)$ and $T_{n}(X, H)$ are finite branched coverings of $R(X)$ and $R(X, H)$ respectively. We define $\theta_{n}: \operatorname{Diff}(X) \rightarrow \operatorname{Diff}(X) / \operatorname{Diff}_{n}^{+}(X)=\Gamma_{n}(X)$. The group $\theta_{n}(H)$ acts on $T_{n}(X)$ and the set of fixed points is denoted by $T_{n}(X)^{\theta_{n}(H)}$. We let $\Gamma_{n}(H)$ be the normalizer of $\theta_{n}(H)$ in $\theta_{n}\left(\operatorname{Diff}^{+}(X)\right)=\Gamma_{n}^{+}(X)$. Then Earle [2] process the following.

Theorem A. If $n>2$, then
(a) $\Gamma_{n}(H)$ is a group of automorphisms of $T_{n}(X)^{\theta_{n}(H)}$
(b) The quotient space $T_{n}(X)^{\theta_{n}(H)} / \Gamma_{n}(H)$ is the disjoint union of Riemann spaces $R\left(X, H^{\prime}\right)$. The union is over the $\operatorname{Diff}^{+}(X)$ conjugacy classes of finite groups H^{\prime} such that $\theta_{n}\left(H^{\prime}\right)=\theta_{n}(H)$.

In the present paper we determine the number of components in (b) in several cases when H has order two. We thus denote by $\Psi(n, H)$ the number of components of $T_{n}(H)^{\theta_{n}(H)} / \Gamma_{n}(H)$. Our results are the following.

Theorem 1. If H is of order two and generated by an orientation reversing map then
(a) $\Psi(n, H)=2$, if $H=\left\langle\sigma_{1}\right\rangle$ or $H=\left\langle\sigma_{2}\right\rangle$ and n is even, where $X /\left\langle\sigma_{1}\right\rangle$ is a

Received by the editors September 21, 1977 and in revised form, January 11, 1978.
sphere with $g+1$ cross caps and no boundary components and $X /\left\langle\sigma_{2}\right\rangle$ is a surface with $g-2[g / 2]+1$ boundary components and $[g / 2]$ handles.
(b) $\Psi(n, H)=1$, if $H \neq\left\langle\sigma_{1}\right\rangle$ or $H \neq\left\langle\sigma_{2}\right\rangle$ and $n>2$ is even.
(c) $\Psi(n, H)=2[g / 2]+[(g+1) / 2]+2$, if n is odd.

Theorem 2. If $H=\langle\sigma\rangle$ has order two, σ is orientation preserving, and $n>2$ is even, then
(a) $\Psi(n, H)=2$, if σ has zero or one fixed point.
(b) $\Psi(n, H)=1$, if σ has more than one fixed point.

Remark. Theorem A and Theorem $1(\mathrm{~b})$ together imply that $R(X, H)$ is a real algebraic variety if H satisfies the hypotheses of Theorem 1(b).
§2. In this section we prove Theorems 1 and 2 . We first need a lemma.
Lemma. There are $2[g / 2]+[(g+1) / 2]+2 \operatorname{Diff}^{+}(X)$ conjugacy classes of cyclic subgroups H of order two if the generator of X is orientation reversing.

Proof. The conjugacy class of H is determined by the topological type of X / H ([1], pp. 57-58). It now follows from Theorem 3.6 of [7] that the number of conjugacy classes of H is $x+1$, where x is the number of triples (r, s, t) with $r=0,1,2, r \leq s, s+2 t=g$. The lemma now follows by a simple counting argument.

Proof of Theorem 1. We first consider (a) and (b). We let $H_{1}=\left\langle\sigma_{1}\right\rangle$ and $H_{2}=\left\langle\sigma_{2}\right\rangle$. Then it follows by Theorem 3.6 of [7] that a conjugate of σ_{1} induces the same action on $H_{1}(X, \mathbb{Z})$ as σ_{2}. Thus by Theorem A $\Psi\left(n, H_{1}\right) \geq 2$ and $\Psi\left(n, H_{2}\right) \geq 2$, for all $n \geq 3$.

Now suppose σ and τ are two orientation reversing maps which induce M_{1} and M_{2} on $H_{1}(X, \mathbb{Z})$. respectively, and suppose $\{\sigma, \tau\} \neq\left\{\sigma_{1}, \sigma_{2}\right\}$. We investigate whether there is a symplectic matrix A such that $A M_{1} A^{-1}=M_{2} \bmod n$. By pp. 221-222 [7] we may assume that

where I_{k} denotes the $k \times k$ identity and

$$
F_{k}=\left[\begin{array}{cccccccc}
0 & 1 & & & & & & \\
1 & 0 & & & & & & \\
& & 0 & 1 & & & & \\
& & 1 & 0 & & & & \\
& & & & \cdot & & & \\
& & & & & \cdot & & \\
& & & & & & \cdot & \\
& & & & & & & 0 \\
& & & & & & 1 & 1 \\
& & & & & & 1
\end{array}\right], \quad 2 k \times 2 k
$$

We first consider the case in which n is even. If $A M_{1} A^{-1}=M_{2} \bmod n$ then we must also have $A M_{1} A^{-1}=M_{2} \bmod 2$. However by results in [7] pp. 221-222 this is impossible if $M_{1} \neq M_{2}$. This proves (a) and (b).

We now consider the case in which n is odd. We claim that we may always find a symplectric matrix A such that $A M_{1}=M_{2} A \bmod n$. We let

$$
A=\left[\begin{array}{cc}
I_{\mathrm{g}} & B \\
0 & I_{\mathrm{g}}
\end{array}\right]
$$

so that equation $A M_{1}=M_{2} A$ reduces to

$$
2 B=\left[\begin{array}{lll}
I_{r} & & \\
& 0 & \\
& & F_{t}
\end{array}\right]-\left[\begin{array}{lll}
I_{u} & & \\
& 0 & \\
& & F_{v}
\end{array}\right] \bmod n .
$$

It is easy to check that this equation will always have a solution in some symmetric matrix B. This implies (c).

Proof of Theorem 2. We first define some matrices. Let

$$
M(r, s, t)=\left[\begin{array}{lll|lll}
I_{r} & & & & & \\
& -I_{s} & & & 0 & \\
& & F_{t} & & & \\
\hline 0 & & & & \\
& & & I_{s} & \\
& & & & & F_{t}
\end{array}\right],
$$

where F_{t} is defined in the proof of Theorem 1. Let

$$
L(r, s, t)=\left[\begin{array}{lll|lll}
I_{r} & & & 0 & & 0 \\
& -I_{s} & & & & \\
& & H_{t} & 0 & & G_{t} \\
\hline & 0 & & I_{r} & & \\
& & & & -I_{s} & \\
& & & & H_{t}
\end{array}\right]
$$

where

$$
H_{t}=\left[\begin{array}{llllll}
-1 & & & & & \\
& 1 & & & & \\
& & -1 & & & \\
& & & \cdot & & \\
& & & & & \\
& & & & & \\
& & & & & 1
\end{array}\right] \quad 2 t \times 2 t
$$

and

$$
G_{t}=\left[\begin{array}{rrrrrrr}
0 & 1 & & & & \\
-1 & 0 & & & & & \\
& & \cdot & & & & \\
& & & \cdot & & \\
& & & & 0 & 1 \\
& & & & -1 & 0
\end{array}\right] \quad 2 t \times 2 t
$$

Let

$$
\begin{aligned}
R & =\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right] \in S p(2, \mathbb{Z}) \\
R_{t} & =\left[\begin{array}{lllll}
R & & & & \\
& R & & & \\
& & \cdot & & \\
& & & & \\
& & & & \\
& & & & R
\end{array}\right] \quad 4 t \times 4 t
\end{aligned}
$$

and

$$
M=\left[\begin{array}{cc|cc}
I_{r+s} & & & \\
& R_{t} & & 0 \\
\hline & 0 & I_{r+s} & \\
\hline & & & R_{t}
\end{array}\right]
$$

We remark that there is a canonical homology basis of X such that with respect to this basis σ induces the matrix $M(r, s, t)$, where $r=0$ and $s>1$ or $r=1$ and $s=0$. By multiplying we see that $M M(r, s, t) M^{-1}=L(r, s, t)$. This implies that with respect to a suitable canonical homology basis σ induces $L(r, s, t)$.

To prove Theorem 2 we first show that if $t \neq w$ then there is no matrix K in $S p(g, \mathbb{Z})$ such that $K L(r, s, t)=L(u, v, w) K \bmod 2$. We assume that there is such a matrix K and obtain a contradiction. Thus we must have

$$
K\left[\begin{array}{c|cc}
& 0 & \\
\hline I_{\mathrm{g}} & & F_{t} \\
\hline 0 & I_{\mathrm{g}}
\end{array}\right]=\left[\begin{array}{c|l}
I_{g} & 0 \\
\hline 0 & F_{w} \\
\hline 0 & I_{g}
\end{array}\right] K \bmod 2 .
$$

We write

$$
K=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

where A, B, C and D are $g \times g$. Upon multiplying and equating terms mod 2 , we see that

$$
A\left[\begin{array}{cc}
0 & 0 \tag{1}\\
0 & F_{t}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & F_{w}
\end{array}\right] D \bmod 2
$$

$$
\left[\begin{array}{cc}
0 & 0 \tag{2}\\
0 & F_{w}
\end{array}\right] C=0 \bmod 2
$$

and

$$
C\left[\begin{array}{cc}
0 & 0 \tag{3}\\
0 & F_{t}
\end{array}\right]=0 \bmod 2
$$

Equations (2) and (3) imply that

$$
C=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right] \bmod 2
$$

where C_{1} is $n-2 w \times n-2 t$. Equation (1) implies that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
A_{3} & A_{4}
\end{array}\right] \bmod 2
$$

and

$$
D=\left[\begin{array}{cc}
D_{1} & D_{2} \\
0 & D_{4}
\end{array}\right] \bmod 2
$$

where A_{4} is $2 w \times 2 t, D_{4}$ is $2 t \times 2 w$, etc. Denote the transpose of a matrix L by ${ }^{t} L$. Then the symplectic condition that $A^{t} D-B^{t} C=I_{2 g}$ implies that $A_{4}{ }^{t} D_{4}=$ $I_{2 w}$. If $w>t$ then $A_{4}{ }^{t} D_{4}$ can have rank at most $2 t$, a contradiction. Thus $w \leq t$. Similarly $t \leq w$ so that $t=w$.

To finish the proof we remark that if $K L(r, s, t)=L(u, v, w) K \bmod n$, where n is even, then $K L(r, s, t)=L(u, v, w) K \bmod 2$. Also the condition $t=w$ implies $r+s=u+v$. If σ is fixed point free then $r=1$ and $s=0$. This implies that $u+v=1$ so that either $u=0, v=1$ or $u=1, v=0$. Thus $\Psi(n, H)=2$. If σ has
one fixed point then $r=0$ and $s=1$. Again $u+v=1$ and as before $\Psi(n, H)=2$. If σ has more than one fixed point, then $r=0$ and $s>1$. If $u=1$ then $v=0$ and it is impossible that $u+v=r+s$. If $u=0$ then $v>1$ and $u+v=r+S$ implies $v=s$ thus $\Psi(n, H)=1$. This completes the proof.

Remark 1. I do not know what $\Psi(n, H)$ is if n is odd and H is generated by an orientation preserving map of order two.

Remark 2. If $H=\langle\sigma\rangle$ and σ has fixed points and prime order $p>2$, then by looking at the formula in [5] and the matrices in [4], it is easy to see that there are non-conjugate groups H^{\prime} which induces the same or conjugate matrices on $H_{1}(X, \mathbb{Z})$. Thus $\Psi(n, H)>1$.

References

1. N. L. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Lecture Notes in Math., vol. 219, Springer-Verlag, New York, 1971.
2. C. J. Earle, On the moduli of closed Riemann surfaces with symmetries, Advances in the Theory of Riemann surfaces, Ann. of Math, studies no. 66, Princeton University Press 1971, pp. 119-130.
3. C. J. Earle, A fact about matrices, preprint.
4. J. Gilman, A matrix representation for automorphisms of compact Riemann surfaces, Linear Algebra and its applications, 17 (1977), pp. 139-147.
5. J. Gilman, On conjugacy classes in the Teichmüller modular group, Mich. Math. J., 23 (1976), pp. 53-63.
6. Kato, Takao, Analytic self mappings inducing the identity on $H_{1}(W, \mathbb{Z} / m \mathbb{Z})$, to appear.
7. R. Zarrow, A canonical form for symmetric and skew-symmetric extended symplectic modular matrices with applications to Riemann surface theory, Trans. Amer. Math. Soc., 204 (1975), pp. 207-227.

Department of Mathematical Sciences

Northern Illinois University
DeKalb, Illinois 60115

