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In this paper we shall study properties of a locally convex space (l.c.s.) 
which guarantee that it is a direct product of normed linear spaces or Banach 
spaces. The conditions will be given both as properties of the original space 
itself and as properties of the dual, and will take the form of a completeness 
condition and the existence of sub-basic sets of pseudo-norms with certain 
properties (a set of pseudo-norms is basic if the set of unit balls of its members 
is a base of neighbourhoods of 0. A set $ is sub-basic if 

{ripi + ... + rnpn:ri> 0,pt G $} 
is basic.) 

1. Independent sets of pseudo-norms. We begin this section by dis
posing of the problem of when an l.c.s. is a projective limit of normed linear 
spaces. We shall need part of the result in what follows. 

In (2), a net {xa} is said to be 0-Cauchy if for any continuous pseudo-norm 
p on E, there is an a0 such that for a, ft > a0> p{oca — x$) = 0. A l.c.s. is 
0-complete if every 0-Cauchy net is convergent. 

THEOREM 1. A l.c.s. E is a projective limit of normed linear spaces if and 
only if it is 0-complete. 

Proof. Sufficiency follows the proof of (4, § 19, 9.(1)), where it is shown 
that a complete l.c.s. is a projective limit of Banach spaces. One simply does 
not complete the resulting normed linear spaces. It is then easy to construct 
a 0-Cauchy net in E for any element in the projective limit which converges 
to the given element. Necessity is straightforward. 

Now we proceed to the direct product situation. 

Definition. Let $ be a set of continuous pseudo-norms on E. 3̂ is inde
pendent if for any finite subset F of $, p G $, p G F, for all x G E, there 
is an xF G E such that p(x — xF) = 0, q{xF) = 0 for all a G F. 

Our basic result is the following: 

THEOREM 2. A l.c.s. E is a direct product of normed linear spaces if and only 
if it is 0-complete and has an independent sub-basic set ty of pseudo-norms. 

Proof. Necessity is clear (using Theorem 1). For sufficiency, we embed E 
in the product of normed linear spaces in the usual way, i.e., for each p G ty, 
let Ev = E /^ - 1 (0) , <f>v\ E —» Ev the natural map, and topologize Ep with the 
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norm po<j>p~
l. Then x —>(<£p(x)) is a topological isomorphism of E onto a 

subspace of 1 1 ^ Ep. If (xp) 6 IIE^, choose yp Ç <t>v~l{xp) for each ?̂ Ç $, and 
for each finite subset F of $ , there is an xF Ç £ such that £(xF — yp) = 0 
for each p £ F. This is possible because of independence. Then it is clear 
that if the set of finite subsets of ^ is ordered by inclusion, {xF} is a 0-Cauchy 
net and {{<t>p(xF))} —> (xp). Since E is 0-complete, (xp) is in the image fo E 
under the embedding. 

One result of Theorem 2 is that a Les. with an independent sub-basic set 
of pseudo-norms is complete if and only if it is 0-complete and sequentially 
complete. This is not true in general, as is shown in (3). 

Another immediate application of the theorem is the following generaliza
tion of (1, Chapter IV, § 1, Ex. 11). 

COROLLARY 2.1. Let E be a Les. Then E is weakly 0-complete if and only 
if E = Ra for suitable cardinal a. 

Proof. Let U be a Hamel basis of E'. Then clearly {\u\: u 6 Uj is an inde
pendent set of pseudo-norms which is sub-basic for the weak topology. For 
u 6 E, E\u\ as defined in the proof of Theorem 2 is just R, so E is Ra in the 
weak topology. But by (4, §22, 5.(3)), R" also has the Mackey topology 
and since the original topology is between the weak and Mackey topologies, 
E = Ra. This proves the necessity and the sufficiency is obvious. 

2. Independence and duality. In this section we develop the dual 
notion to independence which will in turn suggest a further area of investi
gation. Henceforth ^ will be a set of continuous pseudo-norms on E and O 
a set of absolutely convex equicontinuous subsets of E'. We define a natural 
correspondence between Q and ^ as follows. 

For pe% 
Qp = {u £ E: \u\ < p) = {x € E: p{x) < 1}°. 

If Q G O, PQ is the pseudo-norm on E whose unit ball is Q°. We shall call a 
subspace of co-dimension at most 1 a hyperspace. 

Definition . G is independent if for each finite 8 Ç Q , Ç f O , (J ? 5, and 
closed hyperspace M of E', there is a closed hyperspace MQ of E such that: 
(1) M o 2 W g , 
(2) M0 r\ Q = M H Q. 
(Compare with (2, Cor. 4.7).) 

THEOREM 3. The following statements are equivalent: 
(a) Q is independent] 
(b) the corresponding set % = {pQ\ Q Ç Q} of pseudo-norms is independent; 
(c) for all closed hyperspaces M of E, finite g Ç Q , and Q (? g, Q £ Q , 

(3) M r\ Q = ci 8[(M n e ) u ( u g)] n Q. 
(%(A) is the linear span of A.) 
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Proof, (a) =» (c). The left side of (3) is always contained in the right, so 
we need only show the reverse inclusion. But if M0 is a closed hyperspace 
satisfying (1) and (2), then M0 3 ? ( ( i n Q) U (U g)) so that 

fd 8((7krn 0) u (u 5))] n o ç ci(M0) n Q 
= Mo n Q = M n Q. 

(c) => (b). Let F be a finite subset of $, p G ^ , £ G 7% x 6 £ . If £(x) = 0, 
then set xF = 0. Otherwise we may choose a «0 G ft with u0(x) ^ 0 by the 
Hahn-Banach theorem. Let M = x± = {w G £ ' : w(x) = 0 } , which is a closed 
hyperspace in E. Let g = {QQ: Q. € -F}. By (3) we may choose xF G E such 
that UQ(XF) 9^ 0 and (Af Pi Qv) U (U g) Ç xF-»-. In fact, we can assume that 
UQ(XF) = Uo(x). For all q G F, Qq Ç x^1 so that g(xF) = 0. If v G ÇP, then 
v = m + r^o for some m £ M, r G R, so m = v — ru0 G (1 + |r|)Çpr 

m G M = (1 + |r|)M,soro G (1 + k | ) ( & n M) C (1 + | r | ) ( ( à , n * ^ ) and 
Ï>(#F) = m(xF) + ruo(xF) = ruo(x) = fl(x). Therefore x — xF G Q^, so 
p(x — xF) = 0. 

(b) => (a). Suppose $ is independent and M is a closed hyperspace in E'\ 
then ikf = x± for some x £ E. Let Ç G Q, -F Q Q finite, Ç G 8- Choose xF 

such that £Q(X F — x) = 0, pQ>{xF) = 0 for ail (7 G g, so Q' Ç̂  x^1. pQ(xF — x0) 
implies that ^(x0) = ^(x) for ail w G QP1 so (1) and (2) are satisfied for 
Mo = XF1 . 

The above characterization suggests the following: 

Definition. G is quasi-independent if for all Q G O 

8 ( U ( 0 ~ { Q } ) ) n ç = {0}. 

A set of pseudo-norms is quasi-independent if its corresponding set of equi-
continuous subsets is quasi-independent. 

Analogously to Theorem 3 we have 

THEOREM 4. The following statements are equivalent: 
(a) O is quasi-independent; 
(b) for all Q G G and closed hyper spaces M CI £ ' , tfftere is a (no/ necessarily 

closed) hyperspace Mo Q E' satisfying (2) and 

(4) I o 3 W ( Q ~ {Q}); 

(c) /or all Q £ >& and all sub spaces M C £ ' , //^re w a sub space Mo CI £ ' 
satisfying (2) a?zd (4). 

Proof, (a) => (c). Let ikf be a subspace of £ ' and for fixed Q G O, set 

Mo = S ( ( i n f f l u ( u ( Q ~ {(?}))). 
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If u G M 0 n < 2 , then u = rv + w, v G M H Q , w G 8 ( U ( Q ~ {(?})), r G R. 
Hence w G (1 + H)<2, so by assumption w = 0. Therefore u = rv £ M and 
w 6 ikT H Ç. Hence M0 f\ Q Q M C\ Q and the reverse inclusion is obvious, 
as is (4). 

(c) =» (b). Suppose M" is a closed hyperspace in £ ' , Q G Q . If Q Q M, then 
we are finished, so let u G Q ̂  f̂> a n d let M0 be a subspace satisfying (2) 
and (4). Then u & M0 and there is a maximal subspace (hence hyperspace) 
Mi containing M0 but not u. Clearly Mi 2 U (Q ~ {<2} ), Mi H (2 3 M0 H 0. 
If z; G Mi Pi Q, then z; = m + rw, w G M, r G R. As usual, then 

(1 + \r\)~lm G M H Ç = Mo P i Q Ç Mi P iÇ , 

so r 7e- 0 implies that w G Mi, a contradiction. 
(b) => (a). Suppose that for some Q G O , w G 8 ( U ( Q ~ {(?})) H Ç. If 

w(x) 5̂  0 for some x G £ , then take M = x1 and let M0 satisfy (2) and (4). 
Then u G 8 ( U ( 0 ~ {Q})) Ç M0 and M G G ~ ^ = Q ~ M0, so w G M0, a 
contradiction. 

COROLLARY 4.1. 4̂w independent set of pseudo-norms is quasi-independent. 

Proof. Let $ be independent, Q correspond to ty. If g is any finite subset 
of O, then Theorem 4 (b) =$• (a) and Theorem 3 (b) =̂> (a) imply that g is 
quasi-independent. But every member of 2 ( U ( Q ^ {(?})) is a member of 
some £ ( U ( g ~ {(?})); hence the result. 

We now prove a version of Theorem 2 for quasi-independence. 

COROLLARY 4.2. A l.c.s. E is a direct product of Banach spaces if and only 
if it is complete and has a quasi-independent sub-basic set of pseudo-norms. 

Proof. Necessity follows from Corollary 4.1 and Theorem 2. For sufficiency, 
suppose that E is complete, ty a sub-basic and quasi-independent set of pseudo-
norms, O corresponding to ty. Let M be a closed hyperspace in Er, p G ^3, 
and let M0 be a hyperspace satisfying (2) and (4) for Q = Qp. If we can show 
that Mo is closed, we are finished, since then 3̂ will be independent by Theorem 
3. By the Grothendieck theorem (4, § 21, 9.(6)) and completeness of E it is 
enough to show that M0 is weakly closed in A for each equicontinuous subset 
A of E'. But if A is such a set, then there are scalars, r, rlt . . . , rn and 
pu • • • > Pn G $ such that p ^ pt for all i and 

A Q B = C\r Qv U U rt QPlJ 

(C(X) is the convex hull of X) and it is enough to show that M0 C\ B is weakly 
closed. Now 

M0 O 5 = c ( r ( M 0 n Qp) U U r,(M0 O &,-)) 

= c(̂ f(Mn &)u ur.a,.) 
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since M0 Z) ^% QPi for all i. Now r(M C\ Qp) and rt Qvi are weakly compact 
and convex, so by (4, § 20, 6.(5)), Mo H B is weakly compact, hence closed. 

Corollary 4.2 says essentially that if a complete topology on E is uniform 
convergence on "linearly independent" equicontinuous subsets of E', then E 
is a product of Banach spaces. Note that while the definition of independence 
includes a sort of completeness assumption on E (the existence of the xF)y 

quasi-independence does not. 

REFERENCES 

1. N. Bourbaki, Espaces vectoriels topologiques (Paris, 1955), Chap. 111—V. 
2. W. B. Jones, Duality and types of completeness in locally convex spaces, Pacific J. Math., 18 

(1966), 525-544. 
3. A locally convex topology for spaces of hoi omorphic functions, to appear in Math. Ann. 
4. G. Kôthe, Topologische lineare Raurne, Vol. 1 (Berlin, 1960). 

University of California, Los Angeles 

https://doi.org/10.4153/CJM-1967-071-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-071-5

