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SPLITTING PATTERNS AND TRACE FORMS

JURGEN HURRELBRINK AND ULF REHMANN

ABsTRACT.  The splitting pattern of a quadratic form q over afield k consists of all
distinct Witt indices that occur for q over extension fields of k. In small dimensions,
the complete list of splitting patterns of quadratic forms is known. We show that all
splitting patterns of quadratic forms of dimension at most nine can be realized by trace
forms.

0. Introduction. The history of trace forms dates back to the middle of the nine-
teenth century. At that time, Sylvester, Jacobi, and Hermite determined the number of
real roots of polynomialsin one variable over R in terms of—as we would say today—
the signature of trace forms. Thisis nicely explained in the excellent article on “Galois
cohomology and the trace form” by E. Bayer-Fluckiger [1], p. 36.

Splitting patterns (cf. [8]) are invariants of the similarity classes of quadratic forms.
Hence splitting patterns of trace forms are invariants of finite separable field extensions
and therefore of particular interest: hereis anillustration of information they provide for
example about the level of the normal closure of field extensions.

Let k be afield of characteristic # 2. Let the quadratic form g over k bethetrace form
of aseparablefield extension F of k of degreen. Let N be any field containing a normal
closure of F over k. We have:

(1) If theWitt index i of g over k is positive, then N hasfinitelevel S(N) <n—i.

(2) If gqisanisotropic and not stably excellent, then N hasfinite level S(N) < n— 1.

Thefirst statement follows from Witt cancelation and the result that, over N, the trace
form qisisometric to asum of n squares, [2]. The second statement is a corollary since,
over N, trace forms that are not stably excellent will be isotropic, [9].

1. Constraints on splitting patterns. Let g be an anisotropic quadratic form of
dimensionn > 2 over afield k of characteristic # 2. Let

(io(@) = 0,i1(a),i2(aD, ... in@ (@) = [n/2])

denote the splitting pattern of q; that is, io(q) < ix(q) < - -+ < ing(q) areall distinct Witt
indices that occur for q over arbitrary field extensions of k. We refer to M. Knebusch’s
originating work on generic splitting of quadraticforms, [12], [13]. Theindex ij() occurs
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over thefield Kj, 0 <j < h(q), in ageneric splitting tower Ko = Kk, Ky = Kk(0), ..., Kng)
of q over k, where k(q) isthe function field of .

In general, it is still awide open problem to determine all tuples of strictly increasing
integersthat are splitting patterns of quadratic forms. However, for an excellent quadratic
form q over k, the splitting pattern is known in arbitrary dimension, [12, Section 7], [8,
Corollary 2.8]. It depends only on the dimension n of g; we denote it by

(io(n) =0,i1(n),...,inp(N) = [n/2])
and have for the smallest positive Witt index i1 (n):

ExaMpPLE1.1. Letqbean anisotropic excellent quadratic form of dimension n over
k. Write n = 2" + d, where 2" is the largest power of 2 less than n. Then the Witt index
i1(n) of q over its function field k(q) is given by

i1(n) = d.
For arbitrary anisotropic forms we recall from [6], [9, Corollary 1.13]:

THEOREM 1.2. Let g be an anisotropic quadratic form of dimension n over k. Then:

i1(q) <iz(n).

In particular, we have by Example 1.1 and Theorem 1.2 for any field k:

COROLLARY 1.3. Let g be an anisotropic quadratic form of dimensionn = 2" + 1
over k. Then:

i1(q) = 1.

It is natural to ask whether the inequality in Theorem 1.2 generalizes for higher Witt
indices. Consider anisotropic quadratic forms q of dimension n with h(n) > 2. In other
words, n # 27, 2" — 1, and thisimplies h(g) > 2 by the characterization of all forms q of
height h(g) = 1in[12, Theorem 5.8]. So, the indicesi,(n) and i,(q) are defined, and we
obtain:

ProOPOSITION 1.4.  Let g be an anisotropic quadratic form over k of dimension nwith
h(n) > 2. 1f i1(q) = i1(n), then
i2(q) < iz2(n).

PROCF. Letq; denotethe anisotropic kernel of g over itsfunction field k(g). We have

i2(9) = i1(g) +i1(q).
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On the other hand,
io(n) = ia(n) +iz(n — 2is(n))
sincen—2i1(n) isthe dimension of the anisotropic kernel of an n-dimensional anisotropic
excellent quadratic form over its function field.
By assumption, i1(q) = i1(n). Thus our claim ix(q) < iz(n) amounts to showing
i1(cu) <iz(n— 2i1(n)). Again by the assumption, the last inequality is equivalent to

iz(0n) < ix(n—2i1());

that is,
i1(q1) <is(dimay),
which isthe result of Theorem 1.2 applied to the anisotropic from g, over k(q). ]
By [9, Corollary 1.13], our assumptionis(q) = i1(n) in Proposition 1.4 implies that q
becomes an anisotropic Pfister neighbor over somefield extension of k. The proof of the
proposition carries over to the analogousresult for higher Witt indices:

COROLLARY 1.5. Let g bean anisotropic quadratic formover k of dimension n with
min{h(n), h(q)} > j + 1. Ifi;(q) = ij(n), then

ij+1(Q) < ij+1(n)-

Proor. Replace q; in the proof of Proposition 1.4 by g;, the anisotropic kernel of g
over the field Kj in ageneric splitting tower of g over k. We then have

ij+1(q) = ij(a) +ia(cp),
ij+1(n) = ij(n) + il(n — 2ij(n))
and application of Theorem 1.2 to q; yields the claim. ]
Inspection of the list of splitting patternsin low dimensions, see Summary 2.3 below
with the patterns of excellent formsin each dimension given first, showsthat the assump-

tion ij(g) = ij(n) in Corollary 1.5 is not necessary for anisotropic forms g of dimension
n < 10.

QUESTION 1.6. Can onedrop in Corollary 1.5 the assumption that i;(q) = ij(n)? No
counterexample exists for forms g of dimension n < 18.

2. Splitting patternsof traceforms. Let E be acommutative étale algebra of di-
mension n over afield k of characteristic # 2; so E is a product of separable extension
fields of k. The trace form (E) of E, defined by

(E)(¥) = Trgpdx®)  forx € E,

isaregular n-dimensional quadratic form over k; we just refer to [1], [2], [15].
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So far, a basic question, which quadratic forms are (isometric to) trace forms, has
been answered over arbitrary fields only in low dimensions. For aregular quadratic form
g=(as,...,an) overklet wy(g), m=0,1,2,..., denotethe Siefel-Whitney invariants
of q, [3], given in terms of cup products as

W@ = Y (@)U U(@,) € H'K) = H(Gal(ke/K), Z/2Z),
11<I2<+<Imy
where ks denotes a separable closure of k. The Galois cohomology groups HO(k), H(K),
and H?(K) areisomorphic to Z /27, k* /k*2, and Bra(K); thus wo(d), wi(q), and wa(q) are
the invariants given by the dimension mod 2, determinant d = d(q), and Hasse-Witt
invariant of q, respectively. We summarize the characterization due to M. Epkenhans,
M. Kriiskemper, and J.-P. Serre, compare [1, Theorem 11]:

THEOREM 2.1. Aregular quadratic form g over k of dimensionn < 7 is (isometric

to) a trace form (of some étale k-algebra E) if and only if, over k,
a. n=1andq% (1),

n = 2 and g contains (2),
n = 3and g contains (1, 2),
n = 4, qcontains (1), and ws(q) = O,
n =5, g contains (1, 1), and ws(qg) = O,
n = 6, q contains (1, 2), and, over k(+/2d), g contains (1,1, 2),
g. n= 7, qcontains (1,1,2), and, over k(/2d), q contains (1,1, 1,2).

-~ D Q0 T

For n < 5 the results can be found in [5] and [16]; the n = 6 characterization from
[17] was afterwards independently discovered and proved in [4]; the result forn = 7
then follows from a construction in [14].

By considering orthogonal sums of trace forms, we immediately obtain from Theo-
rem 2.1 for arbitrary dimensions:

LEMMA 2.2. Letqbearegular quadraticformover k of dimensionn. Letm = [n/2]

and put
mx (1) if n=0mod4
) (m+1) x (1) if n=1mod4
q°‘1(m—1)><<1>¢<2> if n=2mod 4
mx (1) L (2) if n=3mod4.

If g contains qp, then g isa trace form.

ProOOF. By Theorem 2.1.d, every regular quadratic form g of dimension four that
contains (1,1) is a trace form. Thus every regular q of dimension n = Omod4 that
containsm x (1) is atrace form. The proof is analogousfor n = 1,2, or 3mod 4 based
on Theorem 2.1 a—d. ]

Thefollowing is acompletelist of splitting patters in dimension at most ten.

SUMMARY 2.3. Thesplitting patterns of anisotropic quadratic forms q of dimension
n < 10 are given by:
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PrOOF. By [11] or by [7], the tuples (0, 2, 3,4) and (0, 1, 5) fail to be splitting pat-
terns in dimension eight and ten, respectively (see also [10]). Hence, for n < 9, thelist
follows from [9, Example 1.16]. For n = 10 the splitting pattern of excellent formsis
(0,2,4,5), thusi;(10) = 2 and we conclude from Theorem 1.2 that i;(q) is 1 or 2 for ev-
ery anisotropic quadratic form of dimension ten. There are at most four splitting patterns
in dimension ten with i;(q) = 1 since there are exactly four splitting patterns in dimen-
sion eight, the ones different from (0, 4), that would not give rise to the excluded tuple
(0,1,5). There are at most three splitting patterns in dimension ten with i;(q) = 2 since
there are exactly three splitting patternsin dimension six. Thus, every splitting patternin
dimension ten is one of the seven tuples listed above. Moreover, al of the seven tuples
occur as splitting patterns of quadratic forms in dimension ten; see Example 3.1 below. m

We have set up Theorem 2.1, Lemma 2.2 and Summary 2.3 in order to investigate
which splitting patterns of quadratic forms are splitting patterns of trace forms. It might
be abit of asurpriseto learn:

THEOREM 2.4. All splitting patterns of (anisotropic) quadratic forms of dimension
n < 9 can berealized by trace forms.

PrOOF. In any dimension n, the sum n x (1) of n squares is a trace form; it is
anisotropic for example over Q. Hence we can realize in each dimension the splitting
pattern of excellent forms, alwayslisted first in Summary 2.3, by atraceform over Q. In
particular, this settles the dimensionsn = 2, 3, and 5.

For n = 4 the splitting pattern (0, 1, 2) can be realized by the anisotropic quadratic
form (1,1, 1, X) over Q(X), say. By Lemma 2.2, this form isatrace form.

For n = 6 consider the quadraticforms (1, 1,2, X, Y, —2XY) and (1,1, 1,1, X,Y) over
k = Q(X,Y). Both of them are trace forms, by Lemma 2.2. The first one is isometric
to (1,1,2,X) L Y(1,—2X), henceit is anisotropic over Q(X,Y) since (1, 1,2, X) and
(1, —2X) are anisotropic over Q(X). Clearly, the second one is anisotropic over Q(X,Y),
too.

The form (1,1,2,X,Y,—2XY) is of (signed) discriminant +1; that is, it is an Albert
form, and Witt index 2 does not occur in its splitting pattern. So, by Summary 2.3, its
splitting patternis (0, 1, 3).
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Theform(1,1,1,1, X, Y) splitsexactly one hyperbolic plane over k(v/—XY) and since
itisof discriminant # 1, Witt index 2 will occur, too. So its splitting patternis (0, 1, 2, 3).

For n = 7 the quadratic form (1,1,1,1,1,X,Y) isatrace form, by Lemma 2.2. It is
anisotropic over k = Q(X,Y) and splits exactly one hyperbolic plane over k(v/—XY).
Thus, by Summary 2.3, its splitting pattern is (0, 1, 2, 3).

For n = 8 we have to realize the four splitting patterns in Summary 2.3 that are
not patterns of excellent forms. Consider the quadratic formsq; = 6 x (1) L (X, X),
02 = 5x(1) L (X,Y,XY),q3 = 7x(1) L (X), a4 = 6x(1) L (X,Y)overk = Q(X,V).
All of them are anisotropic over Q(X, Y); we check it for gz : since (1,1,1,1,1, X) and
(1, X) are anisotropic over Q(X), theformq, = (1,1,1,1,1, X) L Y(1, X) isanisotropic
over Q(X,Y). All of them are trace forms by Lemma 2.2.

Theformq; = 6x(1) L (X, X)isisometricto (1,1, 1, X)®(1, 1),thusg; = q'®(1,1)
with dimqg = 4. Moreover if, for some extension field K of k = Q(X, Y), the form gx
is isotropic we may choose g to be isotropic. Thus g has splitting pattern (0, 2,4),
compare [9, Remark 3.3].

Theform gz = 5 x (1) L (X,Y,XY) splits exactly one hyperbolic plane over K =
Q(v/—7). Namely, K haslevel 4and, over K, wehave5x (1) = (1,—1) L (-1, -1, 1),
0k = H L (—1,-1,—1X,Y,XY) with a 6-dimensional anisotropic kernel
(—1,—-1,—1,X,Y,XY). The form g, splits exactly two hyperbolic planes over K =
k(v/—XY). Namely, over this extension field K of k, g, is isometric to 4 x (1) L
(1,X,—X,—1) 2 H L H L 4 x (1) with a4-dimensional anisotropic kernel 4 x (1).
Since g hasdiscriminant 1, over no extension field it will have Witt index 3, and hence
g2 has splitting pattern (0, 1, 2, 4).

Theform gz = 7 x (1) L (X) splits no or exactly one hyperbolic plane over every
extension field K of k of level > 8, since 7 x (1) stays anisotropic over such a field K.
The form gz splits three or four hyperbolic planes over every extension field K of k of
level < 4, since 7 x (1) splits completely over such afield K. The Witt index of ggx
is 1 over K = k(v/—X), and the Witt index of gz is 3 over K = k(v/—7). Thus g has
splitting pattern (0, 1, 3, 4).

Theform gy = 6 x (1) L (X,Y) splits exactly one hyperbolic plane over k(v/—XY)
with anisotropic kernel 6 x (1), it splits exactly two hyperbolic planes over k(v/—7)
with anisotropic kernel (—1, —1,X,Y), and it splits exactly three hyperbolic planes over
k(v/—1) with anisotropic kernel (X, Y). Hence g4 has splitting pattern (0, 1, 2, 3, 4).

This concludes the discussion of the 8-dimensional case.

For n = 9itisonly left, by Summary 2.3, to realize the pattern (0,1, 2,3,4) by a
trace form. Consider the quadratic form 7 x (1) L (X,Y) over Q(X,Y). By Lemma 2.2,
thisformisatrace form. It is anisotropic over Q(X, Y) and splits exactly two hyperbolic
planes over Q(v/—X, v/—Y), hence Witt index 2 occurs in its pattern. Thus, by Sum-
mary 2.3, its splitting patternis (0, 1, 2, 3, 4). ]

The statement of Theorem 2.4 can be sharpened:

COROLLARY 2.5.  All splitting patter nsof (anisotropic) quadr atic formsof dimension
n < 9 can berealized by trace forms of field extensions of Q(X,Y).
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PrROOF. The proof of Theorem 2.4 shows that for n < 9 all splitting patterns can
be realized by trace forms of some étale algebraover Q(X, Y). By the main resultin [5],
over Hilbertian fields K of characteristic zero, every trace form of an étale K-algebra of
dimension n > 3isisometric to the trace form of some field extension of K. Thusit is
only left to discussthe case n = 2. The trace form (2, 2d) of areal quadratic extension
Q(+/d) of Q remains anisotropic over Q(X, Y) and has splitting pattern (0, 1). ]

3. Appendix. Weillustrate how to realize all seven splitting patternsin dimension
ten listed in Summary 2.3. The following example can also be obtained from the classi-
fication of splitting patternsin [7].

ExampLE 3.1. Theform 10 x (1) over @ has pattern (0, 2, 4, 5), theform
(1, X,Y,Z,T,XZ,XT,YZ, YT, XYZT)

over O(v—1)(X,Y,Z,T) has pattern (0,2,3,5), the form 7 x (1) L (X,Y,—XY) over
Q(X,Y) has pattern (0,1,3,5), the form 7 x (1) L (X, X, X) over Q(X) has pattern
(0,2,3,4,5), theform 8 x (1) L (X,Y) over Q(X,Y) has a pattern (0, 1,2,4,5), the
form5x (1) L (2) L (X,Y,Z,—2XYZ) over Q(X, Y, Z) haspattern (0, 1, 2, 3,5), and the
form6 x (1) L (X,Y,Z,T) over Q(X,Y,Z,T) haspattern (0, 1, 2, 3,4, 5).

It follows from Lemma 2.2 that, except for the second pattern (0, 2, 3,5), all patterns
in Example 3.1 have been realized by trace forms. The form we have chosen to realize
(0, 2, 3,5) istheneighbor of the Pfister form ((X, Y, Z, T)) given by the complement of the
Albert form (XY, ZT, XYT, XYZ, XZT, YZT) over Q(v/—1)(X, Y, Z, T). We do not know if
also (0, 2, 3, 5) isthe splitting pattern of some 10-dimensional trace form.

The splitting pattern of an excellent quadratic form isan example of a pattern that can
be realized in arbitrary dimension n by atrace form, namely by n x (1) over @, say. In
this regard, we add:

ProOPOSITION 3.2. For every dimension n, the splitting pattern (0,1,2,3,4,...,
[n/2]) can berealized by a trace form.

PrROOF. Givenn, letm = [n/2] and consider the quadratic form qo over Q definedin
Lemma2.2. Thedimension of gg isn— m. Let ¢ bethe quadratic form (X, Xz, . .., Xm)
over Q(Xg, X2, ..., Xm). Then

g:=qle

is an anisotropic, n-dimensional quadratic form over k = Q(Xy, X2,...,Xm), andgisa

trace form by Lemma 2.2. Over k(y/—X1), g has Witt index 1; over k(v/—X¢, v/—X2), ¢

has Witt index 2 (if n > 4), and so on. Since g contains (m— 1) x (1), all consecutive

integers0,1,2,...,m— 1, m= [n/2] occur in the splitting pattern of q. L]
In view of the statements Theorem 2.4, Proposition 3.2, one might want to ask:

QUESTION 3.3.  Are all splitting patterns of (anisotropic) quadratic forms realizable
by trace forms?
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