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SPLITTING PATTERNS AND TRACE FORMS

JURGEN HURRELBRINK AND ULF REHMANN

ABSTRACT. The splitting pattern of a quadratic form q over a field k consists of all
distinct Witt indices that occur for q over extension fields of k. In small dimensions,
the complete list of splitting patterns of quadratic forms is known. We show that all
splitting patterns of quadratic forms of dimension at most nine can be realized by trace
forms.

0. Introduction. The history of trace forms dates back to the middle of the nine-
teenth century. At that time, Sylvester, Jacobi, and Hermite determined the number of
real roots of polynomials in one variable over R in terms of—as we would say today—
the signature of trace forms. This is nicely explained in the excellent article on “Galois
cohomology and the trace form” by E. Bayer-Fluckiger [1], p. 36.

Splitting patterns (cf. [8]) are invariants of the similarity classes of quadratic forms.
Hence splitting patterns of trace forms are invariants of finite separable field extensions
and therefore of particular interest: here is an illustration of information they provide for
example about the level of the normal closure of field extensions.

Let k be a field of characteristic Â≥ 2. Let the quadratic form q over k be the trace form
of a separable field extension F of k of degree n. Let N be any field containing a normal
closure of F over k. We have:

(1) If the Witt index i of q over k is positive, then N has finite level s(N) � n� i.
(2) If q is anisotropic and not stably excellent, then N has finite level s(N) � n� 1.
The first statement follows from Witt cancelation and the result that, over N, the trace

form q is isometric to a sum of n squares, [2]. The second statement is a corollary since,
over N, trace forms that are not stably excellent will be isotropic, [9].

1. Constraints on splitting patterns. Let q be an anisotropic quadratic form of
dimension n ½ 2 over a field k of characteristic Â≥ 2. Let

�
i0(q) ≥ 0, i1(q), i2(q), . . . , ih(q)(q) ≥ [nÛ2]

�

denote the splitting pattern of q; that is, i0(q) Ú i1(q) Ú Ð Ð Ð Ú ih(q)(q) are all distinct Witt
indices that occur for q over arbitrary field extensions of k. We refer to M. Knebusch’s
originating work on generic splitting of quadratic forms, [12], [13]. The index ij(q) occurs
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over the field Kj, 0 � j � h(q), in a generic splitting tower K0 ≥ k, K1 ≥ k(q), . . . , Kh(q)

of q over k, where k(q) is the function field of q.
In general, it is still a wide open problem to determine all tuples of strictly increasing

integers that are splitting patterns of quadratic forms. However, for an excellent quadratic
form q over k, the splitting pattern is known in arbitrary dimension, [12, Section 7], [8,
Corollary 2.8]. It depends only on the dimension n of q; we denote it by

�
i0(n) ≥ 0, i1(n), . . . , ih(n)(n) ≥ [nÛ2]

�

and have for the smallest positive Witt index i1(n):

EXAMPLE 1.1. Let q be an anisotropic excellent quadratic form of dimension n over
k. Write n ≥ 2r + d, where 2r is the largest power of 2 less than n. Then the Witt index
i1(n) of q over its function field k(q) is given by

i1(n) ≥ d.

For arbitrary anisotropic forms we recall from [6], [9, Corollary 1.13]:

THEOREM 1.2. Let q be an anisotropic quadratic form of dimension n over k. Then:

i1(q) � i1(n).

In particular, we have by Example 1.1 and Theorem 1.2 for any field k:

COROLLARY 1.3. Let q be an anisotropic quadratic form of dimension n ≥ 2r + 1
over k. Then:

i1(q) ≥ 1.

It is natural to ask whether the inequality in Theorem 1.2 generalizes for higher Witt
indices. Consider anisotropic quadratic forms q of dimension n with h(n) ½ 2. In other
words, n Â≥ 2r, 2r � 1, and this implies h(q) ½ 2 by the characterization of all forms q of
height h(q) ≥ 1 in [12, Theorem 5.8]. So, the indices i2(n) and i2(q) are defined, and we
obtain:

PROPOSITION 1.4. Let q be an anisotropic quadratic form over k of dimension n with
h(n) ½ 2. If i1(q) ≥ i1(n), then

i2(q) � i2(n).

PROOF. Let q1 denote the anisotropic kernel of q over its function field k(q). We have

i2(q) ≥ i1(q) + i1(q1).
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On the other hand,
i2(n) ≥ i1(n) + i1

�
n� 2i1(n)

�

since n�2i1(n) is the dimension of the anisotropic kernel of an n-dimensional anisotropic
excellent quadratic form over its function field.

By assumption, i1(q) ≥ i1(n). Thus our claim i2(q) � i2(n) amounts to showing
i1(q1) � i1

�
n� 2i1(n)

�
. Again by the assumption, the last inequality is equivalent to

i1(q1) � i1
�
n� 2i1(q)

�
;

that is,
i1(q1) � i1(dim q1),

which is the result of Theorem 1.2 applied to the anisotropic from q1 over k(q).
By [9, Corollary 1.13], our assumption i1(q) ≥ i1(n) in Proposition 1.4 implies that q

becomes an anisotropic Pfister neighbor over some field extension of k. The proof of the
proposition carries over to the analogous result for higher Witt indices:

COROLLARY 1.5. Let q be an anisotropic quadratic form over k of dimension n with
minfh(n), h(q)g ½ j + 1. If ij(q) ≥ ij(n), then

ij+1(q) � ij+1(n).

PROOF. Replace q1 in the proof of Proposition 1.4 by qj, the anisotropic kernel of q
over the field Kj in a generic splitting tower of q over k. We then have

ij+1(q) ≥ ij(q) + i1(qj),

ij+1(n) ≥ ij(n) + i1
�
n� 2ij(n)

�

and application of Theorem 1.2 to qj yields the claim.
Inspection of the list of splitting patterns in low dimensions, see Summary 2.3 below

with the patterns of excellent forms in each dimension given first, shows that the assump-
tion ij(q) ≥ ij(n) in Corollary 1.5 is not necessary for anisotropic forms q of dimension
n � 10.

QUESTION 1.6. Can one drop in Corollary 1.5 the assumption that ij(q) ≥ ij(n)? No
counterexample exists for forms q of dimension n � 18.

2. Splitting patterns of trace forms. Let E be a commutative étale algebra of di-
mension n over a field k of characteristic Â≥ 2; so E is a product of separable extension
fields of k. The trace form hEi of E, defined by

hEi(x) ≥ TrEÛk(x2) for x 2 E,

is a regular n-dimensional quadratic form over k; we just refer to [1], [2], [15].
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So far, a basic question, which quadratic forms are (isometric to) trace forms, has
been answered over arbitrary fields only in low dimensions. For a regular quadratic form
q ≥ ha1, . . . , ani over k let wm(q), m ≥ 0, 1, 2, . . . , denote the Stiefel-Whitney invariants
of q, [3], given in terms of cup products as

wm(q) ≥
X

i1Úi2ÚÐÐÐÚim

(ai1 ) [ Ð Ð Ð [ (aim ) 2 Hm(k) ≥ Hm
�
Gal(ksÛk),ZÛ2Z

�
,

where ks denotes a separable closure of k. The Galois cohomology groups H0(k), H1(k),
and H2(k) are isomorphic to ZÛ2Z, kŁÛkŁ2, and Br2(k); thus w0(q), w1(q), and w2(q) are
the invariants given by the dimension mod 2, determinant d ≥ d(q), and Hasse-Witt
invariant of q, respectively. We summarize the characterization due to M. Epkenhans,
M. Krüskemper, and J.-P. Serre, compare [1, Theorem 11]:

THEOREM 2.1. A regular quadratic form q over k of dimension n � 7 is (isometric
to) a trace form (of some étale k-algebra E) if and only if, over k,

a. n ≥ 1 and q ¾≥ h1i,
b. n ≥ 2 and q contains h2i,
c. n ≥ 3 and q contains h1, 2i,
d. n ≥ 4, q contains h1i, and w3(q) ≥ 0,
e. n ≥ 5, q contains h1, 1i, and w3(q) ≥ 0,
f. n ≥ 6, q contains h1, 2i, and, over k(

p
2d), q contains h1, 1, 2i,

g. n ≥ 7, q contains h1, 1, 2i, and, over k(
p

2d), q contains h1, 1, 1, 2i.
For n � 5 the results can be found in [5] and [16]; the n ≥ 6 characterization from

[17] was afterwards independently discovered and proved in [4]; the result for n ≥ 7
then follows from a construction in [14].

By considering orthogonal sums of trace forms, we immediately obtain from Theo-
rem 2.1 for arbitrary dimensions:

LEMMA 2.2. Let q be a regular quadratic form over k of dimension n. Let m ≥ [nÛ2]
and put

q0 ≥

8>>>><
>>>>:

mð h1i if n � 0 mod 4
(m + 1)ð h1i if n � 1 mod 4
(m� 1)ð h1i ? h2i if n � 2 mod 4
mð h1i ? h2i if n � 3 mod 4.

If q contains q0, then q is a trace form.

PROOF. By Theorem 2.1.d, every regular quadratic form q of dimension four that
contains h1, 1i is a trace form. Thus every regular q of dimension n � 0 mod 4 that
contains m ð h1i is a trace form. The proof is analogous for n � 1, 2, or 3 mod 4 based
on Theorem 2.1 a–d.

The following is a complete list of splitting patters in dimension at most ten.

SUMMARY 2.3. The splitting patterns of anisotropic quadratic forms q of dimension
n � 10 are given by:
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n ≥ 2 (0, 1)
n ≥ 3 (0, 1)
n ≥ 4 (0, 2), (0, 1, 2)
n ≥ 5 (0, 1, 2)
n ≥ 6 (0, 2, 3), (0, 1, 3), (0, 1, 2, 3)
n ≥ 7 (0, 3), (0, 1, 2, 3)
n ≥ 8 (0, 4), (0, 2, 4), (0, 1, 2, 4), (0, 1, 3, 4), (0, 1, 2, 3, 4)
n ≥ 9 (0, 1, 4), (0, 1, 2, 3, 4)

n ≥ 10 (0, 2, 4, 5), (0, 2, 3, 5), (0, 1, 3, 5), (0, 2, 3, 4, 5), (0, 1, 2, 4, 5),
(0, 1, 2, 3, 5), (0, 1, 2, 3, 4, 5).

PROOF. By [11] or by [7], the tuples (0, 2, 3, 4) and (0, 1, 5) fail to be splitting pat-
terns in dimension eight and ten, respectively (see also [10]). Hence, for n � 9, the list
follows from [9, Example 1.16]. For n ≥ 10 the splitting pattern of excellent forms is
(0, 2, 4, 5), thus i1(10) ≥ 2 and we conclude from Theorem 1.2 that i1(q) is 1 or 2 for ev-
ery anisotropic quadratic form of dimension ten. There are at most four splitting patterns
in dimension ten with i1(q) ≥ 1 since there are exactly four splitting patterns in dimen-
sion eight, the ones different from (0, 4), that would not give rise to the excluded tuple
(0, 1, 5). There are at most three splitting patterns in dimension ten with i1(q) ≥ 2 since
there are exactly three splitting patterns in dimension six. Thus, every splitting pattern in
dimension ten is one of the seven tuples listed above. Moreover, all of the seven tuples
occur as splitting patterns of quadratic forms in dimension ten; see Example 3.1 below.

We have set up Theorem 2.1, Lemma 2.2 and Summary 2.3 in order to investigate
which splitting patterns of quadratic forms are splitting patterns of trace forms. It might
be a bit of a surprise to learn:

THEOREM 2.4. All splitting patterns of (anisotropic) quadratic forms of dimension
n � 9 can be realized by trace forms.

PROOF. In any dimension n, the sum n ð h1i of n squares is a trace form; it is
anisotropic for example over Q. Hence we can realize in each dimension the splitting
pattern of excellent forms, always listed first in Summary 2.3, by a trace form overQ. In
particular, this settles the dimensions n ≥ 2, 3, and 5.

For n ≥ 4 the splitting pattern (0, 1, 2) can be realized by the anisotropic quadratic
form h1, 1, 1, Xi over Q(X), say. By Lemma 2.2, this form is a trace form.

For n ≥ 6 consider the quadratic forms h1, 1, 2, X, Y,�2XYi and h1, 1, 1, 1, X, Yi over
k ≥ Q(X, Y). Both of them are trace forms, by Lemma 2.2. The first one is isometric
to h1, 1, 2, Xi ? Yh1,�2Xi, hence it is anisotropic over Q(X, Y) since h1, 1, 2, Xi and
h1,�2Xi are anisotropic over Q(X). Clearly, the second one is anisotropic over Q(X, Y),
too.

The form h1, 1, 2, X, Y,�2XYi is of (signed) discriminant +1; that is, it is an Albert
form, and Witt index 2 does not occur in its splitting pattern. So, by Summary 2.3, its
splitting pattern is (0, 1, 3).
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The form h1, 1, 1, 1, X, Yi splits exactly one hyperbolic plane over k(
p
�XY) and since

it is of discriminant Â≥ 1, Witt index 2 will occur, too. So its splitting pattern is (0, 1, 2, 3).
For n ≥ 7 the quadratic form h1, 1, 1, 1, 1, X, Yi is a trace form, by Lemma 2.2. It is

anisotropic over k ≥ Q(X, Y) and splits exactly one hyperbolic plane over k(
p
�XY).

Thus, by Summary 2.3, its splitting pattern is (0, 1, 2, 3).
For n ≥ 8 we have to realize the four splitting patterns in Summary 2.3 that are

not patterns of excellent forms. Consider the quadratic forms q1 ≥ 6 ð h1i ? hX, Xi,
q2 ≥ 5ðh1i ? hX, Y, XYi, q3 ≥ 7ðh1i ? hXi, q4 ≥ 6ðh1i ? hX, Yi over k ≥ Q(X, Y).
All of them are anisotropic over Q(X, Y); we check it for q2 : since h1, 1, 1, 1, 1, Xi and
h1, Xi are anisotropic over Q(X), the form q2 ≥ h1, 1, 1, 1, 1, Xi ? Yh1, Xi is anisotropic
over Q(X, Y). All of them are trace forms by Lemma 2.2.

The form q1 ≥ 6ðh1i ? hX, Xi is isometric to h1, 1, 1, Xi
h1, 1i, thus q1
¾≥ q0
h1, 1i

with dim q0 ≥ 4. Moreover if, for some extension field K of k ≥ Q(X, Y), the form qK

is isotropic we may choose q0
K to be isotropic. Thus q1 has splitting pattern (0, 2, 4),

compare [9, Remark 3.3].
The form q2 ≥ 5 ð h1i ? hX, Y, XYi splits exactly one hyperbolic plane over K ≥

Q(
p
�7). Namely, K has level 4 and, over K, we have 5ðh1i ¾≥ h1,�1i ? h�1,�1,�1i,

so q2,K
¾≥ H ? h�1,�1,�1, X, Y, XYi with a 6-dimensional anisotropic kernel

h�1,�1,�1, X, Y, XYi. The form q2 splits exactly two hyperbolic planes over K ≥
k(
p
�XY). Namely, over this extension field K of k, q2 is isometric to 4 ð h1i ?

h1, X,�X,�1i ¾≥ H ? H ? 4 ð h1i with a 4-dimensional anisotropic kernel 4 ð h1i.
Since q2 has discriminant 1, over no extension field it will have Witt index 3, and hence
q2 has splitting pattern (0, 1, 2, 4).

The form q3 ≥ 7 ð h1i ? hXi splits no or exactly one hyperbolic plane over every
extension field K of k of level ½ 8, since 7 ð h1i stays anisotropic over such a field K.
The form q3 splits three or four hyperbolic planes over every extension field K of k of
level � 4, since 7 ð h1i splits completely over such a field K. The Witt index of q3,K

is 1 over K ≥ k(
p
�X), and the Witt index of q3,K is 3 over K ≥ k(

p
�7). Thus q3 has

splitting pattern (0, 1, 3, 4).
The form q4 ≥ 6 ð h1i ? hX, Yi splits exactly one hyperbolic plane over k(

p
�XY)

with anisotropic kernel 6 ð h1i, it splits exactly two hyperbolic planes over k(
p
�7)

with anisotropic kernel h�1,�1, X, Yi, and it splits exactly three hyperbolic planes over
k(
p
�1) with anisotropic kernel hX, Yi. Hence q4 has splitting pattern (0, 1, 2, 3, 4).

This concludes the discussion of the 8-dimensional case.
For n ≥ 9 it is only left, by Summary 2.3, to realize the pattern (0, 1, 2, 3, 4) by a

trace form. Consider the quadratic form 7ð h1i ? hX, Yi over Q(X, Y). By Lemma 2.2,
this form is a trace form. It is anisotropic overQ(X, Y) and splits exactly two hyperbolic
planes over Q(

p
�X,

p
�Y), hence Witt index 2 occurs in its pattern. Thus, by Sum-

mary 2.3, its splitting pattern is (0, 1, 2, 3, 4).
The statement of Theorem 2.4 can be sharpened:

COROLLARY 2.5. All splitting patterns of (anisotropic) quadratic forms of dimension
n � 9 can be realized by trace forms of field extensions of Q(X, Y).
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PROOF. The proof of Theorem 2.4 shows that for n � 9 all splitting patterns can
be realized by trace forms of some étale algebra over Q(X, Y). By the main result in [5],
over Hilbertian fields K of characteristic zero, every trace form of an étale K-algebra of
dimension n ½ 3 is isometric to the trace form of some field extension of K. Thus it is
only left to discuss the case n ≥ 2. The trace form h2, 2di of a real quadratic extension
Q(
p

d) of Q remains anisotropic over Q(X, Y) and has splitting pattern (0, 1).

3. Appendix. We illustrate how to realize all seven splitting patterns in dimension
ten listed in Summary 2.3. The following example can also be obtained from the classi-
fication of splitting patterns in [7].

EXAMPLE 3.1. The form 10ð h1i over Q has pattern (0, 2, 4, 5), the form

h1, X, Y, Z, T, XZ, XT, YZ, YT, XYZTi

over Q(
p
�1)(X, Y, Z, T) has pattern (0, 2, 3, 5), the form 7 ð h1i ? hX, Y,�XYi over

Q(X, Y) has pattern (0, 1, 3, 5), the form 7 ð h1i ? hX, X, Xi over Q(X) has pattern
(0, 2, 3, 4, 5), the form 8 ð h1i ? hX, Yi over Q(X, Y) has a pattern (0, 1, 2, 4, 5), the
form 5ðh1i ? h2i ? hX, Y, Z,�2XYZi overQ(X, Y, Z) has pattern (0, 1, 2, 3, 5), and the
form 6ð h1i ? hX, Y, Z, Ti over Q(X, Y, Z, T) has pattern (0, 1, 2, 3, 4, 5).

It follows from Lemma 2.2 that, except for the second pattern (0, 2, 3, 5), all patterns
in Example 3.1 have been realized by trace forms. The form we have chosen to realize
(0, 2, 3, 5) is the neighbor of the Pfister form hhX, Y, Z, Tiigiven by the complement of the
Albert form hXY, ZT, XYT, XYZ, XZT, YZTioverQ(

p
�1)(X, Y, Z, T). We do not know if

also (0, 2, 3, 5) is the splitting pattern of some 10-dimensional trace form.
The splitting pattern of an excellent quadratic form is an example of a pattern that can

be realized in arbitrary dimension n by a trace form, namely by n ð h1i over Q, say. In
this regard, we add:

PROPOSITION 3.2. For every dimension n, the splitting pattern (0, 1, 2, 3, 4, . . . ,
[nÛ2]) can be realized by a trace form.

PROOF. Given n, let m ≥ [nÛ2] and consider the quadratic form q0 overQ defined in
Lemma 2.2. The dimension of q0 is n�m. Let ß be the quadratic form hX1, X2, . . . , Xmi
over Q(X1, X2, . . . , Xm). Then

q :≥ q0 ? ß

is an anisotropic, n-dimensional quadratic form over k ≥ Q(X1, X2, . . . , Xm), and q is a
trace form by Lemma 2.2. Over k(

p
�X1), q has Witt index 1; over k(

p
�X1,

p
�X2), q

has Witt index 2 (if n ½ 4), and so on. Since q0 contains (m � 1)ð h1i, all consecutive
integers 0, 1, 2, . . . , m � 1, m ≥ [nÛ2] occur in the splitting pattern of q.

In view of the statements Theorem 2.4, Proposition 3.2, one might want to ask:

QUESTION 3.3. Are all splitting patterns of (anisotropic) quadratic forms realizable
by trace forms?
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15. J.-P. Serre, L’invariant de Witt de la Forme Tr(x2). Comment. Math. Helv. 59(1984), 651–676.
16. , Texts on Étale Algebras. 1991/92, unpublished.
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