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A computational model is developed to study the time-averaged mean dynamics of
red blood cells (RBCs) driven by the time-averaged mean stress generated by two
phase-shifted orthogonal ultrasonic standing waves in a viscous fluid. The cell is modelled
as an ellipsoidal viscoelastic membrane enclosing the viscous fluid cytoplasm, the motion
of which is described by the inclination angle of the ellipsoidal cell shape and the phase
angle of the potential membrane cycle. Based on the acoustic perturbation method, the
acoustic field and acoustic streaming field are solved to obtain the time-averaged mean
stress, and then the temporal evolution equations of the inclination and phase angles of
the cell are determined considering the torque balance and energy conservation. At a
small acoustic pressure amplitude, this model reproduces the experimentally observed
features of cell motion in orthogonal standing waves: the transition from steady stationary
orientation to unsteady tumbling with the increase of the phase difference between the
two standing waves. By turning up the acoustic pressure amplitude above a critical
value, it is further predicted that the previously observed motions can be accompanied
by the membrane tank-treading rotation. Observations of these motions, combined with
the present computational model, can help to evaluate the mechanical properties of RBC
membranes in an automated and high-throughput manner by acoustic methods.

Key words: capsule/cell dynamics, computational methods, wave–structure interactions

1. Introduction

The viscoelastic properties of red blood cells (RBCs) are fundamentally important for
maintaining cell functions. These properties are critical for microvascular function and
can be altered in various blood-related diseases, such as cardiovascular diseases (Fornal
et al. 2008) and malaria (Suresh et al. 2005). The structure of RBCs is composed of an
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internal homogeneous fluid and its enclosing viscoelastic biological membrane, which
plays a major role in the mechanical behaviour of cells. In this regard, many techniques
have been developed to measure the viscoelastic modulus of the RBC membrane.

Previous studies have shown that the viscoelastic moduli of an RBC membrane can be
assessed based on their mechanical behaviour in response to quantified forces. This can
be achieved through traditional experimental techniques, such as micropipette aspiration
(Henriksen & Ipsen 2004; Daza et al. 2019), optical tweezers (Dao, Lim & Suresh 2003;
Mills et al. 2004) and atomic force microscopy (Haase & Pelling 2015; Efremov et al.
2017). These techniques provide precise measurements but have a slow test speed of
approximately one cell per minute. In recent years, a variety of microfluidic techniques
have been proposed to improve detection throughput. Typical microfluidic techniques use
hydrodynamic forces to deform cells as they pass through microfluidic channels (Gossett
et al. 2012; Otto et al. 2015; Prado et al. 2015). While these techniques offer high
throughput, such as real-time deformability cytometry (RT-DC) (Otto et al. 2015) which
can perform thousands of single-cell deformability analyses in minutes, the drawback is
that deforming cells at high rates in a short period of time may alter the microstructure
of cells and affect their mechanical response (Urbanska et al. 2018). Furthermore, unlike
traditional techniques, which deform cells in situ, typical microfluidic techniques deform
cells in continuous flow. This makes it difficult for typical microfluidic techniques to
identify each individual cell before and after detecting cell deformation, which may limit
their multifunctional integration. An alternative to achieve reasonable throughput and
deform cells in situ is acoustic microfluidics (i.e. the fusion of acoustics and microfluidics).
Specifically, acoustic microfluidics can trap cells in well-designed acoustic potential wells,
and high throughput can be easily achieved through parallel cell manipulation (Silva et al.
2019; Xie, Bachman & Huang 2019).

In typical acoustic microfluidic devices, standing waves are generated within a
microfluidic channel or cavity. The particles immersed in it experience not only
time-harmonic acoustic pressure directly caused by acoustic excitation, but also
time-averaged forces caused by the acoustic nonlinear effect (Xin & Lu 2016; Drinkwater
2020). This force is called the acoustic radiation force, which can trap biological
cells at the acoustic pressure nodes or antinodes of standing waves depending on the
acoustophoretic contrast between the cells and the host medium (Settnes & Bruus 2012;
Baasch, Qiu & Laurell 2022). In general, the cells in water-based host media have a
positive acoustophoretic contrast and are directed towards the acoustic pressure node
(Hartono et al. 2011; Li et al. 2015). For two-dimensional (2-D) standing waves consisting
of two orthogonal standing waves, the cells can be patterned at grid-like acoustic pressure
nodes, so operations in 2-D standing waves facilitate parallel cell manipulation at the
single-cell level (Collins et al. 2015). Bernard et al. (2017) experimentally investigated
the rigid body tumbling and translation of particles and biological cells (including red and
white blood cells) in two orthogonal ultrasonic standing waves with phase difference ζ .
In their experiments, they found that the cells were in a steady stationary state when the
phase difference ζ = 0, while they execute a tumbling motion when the phase difference
ζ = π/2. Increasing the phase difference ζ from 0 to π/2, the cells were observed to
undergo a transition from the steady stationary state to tumbling motion. These features
are generally similar to those of RBCs in shear flow. Specifically, the shear flow can
be divided into an extensional component and a rotational component, which lead to
steady stationary orientation and unstable tumbling of RBCs immersed in it, respectively
(Vlahovska, Podgorski & Misbah 2009; Sinha & Thaokar 2018). The deformable RBCs in
shear flows have been studied extensively and are known to exhibit intriguing dynamical
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behaviour (Rezghi & Zhang 2022). In shear flows with high shear rate or external fluid
viscosity, the RBC membrane circulates around the deformed cell contour, which drives
a vortex-like circular flow in the internal cytoplasm. This motion is called a tank-treading
motion, and it provides researchers with a convenient way to measure the mechanical
properties of RBCs (Tsubota 2021; Rezghi & Zhang 2022). It is worth noting that the
work of Bernard et al. (2017) is limited to small acoustic inputs, where RBCs behave like
rigid bodies. Further studies treating RBCs as elastic bodies under relatively large acoustic
input are required to understand the complete dynamics of cells in 2-D standing waves and
to explore whether 2-D standing waves can excite the tank-treading motion of RBCs like
shear flow.

Over the years, some theoretical work with simplified models has been developed to
analyse RBC dynamics in linear shear flow. Keller & Skalak (1982) proposed the first
simplified theoretical model in this field. Their model treated the RBC as a fluid ellipsoid
with a fixed shape, with a membrane that allows circulation around the ellipsoid shape,
and the axis of symmetry of the ellipsoid was constrained in the shear plane. The degree
of freedom describing RBC motion was reduced to two: that describing the orientation
of the ellipsoid in space and that describing the circulation of the membrane relative
to the ellipsoidal shape. The evolution equations of these two degrees of freedom were
established from the perspective of torque balance and energy conservation. Abkarian,
Faivre & Viallat (2007) further developed this model to explain the shear elasticity of a
cell membrane. The enriched model achieved a quantitative agreement with experimental
observations. Efforts have been devoted to including the stress-free shape of the cell
membrane (Dupire, Abkarian & Viallat 2015), cell shape deformation (Noguchi 2010),
three-dimensional effect (i.e. the axisymmetric axis of the cell is not in the shear plane)
(Mendez & Abkarian 2018; Mignon & Mendez 2021) and general linear flow beyond shear
flow (Ye et al. 2016).

To analyse cell dynamics in an acoustic field, an important issue is the theoretical
treatment of the acoustically induced time-averaged force. Mathematically, the
time-averaged force arises from the nonlinearity of the compressible Navier–Stokes
(N-S) equations describing fluid dynamics (Baudoin & Thomas 2020). The acoustic
perturbation method has been widely used in the acoustic microfluidic community to solve
the compressible N-S equations (Muller et al. 2012; Nama et al. 2015). Expanding the
fluid variables, the first-order variables represent the time-harmonic acoustic response,
and the second-order variables after time averaging represent the nonlinear acoustic
phenomenon, including the acoustic streaming, which describes the steady swirling fluid
motion generated by acoustic dissipation. Several works have analytically solved the
acoustic streaming around spherical particles located at the pressure node of 2-D standing
waves, and have shown that the acoustic streaming exerts a torque on the particles (Lee
& Wang 1989; Rednikov, Riley & Sadhal 2003; Zhang & Marston 2014). The torque
is found to have a phase difference dependent factor sin ζ , which means that for phase
difference ζ = 0, the torque is zero, while for phase difference ζ = π/2, the torque is
maximum. Due to the geometric complexity, the analytical expression of torque on a
non-spherical particle has not been reported. Instead, a three-dimensional finite element
model has been developed to calculate the torque on spherical and non-spherical particles
(Hahn, Lamprecht & Dual 2016). Previous work mainly focused on the manipulation of
rigid particles in ultrasonic standing waves, so there is still a lack of research on the
manipulation of deformable cells in two-dimensional ultrasonic standing waves.

Recently, we have developed a finite element model to analyse cell dynamics in acoustic
fields (Liu & Xin 2023a) and investigated the shape dynamics of two-dimensional capsules
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(an elastic membrane enclosing a viscous fluid) in two-dimensional standing waves (Liu
& Xin 2023b). The complex dynamics of two-dimensional capsules, including steady
stationary state, tumbling and tank treading, are identified for different phase differences
and acoustic pressure amplitudes of the two-dimensional standing waves. However, the
findings of this study have not been generalized to three-dimensional dynamics due to
the huge computational effort. In this work, a three-dimensional model for red blood cell
(RBC) dynamics in two phase-shifted orthogonal ultrasonic standing waves is proposed.
The cell is modelled as an ellipsoidal viscoelastic membrane enclosing the viscous fluid
cytoplasm. Applying the acoustic perturbation method, the Navier–Stokes equation is
divided into two sets of equations: the first-order equations for ultrasonic propagation
and the time-averaged second-order equations for the mean dynamics. The two sets
of equations are numerically solved to calculate the acoustic-induced mean stress that
drives cell motion through the finite element method. Based on the torque balance
and energy conservation, the governing equations of cell motion are established and
numerically solved by applying the fourth-order Runge–Kutta method. The conditions
that determine the transition of different cell dynamic states are identified and a phase
diagram of different cell dynamic states as a function of phase difference and acoustic
pressure amplitude is constructed. This computational model provides a comprehensive
understanding of erythrocyte dynamics in ultrasonic standing waves and not only
reproduces previous experimental observations, but also predicts possible tank-treading
motion beyond previous experimental conditions.

2. Theoretical model

The time-averaged mean dynamics of RBCs driven by two orthogonal ultrasonic standing
waves in a viscous fluid medium is investigated. The RBC is composed of a membrane
enclosing an homogeneous fluid. It is assumed that the RBC can be represented as
an oblate ellipsoid of a prescribed shape that never changes during the motion. Thus,
the present work is valid when the RBC deformation remains small. Nevertheless, the
membrane of the cell is allowed to circulate around the fixed ellipsoidal shape. The
consideration of an oblate ellipsoid shape facilitates theoretical modelling and can well
reproduce the dynamic behaviour of real biconcave erythrocytes in fluid experiments
(Abkarian et al. 2007). Two-dimensional ultrasonic standing waves are generated by
the oscillation of two pairs of orthogonal piezoelectric transducers (PZTs), as shown
in figure 1(a). When the two-dimensional standing waves are established, the cells are
subjected to an acoustic radiation force, trapping the cells in the grid-like acoustic pressure
nodes. Due to the presence of cavity/channel walls, boundary-driven Rayleigh streaming is
generated (Hamilton, Ilinskii & Zabolotskaya 2003). This streaming can influence trapping
stability and cell dynamics in a cell size dependent manner. The influence is expected to
be relatively small due to the large size of RBCs (Muller et al. 2012). Furthermore, the
Rayleigh streaming can be suppressed by a shape-optimized cavity/channel (Bach & Bruus
2020). Therefore, the boundary-driven Rayleigh streaming is neglected in our analysis.

As shown in figure 1(b), let (x̂, ŷ, ẑ) denote a fixed Cartesian coordinate system that
never changes with time and is therefore referred to as a fixed frame. The incident wave
is composed of two orthogonal ultrasonic standing waves with the same acoustic pressure
amplitude pam and frequency f, and the phase difference between them is ζ . In the fixed
frame (x̂, ŷ, ẑ), the incident wave is given by

pin = pam

2
[ sin(keŷ) + sin(keẑ) eiζ ] eiωt + c.c., (2.1)
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Figure 1. Time-averaged mean dynamics of RBCs driven by two orthogonal ultrasonic standing waves.
(a) Experimental set-up for generating two-dimensional standing waves. The background contour shows the
acoustic pressure in (2.1) with phase difference ϕ = 0, and the colour ranges from −pam (blue) to pam (red).
(b) Coordinate systems and variables describing cell motion. Here, (x̂, ŷ, ẑ) is the fixed coordinate frame,
(x, y, z) is the body coordinate frame, θ is the inclination angle describing cell rigid tumbling and φ is the
phase angle describing membrane tank treading.

where ke = ω/ce
0 is the acoustic wavenumber and ce

0 is the sound speed in the external
viscous fluid, ω = 2πf is the angular frequency, i = √−1 is the imaginary unit, and c.c.
represents the complex conjugate of the first two terms.

As shown in figure 1(b), let (x, y, z) denote another Cartesian coordinate system, whose
axes are the principal axes of the ellipsoidal cell, hence the name body frame. In the body
frame (x, y, z), the surface of the ellipsoidal cell is defined as

(
x
ax

)2

+
(

y
ay

)2

+
(

z
az

)2

= 1, (2.2)

where ax, ay and az are the three semi-axes. Here, the x-axis coincides with the x̂-axis,
while the y- and z-axes are rotated by an angle θ relative to the ŷ- and ẑ-axes, respectively,
as shown in figure 1(b). The inclination angle θ describes the rotation of the ellipsoidal
cell. Therefore, the inclination angle θ is a function of time, and θ̇ = dθ/dt is the angular
velocity of the ellipsoidal cell. In the following, the theoretical framework is conveniently
formulated in the body frame (x, y, z).

2.1. Mean dynamics of RBCs
The internal and external media of the cell are assumed to be compressible viscous fluids,
whose fluid properties are characterized by shear viscosity ηi,e, bulk viscosity η

i,e
b , mass

density ρ
i,e
0 and speed of sound ci,e

0 . The superscripts ‘i’ and ‘e’ relate to the internal
and external media of the cell, respectively. Under high frequency acoustic excitation, the
fluid dynamics is a combination of the fast time scale of ultrasound propagation (∼1 μs)
and the slow time scale of mean dynamics (∼0.1 s) for typical ultrasonic frequencies
∼1 MHz. Here, the mean dynamics is actually time-averaged dynamics. During ultrasonic
propagation on fast time scales, its nonlinear second-order terms produce a time-averaged
mean stress, which drives the motion of cells on slow time scales. This process is called
the mean dynamics of cells driven by ultrasonic waves.
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Figure 2. (a) Schematic of the material configuration B0 before acoustic excitation, the mean configuration
B of particle mean motion and the deformed configuration Bt of particle actual motion. (b) Schematic of
mean and actual trajectories with initial position X . The difference between the mean position x and the actual
position y of the particle is measured by the acoustic oscillation displacement ξ .

The acoustic perturbation method based on the generalized Lagrangian formulation is
employed to study the mean dynamics of cells driven by ultrasound (Nama, Huang &
Costanzo 2017). In contrast to the widely used fully Eulerian formulation (Bruus 2012),
this formulation employs the perturbation expansion in the mean configuration, which
is not disturbed by acoustic oscillation, thus having an exact definition of the boundary
conditions at cell membranes. As shown in figure 2(a), the generalized Lagrangian
formulation adopts separate definitions of the mean configuration and the deformed
configuration. In the mean configuration, the particle motion follows the mean smooth
trajectory, while in the deformed configuration, the particle motion follows an actual
oscillating trajectory, which differs from the mean trajectory by acoustic oscillating
displacement. The compressible Navier–Stokes equations in the deformed configuration
are reformulated in the mean configuration, and then the perturbation expansion is applied
to linearize the reformulated Navier–Stokes equations. Specifically, the fluid quantity g
is decomposed as g = g0 + g1 + g2 + · · · , where g0 is the zeroth-order (background)
field, g1 is the first-order field, and g2 is the second-order field. The magnitude of
the perturbation is characterized by the dimensionless acoustic Mach number Ma =
||v1||/c0 ≈ 10−4 with ||v1|| being the amplitude of acoustic oscillating velocity, such
that gn ∝ Man. Introducing the expansions of the reformulated Navier–Stokes equations
and assuming zeroth-order fluid rest, one obtains two sets of governing equations:
the first-order equations describe the ultrasound propagation and the time-averaged
second-order equations describe the time-averaged mean dynamics (see Appendix A for
details).
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In ultrasonic standing waves, there are viscous and thermal boundary layers around the
cell, and the effects of viscosity and thermal conduction occur in the boundary layers.
For most liquids, such as water, the thermal effect is relatively small because the ratio of
thermal boundary layer thickness to viscous boundary layer thickness δt/δ ≈ 0.3 (Muller
et al. 2012). To simplify the theoretical treatment, the coupling between the thermal
field and other fluid quantities is neglected. In such a case, the first-order equations for
ultrasound propagation are expressed as

∂tp1 + ρ0c2
0∇ · v1 = 0 and ρ0∂tv1 − ∇ · P1 = 0, (2.3a,b)

with
P1 = −p1I + η(∇v1 + ∇vT

1 ) + ηb(∇ · v1)I. (2.4)

Here, all variables with subscript 1 correspond to first-order variables, p1 is the first-order
acoustic pressure, v1 is the first-order acoustic oscillation velocity, ρ0 is the fluid density,
c0 is the sound speed of the fluid, η and ηb are the shear the bulk viscosities of the fluid,
respectively, and I is the identity matrix. In (2.3), the nonlinear convective acceleration
term is neglected in the first-order acoustic wave equation because the second-order small
variables are much smaller than the first-order variables.

The second-order equations for the time-averaged mean dynamics are expressed as

∇ · 〈v2〉 = 0 and ∇ · 〈P2〉 = 0, (2.5a,b)

with the second-order time-averaged Piola–Kirchhoff stress

〈P2〉 = −〈p2〉I + η(∇〈v2〉 + ∇〈v2〉T) − η〈(∇v1 · ∇ξ + ∇ξT · ∇vT
1 )〉

− ηb〈∇ξT : ∇v1〉I + 〈P1(v1) · [(∇ · ξ)I − ∇ξT ]〉. (2.6)

Here, all variables with subscript 2 correspond to second-order variables, 〈p2〉 is the
time-averaged second-order pressure, 〈v2〉 is the time-averaged second-order velocity,
ξ = ∂tv1 is the acoustic oscillation displacement and the operator 〈·〉 represents the time
average over an acoustic oscillating period. The first line in (2.6) represents the stress
of incompressible fluid, while the second line of (2.6) consists of the products of two
first-order acoustic quantities, representing the driving force for the time-averaged fluid
flow and cell motion. It is worth noting that, in the context of this work, there is a
time-averaged second-order flow that includes the acoustic streaming generated by the
driving terms and the Stokes flows generated by the cell motion. For later use, (2.5) and
(2.6) can be rewritten as

∇ · 〈v2〉 = 0 and ∇ · [−〈p2〉I + η(∇〈v2〉 + ∇〈v2〉T)] + ∇ · B(v1, ξ) = 0, (2.7a,b)

with the tensor operator B defined as

B(v1, ξ) = −η〈(∇v1 · ∇ξ + ∇ξT · ∇vT
1 )〉 − ηb〈∇ξT : ∇v1〉I

+ 〈P1(v1) · [(∇ · ξ)I − ∇ξT ]〉. (2.8)

In (2.8), by writing P1(v1), P1 is regarded as a function of v1 according to the first equation
of (2.3).

To study the possible motion of the cell, the membrane is assumed to have a
tank-treading motion. Let x0

s = x0
s ex + y0

s ey + z0
s ez represent the position vector of the

material point on the membrane at the initial moment with (ex, ey, ez) being the basis
vector triad of the body frame. According to Keller & Skalak (1982), the membrane
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elements are prescribed to circulate the cell surface relative to the body frame, and the
relative velocity of a material point attached to the cell membrane relative to the body
frame is derived as

vm = φ̇[−(ay/az)zey + (az/ay)yez], (2.9)

where φ is the phase angle of the cell membrane (see figure 1b) and is a function of time t.
It can be shown that vm · n = 0, where n is the unit outward normal to the cell membrane.
Thus, vm is tangent to the cell membrane everywhere and represents the tank-treading
motion. Finally, relative to the body frame, the velocity boundary conditions imposed on
the external and internal fluids are

〈vi
2〉 = vm for x = xs, (2.10)

〈ve
2〉 = vm for x = xs, (2.11)

〈ve
2〉 = −θ̇ex × x for |x| → ∞. (2.12)

Recall that the equations are formulated in the body frame, and the far field flow condition
(2.12) is due to the cell rigid tumbling motion. Moreover, the velocity of the material point
attached to the membrane relative to the fixed frame is introduced as

vs = vtt
s + vtu

s . (2.13)

Here, vs describes the synthetic motion of the membrane tank-treading motion vtt
s and the

cell rigid tumbling vtu
s = θ̇ex × xs.

The time-averaged flow field can be obtained by successively solving the acoustic
equation (2.3) with the incident wave in (2.1), and the time-averaged dynamic equation
(2.7) together with the velocity boundary conditions (2.10)–(2.12). Since (2.7) has the
structure of the Stokes equations and is linear with respect to the unknown variables
(〈v2〉, 〈p2〉), the solution to the time-averaged second-order flow field can be obtained
by superposition of three ‘Stokes flow’ components

〈v2〉 = 〈vac
2 〉 + 〈vtu

2 〉 + 〈vtt
2〉, (2.14)

where 〈vac
2 〉 represents the ‘Stokes flow’ (i.e. acoustic streaming) generated by the acoustic

dissipation in the viscous fluid, 〈vtu
2 〉 represents the ‘Stokes flow’ generated by the rigid

tumbling of the cell, and 〈vtt
2〉 represents the ‘Stokes flow’ generated by the tank treading of

the cell membrane. Specifically, the acoustic streaming 〈vac
2 〉 is driven by the body force

∇ · B(v1, ξ) in (2.7) and is calculated by successively solving equations (2.3) and (2.7)
independently of any second-order velocity excitation at the boundaries (i.e. θ̇ = φ̇ = 0, or
equivalently, 〈vac〉 = 0 in velocity boundary conditions (2.10)–(2.12)). Since the first-order
acoustic oscillation velocity depends linearly on the input acoustic pressure amplitude,
the second-order acoustic streaming velocity depends quadratically on the input acoustic
pressure amplitude, i.e. 〈vac

2 〉 ∝ p2
am. The ‘Stokes flows’ 〈vtu

2 〉 and 〈vtt
2〉 are obtained by

solving the Stokes equations (i.e. (2.7) without acoustic excitation) for different velocity
boundary conditions: 〈vtu

2 〉 ∝ θ̇ driven by velocity boundary condition (2.12) and 〈vtt
2〉 ∝ φ̇

driven by velocity boundary conditions (2.10) and (2.11).
Finally, the traction jump across the cell membrane can be obtained from the total

time-averaged stress as
f = (〈Pe

2〉 − 〈Pi
2〉) · n. (2.15)

Similar to the flow, the fluid traction jump can be extended to

f = f ac + f tu + f tt, (2.16)
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where f ac, f tu and f tt are membrane tractions contributed by the flows 〈vac
2 〉, 〈vtu

2 〉 and
〈vtt

2〉, respectively.

2.2. Acoustic streaming flow
The acoustic streaming flow 〈vac

2 〉 around a fixed rigid ellipsoid membrane tilted at an
angle θ can be obtained by directly solving the acoustic equation (2.3) with the incident
wave in (2.1) and the time-averaged dynamic equation (2.5), similar to the work by Hahn
et al. (2016). The phase difference ζ and inclination angle θ are implicitly included
in the solution. Furthermore, in this work, an acoustic decomposition technique based
on the superposition principle is used to obtain the acoustic streaming flow 〈vac

2 〉. As
we will see, by using the acoustic decomposition technique, the phase difference ζ and
inclination angle θ are separated from the acoustic streaming flow 〈vac

2 〉. This makes
the acoustic decomposition technique more suitable for incorporation into the theoretical
model of Keller & Skalak (1982) for the analysis of cell dynamics. In addition, the acoustic
decomposition technique provides insight into the underlying physical effects compared
with directly solving the acoustic streaming flow 〈vac

2 〉.
The solution of the acoustic streaming flow 〈vac

2 〉 is formulated in the body frame.
Considering that the wavelength is much larger than the size of the cell, the input acoustic
pressure in (2.1) can be approximately expressed by Taylor series expansion as

pin ≈ pam

2
(keŷ + keẑ eiζ ) eiωt + c.c. (2.17)

Rewriting equation (2.17) in the body frame, one obtains

pin ≈ pam

2
[( cos θ + eiζ sin θ )key + (eiζ cos θ − sin θ)kez] eiωt + c.c. (2.18)

For the incident wave with vanishing viscous mode, the second equation of (2.3) becomes
ρ0∂tv1 = −∇ · p1. Thus, the corresponding acoustic oscillation velocity is

vin ≈ vam

2
[(cos θ + eiζ sin θ)ey + (eiζ cos θ − sin θ)ez] eiωt + c.c., (2.19)

where vam = pam/(iρe
0ce

0) is the amplitude of the acoustic particle velocity. The solution
to the acoustic equation (2.3) must match with the input acoustic excitation far from the
cell (for (x, y, z) → ∞).

Subjected to the acoustic excitation expressed by (2.18) and (2.19), the solution to the
acoustic equations (2.3) can be assumed as

v1 = p̃am[( cos θ + eiζ sin θ ) eiωtvT + (eiζ cos θ − sin θ) eiωtvA] + c.c., (2.20)

where p̃am = pam/p0 is the normalized acoustic pressure amplitude with the reference
pressure p0 = 1 MPa. Here, vT is the one-dimensional standing wave response to the
transverse acoustic excitation along the y-direction, while vA is the one-dimensional
standing wave response to the axial acoustic excitation along the z-direction. The
subscripts ‘T’ and ‘A’ correspond to the transverse and axial acoustic excitations with
respect to the cell, respectively. The linear superposition of these components constitutes
the general solution. The component vT is the solution of the following linear system and
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associated boundary conditions:

(iω)pT + ρ0c2
0∇ · vT = 0 and (iω)ρ0vT − ∇ · PT = 0, (2.21a,b)

with

pT = p0
key
2

and vT = p0

2iρe
0ce

0
ey as (x, y, z) → ∞. (2.22a,b)

Similarly, the component vA obeys

(iω)pA + ρ0c2
0∇ · vA = 0 and (iω)ρ0vA − ∇ · PA = 0, (2.23a,b)

with

pA = p0
kez
2

and vA = p0

2iρe
0ce

0
ez as (x, y, z) → ∞. (2.24a,b)

The solution of the time-averaged dynamic problem is obtained by substituting
the acoustic solution (2.20) into the time-averaged dynamic equation (2.5). Since the
time-averaged dynamic equation (2.5) is linear, the solution of 〈vac

2 〉 can be assumed to
be the sum of the solution components resulting from different terms in the expansion
of B(v1, ξ) as given in (B3) (see Appendix B). Formally, the solution of 〈vac

2 〉 can be
expressed in the form

〈vac
2 〉 = (1 + sin 2θ cos ζ )p̃2

amvTT + (1 − sin 2θ cos ζ )p̃2
amvAA

+ cos 2θ cos ζ p̃2
amv0

AT + sin ζ p̃2
amv

π/2
AT . (2.25)

The terms vTT , vAA, v0
AT and v

π/2
AT are the solution components from the different

contributions to the acoustic streaming. These terms depend only on the geometry of
the cell and on the visco-acoustic properties (density, sound speed and viscosity) of the
internal and external fluids. Specifically, in the first row of (2.25), the term vTT corresponds
to the nonlinear interaction of the acoustic response vT with itself, and similarly, the term
vAA corresponds to the nonlinear interaction of the acoustic response vA with itself. They
are the solutions of the following linear problems:

∇ · vTT = 0 and
∇ · [−pTTI + η(∇vTT + ∇vT

TT)]

+∇ · [B(vT , ξ∗
T) + B(v∗

T , ξT)] = 0
, (2.26)

∇ · vAA = 0 and
∇ · [−pAAI + η(∇vAA + ∇vT

AA)]

+∇ · [B(vA, ξ∗
A) + B(v∗

A, ξA)] = 0
, (2.27)

where the asterisk indicates complex conjugate. Physically, vTT and vAA can be understood
as acoustic streaming flow driven by a one-dimensional standing wave propagating in the
y-direction and z-direction, respectively. The terms v0

AT and v
π/2
AT in the second line of

(2.25) correspond to the nonlinear interaction between the acoustic response vT and the
acoustic response vA. They are the solutions of the following linear problem:

∇ · vZ
AT = 0 and

∇ · [−pZ
ATI + η(∇vZ

AT + ∇(vZ
AT)T)] + ∇ · [B(vT , (eiZξA)

∗
)

+B(eiZvA, ξ∗
T) + B(v∗

T , eiZξA) + B((eiZvA)
∗
, ξT)] = 0

,

(2.28)
with v0

AT and v
π/2
AT corresponding to Z = 0 and Z = π/2, respectively.
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Controlled mean dynamics of red blood cells

By successively solving the acoustic problem posed by (2.21)–(2.24) and the
time-averaged dynamic problem posed by (2.26)–(2.28), one can obtain the acoustic
streaming components vTT , vAA, v0

AT and v
π/2
AT (see Appendix C for detailed numerical

calculations). According to (2.25), the acoustic-induced traction jump f ac can be expanded
as

f ac = (1 + sin 2θ cos ζ )p̃2
am f TT + (1 − sin 2θ cos ζ )p̃2

am f AA

+ cos 2θ cos ζ p̃2
am f 0

AT + sin ζ p̃2
am f π/2

AT , (2.29)

where f TT , f AA, f 0
AT and f π/2

AT are tractions contributed by the acoustic streaming
components vTT , vAA, v0

AT and v
π/2
AT , respectively. By using the acoustic decomposition

technique, (2.29) isolates the influence of the phase difference ζ and inclination angle θ

on the acoustic-induced traction jump f ac.

2.3. Torque balance and energy conservation for mean dynamics
The motion of the cell is completely characterized by the inclination angle θ and the
phase angle φ, and their time evolution equations are established using the torque balance
and energy conservation, respectively. The derivation of the time evolution equations
follows the work by Keller & Skalak (1982), who considered red blood cells in shear
flow. Specifically, the Stokes flows (〈vtt

2〉 and 〈vtu
2 〉) and their resulting membrane tractions

( f tt and f tu) can be found in the work of Keller & Skalak (1982) and references therein.
The solutions of the acoustic streaming 〈vac

2 〉 and its resulting membrane traction f ac have
been formulated in § 2.2. With these solutions, the torque balance equation and the energy
conservation equation for the red blood cell in a two-dimensional standing wave are given
below.

The torque balance requires that the torque acting on the cell is zero, which can be
expressed as

M = ex ·
∫

A
xs × f dA =

∫
A

(ys fz − zs fy) dA = 0, (2.30)

where fy and fz denote the y and z components of membrane traction f , respectively, and
A denotes the surface area of the cell membrane. According to the traction decomposition
in (2.16), the torque balance can be expressed as

M = Mac + Mtu + Mtt = 0, (2.31)

where Mac, Mtu and Mtt are torques associated with the membrane tractions f ac, f tu and
f tt, respectively. The torques Mtu and Mtt are given by (see Appendix D for details)

Mtu = −Cθ̇ (a2
y + a2

z ) and Mtt = −2Cayazφ̇, (2.32a,b)

with

C = 4V
a2

ygy + a2
z gz

. (2.33)

Here, V is the volume of the cell, and gy and gz are two geometric parameters of the
ellipsoidal cell (see Appendix D for definitions). Due to the formulation of the acoustic
streaming flow developed above, the corresponding torque Mac can be further expanded
according to (2.29). Recalling that vTT and vAA are the acoustic streaming flow driven
by the one-dimensional standing wave propagating in the y-direction and z-direction,
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Y. Liu and F. Xin

respectively, the resulting membrane tractions f TT and f AA in (2.29) are symmetrical with
respect to the three coordinate planes (i.e. the xy-, yz- and xz-planes), and therefore does
not contribute to the torque acting on the cell. Consequently, the acoustic-induced torque
is found to be

Mac = cos(2θ) cos ζ p̃2
amM0

AT + sin ζ p̃2
amMπ/2

AT , (2.34)

where M0
AT and Mπ/2

AT are the torques contributed by the membrane tractions f 0
AT and f π/2

AT ,
respectively. The first term in (2.34) depends on the inclination angle with a factor cos(2θ)

and hence alternates between positive and negative with respect to θ , while the second
term is independent of θ . These two torques were also qualitatively identified by Bernard
et al. (2017) based on the ideas of acoustic radiation torque and acoustic viscous torque,
but their work did not give an accurate method to calculate the two torques. Substituting
(2.32) and (2.34) into (2.31), the evolution equation of the inclination angle θ is

θ̇ = cos ζ p̃2
amM0

AT cos(2θ) + sin ζ p̃2
amMπ/2

AT − 2Cayazφ̇

C(a2
y + a2

z )
. (2.35)

In (2.35), the fluid viscosity appears explicitly in the parameter C originating from the
torques Mtu and Mtt generated by the Stokes flows, while appears implicitly in the torques
M0

AT and Mπ/2
AT generated by the acoustic streaming.

The energy conservation provides a constraint on the possible motion of the cell, that
is, the rate of work done by the surrounding fluid is equal to the elastic power stored or
dissipated in the membrane. By employing (2.13), the rate of work done by the surrounding
fluid can be written as

Ẇ =
∫

A
vs · f dA =

∫
A

vtt
s · f dA + θ̇ex ·

∫
A

xs × f dA. (2.36)

The last integral in (2.36) disappears according to the torque balance, so

Ẇ =
∫

A
vtt

s · f dA. (2.37)

Substituting the membrane tank-treading velocity vtt
s given in (2.9) into (2.37), Ẇ can be

expressed as

Ẇ = φ̇W with W =
∫

A

(
az

ay
ys fz − ay

az
zs fy

)
dA. (2.38)

Similar to the decomposition of the torque in (2.31), the work can be decomposed as

W = Wac + Wtu + Wtt, (2.39)

where Ẇac, Ẇtu and Ẇtt are the rates of work associated with the membrane tractions f ac,
f tu and f tt, respectively. The works Wtu and Wtt are given by (see Appendix D for details)

Ẇtu = −2ayazCθ̇ and Ẇtt = −Vηif1φ̇ + Vηef2φ̇ − 4a2
ya2

z

a2
y + a2

z
Cφ̇. (2.40a,b)

Here, f1 and f2 are two geometric parameters of the ellipsoidal cell (see Appendix D for
definitions). Similar to the torque Mac, the work Wac in (2.39) is expanded according
to (2.29). Also, based on the symmetry of membrane tractions f TT and f AA, it can be
clarified that they do not contribute to the work of the membrane tank-treading motion.
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Controlled mean dynamics of red blood cells

Since the acoustic streamings vTT and vAA represent the acoustic streaming flow driven by
one-dimensional standing wave propagation, this reflects the factor that one-dimensional
standing waves will not lead to the membrane tank-treading motion. Therefore, the work
Wac can be expanded as

Wac = cos(2θ) cos ζ p̃2
amW0

AT + sin ζ p̃2
amWπ/2

AT , (2.41)

where W0
AT and Wπ/2

AT are understood as the works contributed by the terms f 0
AT and f π/2

AT ,
respectively. However, the mechanical behaviour of the cell membrane is modelled by
the Kelvin–Voigt viscoelastic model. The membrane stress is σ = 2ηmD + 2μmE, where
ηm and μm are the viscosity and shear modulus of the membrane, respectively. Here,
the membrane viscosity ηm and shear modulus μm are related to the two-dimensional
membrane viscosity ηm

2D and shear modulus μm
2D reported in other literature (e.g. Tsubota

2021; Rezghi & Zhang 2022) by ηm
2D = ηme and μm

2D = μme, respectively, where e is the
membrane thickness. Here, D and E are the Eulerian strain rate tensor and the Eulerian
strain tensor of the membrane, respectively. The elastic energy stored and dissipated in the
membrane elements during tank treading is (Abkarian et al. 2007)

Ė =
∫

Ω

σ : D dΩ = φ̇

[
f1ηmφ̇ + 1

2
φ̇f1μm sin(2φ)

]
Ω, (2.42)

where Ω = Ae is the membrane volume. It is important to note that μm in (2.42) should
be understood as the effective shear modulus, which contains the effect of the initial
deformation from the unstressed shape to the elliptical shape of the cell at rest (Dupire
et al. 2015). Using energy conservation, which is translated as Ẇ = Ė, and employing
(2.35) and (2.39)–(2.42), the evolution equation for the phase angle φ is

φ̇ = cos ζ p̃2
am(W0

AT − f3M0
AT) cos(2θ) + sin ζ p̃2

am(Wπ/2
AT − f3Mπ/2

AT ) − 1
2Ωμmf1 sin(2φ)

(Vηif1 − Vηef2 + Ωηmf1)
,

(2.43)

where f3 = (2ayaz)/(a2
y + a2

z ) is a geometric parameter of the ellipsoidal cell. In (2.43),
the fluid viscosity appears explicitly in the denominator originating from the works Wtu

and Wtt generated by the Stokes flows, while appears implicitly in the torques M0
AT , Mπ/2

AT ,
W0

AT and Wπ/2
AT generated by the acoustic streaming.

Equations (2.35) and (2.43) are the extension of the theoretical model describing
RBC dynamics in shear flow by Keller & Skalak (1982) to 2-D standing waves.
Exactly, by replacing the torque and work due to 2-D standing waves with those due
to shear flow in (2.35) and (2.43), one can recover the simplified theoretical model
describing RBC dynamics in shear flow. After calculating M0

AT , Mπ/2
AT , W0

AT and Wπ/2
AT

(see Appendix C), the solutions of the cell motion are obtained by numerically solving
the two coupled first-order ordinary differential equations (2.35) and (2.43) using the
fourth-order Runge–Kutta method. The results are independent of the initial positions
including the initial inclination angle θ0 and initial phase angle φ0, that is, changing the
initial position will only produce a time shift in the results. Therefore, they are fixed to be
(θ0, φ0) = (0, 0).

3. Results and discussion

The geometric parameters of the ellipsoidal RBC are considered to be consistent with
previous studies: a1 = a2 = 4 μm, a3 = 1.5 μm and e = 50 nm (Abkarian et al. 2007;
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Dupire et al. 2015). The physical properties of the RBC cytoplasm are mass density
ρi

0 = 1168 kg m−3, sound speed ci
0 = 1680 m s−1 and shear viscosity ηi = 6 × 10−3 Pa s

(Bagchi, Johnson & Popel 2005; Mishra, Hill & Glynne-Jones 2014), while the physical
properties of the surrounding fluid (set to water) are ρe

0 = 998 kg m−3, ce
0 = 1498 m s−1

and ηe = 0.89 × 10−3 Pa s. For simple fluids, the bulk viscosity is ηb = −2η/3. The
operating frequency is fixed at f = 375 kHz (Hahn et al. 2016). In the typical acoustic
microfluidic experiment, the range of phase difference is ζ = 0 ∼ 0.5π, and the range
of acoustic pressure amplitude is pam = 0 ∼ 1 MPa (Mishra et al. 2014). Using these
parameters, the acoustic streaming and RBC dynamics are calculated.

3.1. Flow structure of acoustic streaming
In this model, the dynamics of the RBC is driven by the torques and works of the
acoustic streaming. To understand the response of RBCs in two-dimensional standing
waves, the acoustic flow is first investigated. In (2.25), the acoustic streaming 〈vac

2 〉 is
expressed as a linear combination of four acoustic streaming components vTT , vAA, v0

AT
and v

π/2
AT . Figures 3(a–d) and 3(e–h) show the flow structures of the four acoustic streaming

components and the corresponding time-averaged membrane traction forces generated by
them, respectively. As mentioned earlier, vTT and vAA can be understood as the acoustic
streamings driven by one-dimensional standing waves propagating along the y-axis and
z-axis, respectively. Two classical streaming flow structures emerge (Chan et al. 2022):
vTT falls into a bilayer regime outside the cell, characterized by an internal small vortex
structure and an external flow extending to infinity, as shown in figure 3(a); vAA falls
into a monolayer regime as the inner layer thickness increases and eventually diverges, as
shown in figure 3(b). Due to the symmetry of the acoustic streaming components vTT and
vAA with respect to the y-axis and z-axis, the membrane traction forces f TT and f AA are
also symmetrical with respect to the y-axis and z-axis, as shown in figures 3(e) and 3( f ).
Therefore, f TT and f AA make no contribution to the torque and work. In contrast, v0

AT and
v

π/2
AT do not have this symmetry, as shown in figures 3(c) and 3(d), and the same is true

for f 0
AT and f π/2

AT , as shown in figures 3(g) and 3(h). The contributions of f 0
AT and f π/2

AT
to the torque and work are therefore presented in table 1. As shown in figure 3(e–h), the
maximum traction acting on the RBC membrane is ∼1 Pa, This level of traction in the
2-D standing wave considered in this work is comparable with that in the shear flow in the
work of Abkarian et al. (2007). Considering that the RBC is a fixed ellipsoid but allows
membrane tank treading in the theoretical model, good agreement between the theoretical
results and experimental observation is achieved in the work of Abkarian et al. (2007).
Therefore, it is believed that the present theoretical model, also considering the RBC as
a fixed ellipsoid but allowing membrane tank treading, can give reasonable predictions of
RBC dynamics.

To gain insight into the role of the acoustic streaming components v0
AT and v

π/2
AT , two

special cases of phase differences ξ = 0 and π/2 are considered. In view of (2.25), the
total acoustic streamings in the two cases are

〈vac
2 〉|ξ=0 = (1 + sin 2θ)vTT + (1 − sin 2θ)vAA + cos 2θv0

AT , (3.1)

〈vac
2 〉|ξ=π/2 = vTT + vAA + v

π/2
AT , (3.2)

where the acoustic pressure amplitude is set to pam = 1 MPa. According to (3.1) and (3.2),
v0

AT and v
π/2
AT can be understood as the asymmetric part of the acoustic streaming 〈vac

2 〉|ξ=0
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Figure 3. (a–d) Time-averaged second-order velocity field and corresponding streamlines in the ŷẑ plane of the
body frame. (e– f ) Plots of the membrane traction: the arrow plots show the direction and relative magnitude
of membrane traction; the line plots show the normal component fn = f · n and tangential component ft =
f · t along the arclength s with n being the unit normal vector pointing outward the cell, and t being the
unit tangential vector pointing clockwise. The first to fourth rows correspond to the four acoustic streaming
components vTT , vAA, v0

AT and v
π/2
AT , respectively. The red ellipse represents the RBC membrane.
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Symbols M0
AT Mπ/2

AT W0
AT Wπ/2

AT

Values (×10−17 N m) −6.632 −5.661 2.914 −2.031

Table 1. Values of torques and works.

ẑ

ŷ

ẑ
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2〈 〉
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Figure 4. Contours of the root-mean-square acoustic pressure in the ŷẑ plane of the fixed frame for incident
waves with different phase differences: (a) ξ = 0 and (b) ξ = π/2. The acoustic pressure amplitude is pam =
1 MPa. The red ellipse represents the RBC membrane.

and 〈vac
2 〉|ξ=π/2, respectively. At the phase difference ξ = 0, the two-dimensional standing

wave approximates the propagating one-dimensional wave, as shown in figure 4(a). As the
RBC is non-spherical, the acoustic streaming 〈vac

2 〉|ξ=0 depends on the inclination angle
θ . This is reflected by the different structures of 〈vac

2 〉|ξ=0 at the four different inclination
angles θ = 0, −π/4, −π/2 and −3π/4, as shown in figure 5(a–d). It can also be seen
that 〈vac

2 〉|ξ=0 at θ = −π/4 and −3π/4 has the same structure as the acoustic streaming
components vAA and vTT , while its magnitude is twice those of vAA and vTT , respectively.
The dependence of 〈vac

2 〉|ξ=0 on the inclination angle θ is responsible for the factor cos 2θ

before v0
AT in the acoustic streaming expression (2.25). At the phase difference ξ = π/2,

the two-dimensional standing wave approximates a vortex field, as shown in figure 4(b).
This rotationally symmetrical acoustic field leads to the same acoustic streaming structure,
regardless of the orientation of the RBC, as shown in figure 5(e–h). Thus, 〈vac

2 〉|ξ=π/2 is
independent of the inclination angle θ , which explains the fact that the factor before v

π/2
AT

in the acoustic streaming expression (2.25) is independent of the inclination angle θ .

3.2. Mean dynamics of red blood cells
The motion modes of the cell are controlled by two main conditions. First, (2.34) indicates
that the cell is subjected to two types of acoustic-induced torques: the torque in the
first term of (2.34) tends to align the major axis of the oblate cell at the specific angle
θ = −π/4, the torque in the second term tends to rotate the cell continuously. When
the phase difference ζ increases from 0 to π/2, the magnitude of the latter torque
gradually increases, and finally can exceed the former torque. Thus, the cell is aligned
in a specific direction at small phase differences and tumbles at large phase differences
(see the upper branch in figure 6). Second, the time-averaged fluid shear stress acting
on the cell membrane, which is proportional to the square of the input acoustic pressure
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Figure 5. Acoustic streaming velocity and corresponding streamlines around the RBC in 2-D standing waves
in the ŷẑ plane of the fixed frame for different phase differences: (a–d) ξ = 0 and (e–h) ξ = π/2. The first to
fourth rows correspond to the four inclination angles θ = 0, −π/4, −π/2 and π/4, respectively. The acoustic
pressure amplitude is pam = 1 MPa. The red ellipse represents the RBC membrane.

amplitude pam, tends to circulate the membrane elements around the cell contour, while
the membrane elastic restoring force tends to keep them in their initial positions. The latter
is generally understood as an energy barrier and corresponds to the second term in (2.42).
Let us consider the π/2-circulation of the membrane around its contour: the membrane
elements initially in the short axis region enter the long axis region, and vice versa. In this
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pam > pc
am

ζ > ζ c

ẑ
ŷ

Figure 6. Schematic of the motion transition of an RBC, with the blue and green particles representing two
material points attached to the cell membrane. The upper branch shows that the cell tumbles when the phase
difference exceeds the critical phase difference, while the lower branch shows that the cell tank treads when
the acoustic pressure amplitude exceeds the critical acoustic pressure amplitude.

process, the cell membrane strains and stores elastic energy, which should be provided by
the external work done by the time-averaged fluid shear stress. When pam is small, the
shear stress is too small to overcome the energy barrier, and the membrane cannot tank
tread. When pam is large, the shear stress can overcome the energy barrier, enabling the
membrane to perform the tank-treading motion (see the lower branch in figure 6).

More specifically, for small phase differences and small acoustic pressure amplitudes,
the steady stationary state of the cell corresponds to steady solutions of (2.35) and (2.43).
Letting the right-hand side of the equations equal to zero, the steady solutions of the
inclination angle θ# and phase angle φ# can be found as

θ# = 1
2

cos−1

(
−Mπ/2

AT

M0
AT

tan ζ

)
, (3.3)

φ# = 1
2

sin−1

[
2p̃2

am

Ωμmf1

(
Wπ/2

AT − W0
AT

Mπ/2
AT

M0
AT

)
sin ζ

]
. (3.4)

The condition for the above solution is that the argument of the inverse trigonometric
function should be in the range of [−1, 1], or equivalently,

ζ < ζ c ≡ tan−1

(
M0

AT

Mπ/2
AT

)
, (3.5)

p̃am < p̃c
am ≡

√√√√Ωμmf1
2 sin ζ

(
Wπ/2

AT − W0
AT

Mπ/2
AT

M0
AT

)−1

. (3.6)

Above the critical values of phase difference ζ c and acoustic pressure amplitude pc
am,

steady solutions no longer exist, and tumbling or tank treading occurs, as shown in figure 6.
Then, a phase diagram is constructed for the dimensionless acoustic force P̃ac =

p2
amκe

0R/(eμm) and phase difference ζ , as shown in figure 7(a). Here, the dimensionless
acoustic force is introduced and defined as P̃ac = p2

amκe
0R/(eμm), where κe

0 = 1/[ρe
0(c

e
0)

2]
is the adiabatic compressibility of the external fluid and R = (axayaz)

1/3 is the effective
radius of the cell. For the simplicity of the dimensionless formulation, the dimensionless
acoustic force here is expressed as the ratio of the membrane traction force outside the
cell generated by 2-D standing waves to the elastic force of the cell membrane, while the
actual force that drives the deformation of the cell is the difference between the membrane
traction force inside and outside the cell generated by 2-D standing waves. Due to the
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Figure 7. (a) Phase diagram of RBC motion in 2-D ultrasonic standing waves as a function of the
dimensionless acoustic force P̃ac = p2

amκe
0R/(eμm) and phase difference ζ , showing four different regimes.

The solid lines are the numerical solutions of (2.35) and (2.43), while the circles are the analytical solutions
of (3.5) and (3.6). (b) Phase diagram of RBC motion in general linear flow as a function of the capillary
number Ca = GηeR/(eμm) and parameter ς measuring the ratio of the strain rate to vorticity, also showing four
different regimes. The mechanical properties of the cell membrane are: effective shear modulus μm = 0.5 Pa
and surface viscosity ηm = 0 Pa s. (a) 2-D standing waves and (b) general linear flow.

small difference in acoustic impedance of fluid inside and outside the cell, the difference
in membrane traction force inside and outside the cell is also not significant, and the
actual magnitude of this net membrane traction force is shown in figure 3. The effective
shear modulus of the membrane is μm = 0.5 Pa and the viscosity of the membrane is
ηm = 0 Pa s.

As shown in figure 7(a), the above two conditions of (3.5) and (3.6) divide the phase
space into four regions: in the steady stationary state for small ζ and small P̃ac, the
inclination angle θ and phase angle φ asymptotically approach constant values θ# and
φ#, respectively (figure 8c); in the tank-treading motion state for small ζ and large P̃ac,
θ rotates and φ oscillates (figure 8d); in the tumbling motion state for large ζ and small
P̃ac, θ oscillates and φ rotates (figure 8a); in the intermittent rotation state for large ζ and
large P̃ac, θ and φ both rotates (figure 8b). The boundary of the steady stationary state
is determined by the analytical expressions of (3.5) and (3.6), or the numerical solutions
of (2.35) and (2.43). However, the boundaries between the other three motions need to
be determined numerically because the motions of the inclination angle θ and phase
angle φ are nonlinearly coupled in these states. At small dimensionless acoustic force
P̃ac, this phase diagram is consistent with the experimental observations of Bernard et al.
(2017). They investigated the effect of phase difference ζ on the motion of RBCs in a
surface acoustic wave device and found that cell tumbling could only be observed when ζ

was sufficiently large at the input acoustic pressure amplitude pam ≈ 0.1 MPa. However,
due to limited experimental working conditions, Bernard et al. (2017) did not detect the
tank-treading motion of the cells in their experiments. In contrast, at relatively large
input acoustic pressure amplitude pam > 0.5 MPa, our theory and simulation have well
predicted the tank-treading motion of the cells here, and have calculated the distributions
of acoustic streaming and acoustic-induced stress in § 3.1, thus explaining the dynamic
motion mechanism of cells at the level of the stress tensor. Furthermore, a similar phase
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Figure 8. Typical temporal evolution of inclination angle θ and phase angle φ in the four different regions
in figure 7(a): (a) pam = 0.3 MPa and ζ = 0.4π; (b) pam = 0.7 MPa and ζ = 0.4π; (c) pam = 0.3 MPa and
ζ = 0.2π; and (d) pam = 0.9 MPa and ζ = 0.29π. (a) Tumbling, (b) intermittent rotation, (c) steady stationary
state and (d) tank treading.

diagram was observed in our previous 2-D finite element simulations, but the intermittent
rotation regime has not yet been obtained (Liu & Xin 2023b). This is the new finding of
the present 3-D finite element simulation.

For comparison, the RBC dynamics in a general linear flow beyond shear flow is
presented. The velocity field of the flow is expressed as

vg = (s + w)ẑêy + (s − w)ŷêz, (3.7)

where s and w are the strain rate and vorticity, respectively. The theoretical model
describing the dynamics of RBCs in general linear flow is given in Appendix D. Referring
to the 2-D ultrasonic standing waves, s and w are rewritten as s = Gcos2ς and w =
Gsin2ς , where G = s + w measures the intensity of the flow and ς measures the ratio
of the strain rate to vorticity.

A phase diagram is constructed for the capillary number Ca = GηeR/(eμm) and
parameter ς measuring the ratio of the strain rate to vorticity, as shown in figure 7(b). The
phase diagrams in general linear flow and 2-D standing wave are globally similar, showing
four dynamical regimes. The similarity can be analysed based on the two conditions
governing the RBC dynamics mentioned above. For the first condition describing the
competition between two types of torques, the two types of torque can be identified in
both shear flow and 2-D standing wave. When ζ = ς = 0, (2.1) locally approximates
a one-dimensional standing wave and (3.7) describes a purely extensional flow. The
suspended cells are subjected to a pure extensional effect (Liu & Xin 2023b), and the
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extensional effect tends to align RBCs in a specific direction. When ζ = ς = π/2, (2.1)
locally approximates a vortex acoustic field and (3.7) describes a purely rotational flow.
The suspended cells are subjected to a pure rotational effect (Liu & Xin 2023b), and the
rotational effect tends to rotate the RBCs continuously. The ς and ζ control the ratio of
the two types of torque in 2-D standing wave and general linear flow, respectively; in the
same way, the larger the value of ς and ζ , the larger the ratio of the torque tending to
continuously rotate the RBCs to that tending to align the RBCs in a specific direction.

For the second condition describing the competition between the work done by the fluid
shear stress and the energy barrier, the capillary number Ca and dimensionless acoustic
force P̃ac control the ratio of the input work to the energy barrier in a 2-D standing
wave and general linear flow, respectively; in the same way, the larger the value of Ca
and P̃ac, the larger the ratio of the work to the energy barrier. As for the difference
between 2-D ultrasonic standing waves and general linear flow, two separate regimes of
intermittent rotational states are observed in 2-D ultrasonic standing waves, while only
one regime is observed in general linear flow. This difference comes from the competition
between the work done by the fluid shear stress and the energy barrier, here the fluid shear
stress can be generated by cell tumbling and input energy (i.e. general linear flow and
2-D standing wave). In general linear flow, the work associated with the rotational part
and the cell tumbling cancel each other out and only a regime of intermittent rotational
state is observed, where the energy barrier is overcome by the work associated with the
extensional part. In 2-D standing waves, the work associated with the rotational part and
the cell tumbling are different. In one regime of the intermittent rotational state (small
acoustic pressure amplitudes), the energy barrier is overcome by the work associated with
the 2-D standing waves, while in the other regime of the intermittent rotational state (large
acoustic pressure amplitudes), the energy barrier is overcome by the work associated with
cell tumbling. It is worth noting that for the special case of ς = π/4, (3.7) describes the
shear flow. As indicated by the dashed line in figure 7(b), only the tumbling motion and
intermittent rotation are observed for shear flow due to the fixed ratio of the extension to
rotation (Deschamps et al. 2009).

As can be seen from (3.6), the transition between the steady stationary state and tank
treading is related to the effective shear modulus of the membrane μm. It can therefore
be anticipated that the experimental values of the critical acoustic pressure amplitude
fitted with (3.6) can be used to determine the effective shear modulus of cell membrane
μm. However, this transition is independent of the membrane viscosity ηm, as the energy
barrier of the membrane tank-treading motion is independent of the membrane viscosity.
To assess the membrane viscosity, the dynamical parameters of tank-treading motion are
analysed. Figure 9 shows the tank-treading frequency f tt (i.e. the reciprocal of the time for
2π-rotation of the phase angle) and the average inclination θm (i.e. the average inclination
angle during oscillation) versus the membrane viscosity ηm, where the values of ηm

cover the literature value of RBC membranes ranging as 0.7 ∼ 2 Pa s (Abkarian et al.
2007). Figure 9 also shows the influence of cytoplasmic viscosity. The range of literature
values for cytoplasmic viscosity is 5 ∼ 55 mPa s. Four different values of cytoplasmic
viscosityηi are considered: 6, 12, 24 and 48 mPa s. Figure 9(a) shows that the tank-treading
frequency f tt decreases with increasing membrane viscosity and increasing cytoplasmic
viscosity. This is because the greater the viscosity of the cell membrane and cytoplasm,
the greater the viscous resistance impeding the cell membrane tank-treading motion, and
the slower the angular velocity or frequency of the cell tank-treading motion. It can also
be observed from figure 9(a) that the four lines representing the different cytoplasmic
viscosities tend to merge. Thus, at high membrane viscosities, the tank-treading frequency
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Figure 9. (a) Tank-treading frequency f tt and (b) average inclination θm versus membrane viscosity for
different cytoplasmic viscosity at the acoustic pressure amplitude pam = 0.8 MPa and the phase difference
ζ = 0.2π.

is almost independent of the cytoplasmic viscosity. Figure 9(b) shows that increasing
membrane viscosity and increasing cytoplasmic viscosity align the cell closer to the
inclination angle θ# of RBCs with a rigid membrane, indicated by the dashed lines. This
is because increasing membrane viscosity and increasing cytoplasmic viscosity stiffen the
cell membrane.

4. Concluding remarks

A computational model is developed to study the time-averaged dynamics of RBCs
trapped in the acoustic pressure nodes of two orthogonal ultrasonic standing waves
with phase difference. In the context of the generalized Lagrangian formulation, the
time-averaged mean stress caused by acoustic nonlinear effect is obtained by the acoustic
perturbation method. The cell is modelled as a viscoelastic membrane enclosing a
homogeneous fluid, while simplifying its dynamics by constraining two degrees of
freedom: the inclination angle of the ellipsoidal cell shape and the phase angle of the
potential tank-treading motion of the cell membrane. Based on torque balance and energy
conservation, the evolution equations of the inclination angle and the phase angle are
derived, respectively.

In two-dimensional standing waves, RBCs have four different types of motion: the
steady stationary state, tumbling motion, tank-treading motion and intermittent rotation,
in which both inclination angle and phase angle rotate. The transition from the steady
stationary state to tumbling motion is caused by the competition between two types of
acoustic-induced torques: one tends to align the cell in a specific direction and the other
tends to cause the cell to tumble. Consistent with experimental observations, the transition
is found by increasing the phase difference until the latter torque overcomes the former.
The tank-treading motion occurs when the acoustic-induced shear stresses overcome the
energy barrier of the cell membrane. This requirement is met when the acoustic pressure
amplitude is relatively large (larger than 0.5 MPa) compared to those used for only
rigid-body translational or rotational manipulation of cells (approximately 0.1 MPa), but
still within the cell-friendly range. It is hoped that the present results will help guide
future experimental work to control the time-averaged dynamics of RBCs with acoustic
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techniques, and further help to extract the viscoelastic properties of cell membranes by
fitting experimental observations with the present computational model.
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Appendix A. Acoustic perturbation method in the generalized Lagrangian
formulation

The fluid hydrodynamics considered in this work is governed by the Navier–Stokes
equations in the deformed configuration Bt

ρ̇# + ρ# ∇ · v# = 0 in Bt, (A1)

ρ#v̇# + ∇ · σ # = 0 in Bt, (A2)

where ρ# is the fluid density, v# is the fluid velocity and σ # is the Cauchy stress. The
superscript # denotes the quantities defined in the deformed configuration Bt, which are
functions of time t and position y (see figure 2a). Assuming the fluid is linear, viscous and
compressible, the constitutive response function for the Cauchy stress is

σ # = −p#(ρ#)I + η(∇v# + ∇v#T
) + ηb(∇ · v#)I, (A3)

where p# is the fluid pressure, μ and μb are the shear and bulk viscosities, respectively.
When the fluid is subjected to acoustic waves, the following linear relationship is assumed:

p# = c2
0(ρ

# − ρ0), (A4)

where c0 and ρ0 are constants that represent the sound speed and density of the fluid
at rest.

The acoustic perturbation method in the generalized Lagrangian formulation developed
by Nama et al. (2017) is briefly reviewed here. First, the Navier–Stokes equations are
reformulated in the mean configuration. The field g# defined in the deformed configuration
Bt can be mapped onto the mean configuration B according to the following definition:

g(x, t) = g#(y, t)|y=x+ξ(x,t), (A5)

where g is a function of time t and position x (see figure 2a). Using the above definition,
(A1) and (A2) can be expressed in the mean configuration as

∂tρ + F−T
ξ · ∇ρ · (v − vξ ) + ρF−T

ξ : ∇v = 0 in B, (A6)

Jξρ[∂tv + ∇v · F−1
ξ · (v − vξ )] − ∇ · P = 0 in B, (A7)

where F ξ = ∇ξ and Jξ = det(F ξ ) are the gradient of acoustic oscillation displacement
and its Jacobian determinant. In (A7), P is the Piola–Kirchhoff stress tensor (i.e. nominal
stress tensor), representing the stress measured per unit area in the mean configuration,
and is defined as

P = Jξσ · F−T
ξ . (A8)

Then, the acoustic perturbation method is applied to linearize (A6) and (A7). Subjected to
acoustic waves, a tiny perturbation ρ1 in the fluid density and v1 in the fluid velocity
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are induced. The magnitude of the perturbation is characterized by the dimensionless
acoustic Mach number

Ma = v1

c0
= ρ1

ρ0
� 1, (A9)

where v1 = |v1|. In a typical acoustofluidic system Ma ≈ 10−4, therefore, a perturbation
expansion of fluid quantity g in order of Ma makes sense, g = g0 + g1 + g2 + · · · , where
gn ∝ Man. The expansions in fluid density ρ, pressure p and velocity v are given by

ρ = ρ0 + ρ1 + ρ2, (A10)

p = p0 + p1 + p2, (A11)

v = v1 + v2, (A12)

where the numbers in the subscripts indicate the corresponding order. The system is
considered to be initially at rest with velocity v0 = 0, density ρ0 = const. and pressure
p0 = const. before acoustic excitation. The first-order response (ρ1, p1, v1) represents the
first-order linear acoustic field, and the second-order response (ρ2, p2, v2) represents the
second-order nonlinear acoustic field.

Substituting (A10)–(A12) into (A6) and (A7), the first-order equations describing the
acoustic wave propagation is obtained as

∂tp1 + ρ0c2
0∇ · v1 = 0 in B, (A13)

ρ0∂tv1 + ∇ · P1 = 0 in B, (A14)

with the first-order Piola–Kirchhoff stress

P1 = −p1I + η(∇v1 + ∇vT
1 ) + ηb(∇ · v1)I. (A15)

The acoustofludic dynamics observed in the experiments occurs on a sub-s time
scale, which is much slower than the ultrasonic μs time scale. The quantities in
the acoustofludic dynamics are represented by the time-averaged operator 〈·〉. The
time-averaged second-order equations describing the acoustofludic dynamics response,
are given by

∇ · 〈v2〉 = 0 in B, (A16)

∇ · 〈P2〉 = 0 in B, (A17)

with the time-averaged second-order Piola-Kirchhoff stress

〈P2〉 = −〈p2〉I + η(∇〈v2〉 + ∇〈v2〉T) − η〈∇v1 · ∇ξ + ∇ξT · ∇vT
1 〉

− ηb〈∇ξT : ∇v1〉I + 〈P1 · [(∇ · ξ)I − ∇ξT ]〉. (A18)

In acoustic streaming calculations, there is usually a Stokes drift term in addition to
the Eulerian streaming flow field to account for the Lagrangian motion of particles. Here,
since the Lagrangian acoustic perturbation method is used, the Lagrangian streaming flow
can be obtained directly without the need to convert the Eulerian streaming flow to the
Lagrangian streaming flow by using the Stokes drift. Essentially, the Lagrangian streaming
flow we obtain actually consists of Eulerian streaming flow and the Stokes drift term.
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Appendix B. Expansion of the nonlinear operator B(v1, ξ)

The acoustic oscillation velocity v1 given in (2.20) is expressed as

v1 = (cos θ + eiζ sin θ) eiωtvT + (eiζ cos θ − sin θ) eiωtvA

+ (cos θ + e−iζ sin θ) e−iωtv∗
T + (e−iζ cos θ − sin θ) e−iωtv∗

A, (B1)

where the asterisk represents the complex conjugate. Correspondingly, the acoustic
oscillating displacement ξ is expressed as

ξ = (cos θ + eiζ sin θ) eiωtξT + (eiζ cos θ − sin θ) eiωtξA

+ (cos θ + e−iζ sin θ) e−iωtξ∗
T + (e−iζ cos θ − sin θ) e−iωtξ∗

A. (B2)

Substituting (B1) and (B2) into B(v1, ξ), one obtains

B(v1, ξ) = p̃2
amB

⎛
⎜⎜⎜⎝
[

( cos θ + eiζ sin θ) eiωtvT + (eiζ cos θ − sin θ) eiωtvA
+ (cos θ + e−iζ sin θ) e−iωtv∗

T + (e−iζ cos θ − sin θ) e−iωtv∗
A

]
,

[
( cos θ + eiζ sin θ) eiωtξT + (eiζ cos θ − sin θ) eiωtξA

+ (cos θ + e−iζ sin θ) e−iωtξ∗
T + (e−iζ cos θ − sin θ) e−iωtξ∗

A

]
⎞
⎟⎟⎟⎠

= p̃2
am

⎧⎪⎪⎨
⎪⎪⎩

(1 + cos ζ sin 2θ)[B(vT , ξ∗
T) + B(v∗

T , ξT)]
+ (1 − cos ζ sin 2θ)[B(vA, ξ∗

A) + B(v∗
A, ξA)]

+ cos ζ cos 2θ[B(vT , ξ∗
A) + B(vA, ξ∗

T) + B(v∗
T , ξA) + B(v∗

A, ξT)]
+ sin ζ [B(vT , (iξA)∗) + B(ivA, ξ∗

T) + B(v∗
T , iξA) + B((ivA)∗, ξT)]

⎫⎪⎪⎬
⎪⎪⎭ .

(B3)

It is worth noting that after time averaging, all harmonic terms with time dependence eiωt

in (B3) equal zero and disappear.

Appendix C. Numerical model for acoustic streaming

As shown in figure 10(a), the modal decomposition in the azimuthal direction is used to
reduce the original three-dimensional problem to a two-dimensional domain defined in the
meridional (r, z) plane of the cylindrical coordinate system, which is similar to the method
used by Fabre et al. (2017).

Using cylindrical coordinates, the acoustic boundary condition for excitation along the
y-direction can be expressed as

pin
T = 1

2
p0key = − iker

4
p0 eiϕ + iker

4
p0 e−iϕ, (C1)

vin
T = p0

2iρe
0ce

0
ey = 1

iρe
0ce

0

(
− i

4
er + 1

4
eϕ

)
p0 eiϕ + 1

iρe
0ce

0

(
i
4

er + 1
4

eϕ

)
p0 e−iϕ. (C2)

This indicates that vT can be divided into two parts:

vT = vT+ eiϕ + vT− e−iϕ. (C3)

The acoustic field (vT+, qT+) corresponds to the solution of the following problems and
associated boundary conditions:

(iω)pT+ + ρ0c2
0∇+1 · vT+ = 0 and (iω)ρ0vT+ − ∇+1 · PT + = 0, (C4a,b)
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x

y

z

r

r

z
Γ 2

Γ 1

P

(b)(a)

ϕ

ϕ

Figure 10. (a) Cartesian coordinate system (x, y, z) and cylindrical coordinate system (r, ϕ, z) used in the
calculation. (b) Sketch of the two-dimensional axisymmetric geometry used in the simulation, consisting of a
cell (shown in red) and a part of the surrounding medium (shown in grey). Note that the entire computational
domain and the cell are not scaled.

with

pT+ = − ikeρe
0

4
p0 and vT+ = − p0

4ρe
0ce

0
er + p0

4iρe
0ce

0
eϕ as (r, z) → ∞. (C5a,b)

Similarly, the acoustic field (vT−, qT−) obeys

(iω)pT− + ρ0c2
0∇−1 · vT− = 0 and (iω)ρ0vT− − ∇−1 · PT− = 0, (C6a,b)

with

pT+ = − ikeρe
0

4
p0 and vT+ = + p0

4ρe
0ce

0
er + p0

4iρe
0ce

0
eϕ as (r, z) → ∞, (C7a,b)

where ∇m is the gradient operator, whose azimuthal derivative is replaced by im.
The acoustic field generated by the axial excitation corresponds to the solutions of the

following problems and associated boundary conditions

(iω)pA + ρ0c2
0∇ · vA = 0 and (iω)ρ0vA − ∇ · PA = 0, (C8a,b)

with

pA = kez
2

p0 and vT+ = 1
2iρe

0ce
0

ez as (r, z) → ∞. (C9a,b)

After substituting (C3) into (2.28), one can define q̄Z
AT with Z = 0 and π/2 as the

solution of the following problem:

∇ · v̄Z
AT = 0 and

∇ · [−p̄Z
ATI + η(∇v̄Z

AT + ∇(v̄Z
AT)

T
)] + ∇ · [B1,0(vT , (eiZξA)

∗
)

+B1,0(eiZvA, ξ∗
T) + B0,1(v

∗
T , eiZξA) + B0,1((eiZvA)

∗
, ξT)] = 0

,

(C10a,b)
such that

v̄Z
AT = v̄Z

AT eiϕ + (v̄Z
AT)∗ e−iϕ. (C11)

Here, Bma,mb(qa, qb) is the operator, whose azimuthal derivatives of qa are replaced by
ima and azimuthal derivatives of qb are replaced by imb.
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Controlled mean dynamics of red blood cells

Acoustic wave Acoustic streaming

Cell membrane (Γ1 in figure 8b) vi
1 = ve

1, pi
1 = pe

1 〈vi
2〉 = 0, 〈ve

2〉 = 0
Outer boundary (Γ2 in figure 8b) ve

1 = vin, pe
1 = pin 〈ve

2〉 = 0

Table 2. Boundary conditions for calculating acoustic streaming.

10–24

10–26

10–28

10–30

10–32

10–1 100

Analytical, Busse & Wang (1981)

Numerical, present

Numerical, Hahn et al. (2016)

R/δ

M
ac

/p
2 am

 (
N

 .
 m

 .
 P

a–
2
)

101

Figure 11. Comparison of the present results and previous results: normalized torque Mac/p2
am on rigid

spherical particles with different normalized radii R/δ.

Equations (C4)–(C10) are first transformed into their weak forms and then numerically
solved to obtain the acoustic streaming flows q̄Z

AT . The torque MZ
AT and work WZ

AT induced
by qZ

AT can then be calculated according to the definitions given in the main text.
Introducing an ellipsoid equal volume sphere with radius R = (axayaz)

1/3, the
axisymmetric computational domain is a half-circle with a typical radius 15R embedding
the cell, as shown in figure 10(b). The applied boundary conditions are summarized in
table 2. Moreover, to fix the solution to the incompressible acoustic streaming problem,
the pressure point constraint 〈 pi

2〉 = 0 is applied to point P inside the cell, and 〈 pe
2〉 = 0

is applied to point P outside the cell. A triangular mesh is used to discretize the whole
computational domain. The mesh is refined at the cell membrane with the typical grid size
0.03R. The change of the computational domain radius in the range of 15 ∼ 20R and the
change of the membrane mesh size in the range of 0.03 ∼ 0.06R lead to the variation of
the results <1 % when measuring M0

AT , Mπ/2
AT , W0

AT and Wπ/2
AT . Therefore, the solutions

have converged.
To verify the numerical model, the acoustic-induced torques on rigid particles are

simulated. The model system is the same as that of the compressible cell, but the
cell domain is replaced by a rigid domain. The acoustic-induced torque is calculated
as Mac = ex · ∫A xs × (Pe

m · n) dA for the rigid sphere. Figure 11 plots the normalized
acoustic-induced torque Mac/p2

am acting on a rigid spherical particle as a function of
the normalized radius R/δ, where δ = √

2ηe/(ρe
0ω) is the viscous penetration depth. The

phase difference is fixed at ζ = π/2. The black dashed line represents the analytical
results of Busse & Wang (1981), the red circles represent the three-dimensional finite
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30

az (μm) az (μm)
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10 Numerical, present

(×10–25) (×10–25)
0
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8
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4

2
30 402010

M
ac

/p
2 am

 (
N

 .
 m

 .
 P

a–
2
) Numerical, Hahn et al. (2016)

Numerical, present
Numerical, Schwarz et al. (2015)

(b)(a)

Figure 12. Comparison of the present results with those calculated by previous methods: normalized
acoustic-induced torque Mac/p2

am on rigid ellipsoidal particles with ellipsoidal radii ax = ay = 10 μm and
az between 10 μm and 40 μm.

element results of Hahn et al. (2016) and the blue circles represent the present numerical
results. It is worth noting that the results of Busse & Wang (1981) and Hahn et al.
(2016) are derived from the acoustic perturbation theory in the Eulerian context. However,
although different acoustic perturbation theories are used, the present numerical results are
completely consistent with the previous numerical results. Since the analytical solutions
are derived under the assumption of a large normalized radius R/δ, it can be seen that
both numerical results asymptotically approach the analytical results at a large normalized
radius R/δ. Figures 12(a) and 12(b) further investigate the normalized acoustic-induced
torque Mac/p2

am acting on rigid ellipsoidal particles with ellipsoidal radii ax = ay = 10 μm
and az between 10 μm and 40 μm at the phase difference ζ = π/2 and 0, respectively.
In figure 12(b), the red circles represent the three-dimensional finite element results
introduced by Schwarz et al. (2015), who calculated the acoustic radiation torque based on
the acoustic moment flux density tensor for inviscid fluids. The present results agree well
with the results calculated by previous methods. In summary, the present computational
model for deformable cells in ultrasonic standing waves is degraded to predict the
acoustic-induced torques on rigid particles, whose results agree well with previous results,
so these comparisons validate the present computational model.

Appendix D. Simplified theoretical model describing RBC dynamics in general linear
flow

The imposed general linear flow given in (3.7) can be rewritten in the body frame in the
component form as⎡

⎢⎢⎣
v

g
x

v
g
y

v
g
z

⎤
⎥⎥⎦ = s sin 2θ

⎡
⎣ 0

y
−z

⎤
⎦+ s cos 2θ

⎡
⎣0

z
y

⎤
⎦+ w

⎡
⎣ 0

−z
y

⎤
⎦ . (D1)

It is worth noting that the first term represents symmetric flows with respect to the xy and
xz planes, the second term represents a pure extensional flow and the third term represents
a pure rotational flow. The membrane velocity given in the body frame can be written in
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Controlled mean dynamics of red blood cells

component form as ⎡
⎢⎣

vm
x

vm
y

vm
z

⎤
⎥⎦ = φ̇

⎡
⎣ 0

−(ay/az)z
(az/ay)y

⎤
⎦ . (D2)

The Stokes flow around the RBC in the planar linear flow (i.e. the solution of the
Stokes equations, or equivalently (2.7) without acoustic excitation) can be obtained by
superposition:

v = vg + vtu + vtt, (D3)

where vg ∝ s, w is the Stokes flow component due to the imposed flow (D1), vtu ∝ θ̇ is the
Stokes flow component due to the rigid tumbling of the cell and vtt ∝ φ̇ is the Stokes flow
component due to the membrane tank treading. Similar to (D3), the membrane traction
force can be extended as

f = f g + f tu + f tt, (D4)

where

f = (σ e − σ i) · n with σ = −pI + η(∇v + ∇vT). (D5)

Here, the fluid stress σ is equal to the second-order Piola–Kirhhoff stress 〈P2〉 without
acoustic excitation. The membrane traction components f g ∝ s, w, f tu ∝ θ̇ and f tt ∝ φ̇

are due to vg, vtu and vtt, respectively.
For simplicity, the total fluid stress is given here, rather than the fluid stress components.

The stress components σ g, σ tu and σ tt can be immediately obtained from the total fluid
stress σ by considering the fact that σ g ∝ s, w, σ tu ∝ θ̇ and σ tt ∝ φ̇. The total fluid stresses
outside and inside the cell have been solved by Keller & Skalak (1982) and can be written
in component form as

σ e
ij = −peδij + ηe(Aij + 2em

ij ), (D6)

σ i
ij = −piδij + 2ηiem

ij , (D7)

where pe and pi are arbitrary constant fluid pressures outside and inside the cell,
respectively. The tensor Aij are independent of the position x, and two typical elements
Axx and Axy are defined by

Axx = 4
3

2gxexx − gyeyy − gzezz

g′′
y g′′

z + g′′
z g′′

x + g′′
x g′′

z

Axy = 4
gxexy − α2

y g′
z(ζxy − εxyzθ̇ )

g′
z(α

2
x gx + α2

y gy)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (D8)

where ⎧⎪⎪⎨
⎪⎪⎩

eij = eg
ij − em

ij

eg
ij = 1

2(v
g
i,j + v

g
j,i)

em
ij = 1

2(vm
i,j + vm

j,i)

and

⎧⎪⎪⎨
⎪⎪⎩

ζij = ζ
g
ij − ζm

ij

ζ
g
ij = 1

2 (v
g
j,i − v

g
i,j)

ζm
ij = 1

2(vm
j,i − vm

i,j)

. (D9)
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The integrals gi, g′
i and g′′

i depend only on the shape of the ellipsoid. The typical integrals
gx, g′′

x and g′′
x are given by

gx =
∫ ∞

0

dλ
(α2

x + λ)Δ

g′
x =

∫ ∞

0

dλ
(α2

y + λ)(α2
z + λ)Δ

g′′
x =

∫ ∞

0

λ dλ
(α2

y + λ)(α2
z + λ)Δ

Δ2 = (α2
1 + λ)(α2

2 + λ)(α2
3 + λ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (D10)

Here, the αi with i = x, y, z are the dimensionless axes defined by

αi = ai

(axayaz)
1/3 . (D11)

The other elements of Aii (no sum) and Aij(i /= j) as well as other integrals gi, g′
i and g′′

i
can be obtained by the appropriate permutation of the subscripts in (D8) and (D10). To
calculate the surface integrals of the torque M defined in (2.30) and the work W defined in
(2.38), the identity

∫
A xnx dA = ∫

A yny dA = ∫
A znz dA = V is used.

With the information on fluid stresses and membrane tractions, the derivation of the
equations for the time evolution of the inclination angle θ and phase angle φ of the RBC
is derived from the torque balance and energy conservation, respectively, which is similar
to the procedure in § 2.3. The torque generated by the linear flow is given by

Mg = C(a2
y − a2

z )s cos 2θ − C(a2
y + a2

z )w. (D12)

The work done by the linear flow is given by

Wg =
[

Vηef4 + Cαyαz

(
a2

y − a2
z

a2
y + a2

z

)]
s cos 2θ − 2Ca1a2w. (D13)

The temporal evolution equations of the inclination angle θ and phase angle φ of the RBC
in the linear flow are given by (Ye et al. 2016)

θ̇ = C(a2
y − a2

z )s cos 2θ − C(a2
y + a2

z )w − 2Cayazφ̇

C(a2
y + a2

z )
, (D14)

φ̇ = 2Vηef4s cos 2θ − 1
2Ωμmf1 sin 2φ

Vηif1 − Vηef2 + Ωηmf1
. (D15)

The parameters f1, f2 and f4 are defined by

f1 = 4z2
1, f2 = 4z2

1(1 − 2/z2) and f4 = −4z1/z2, (D16a–c)

with
z1 = (ay/az − az/ay)/2 and z2 = g′

y(α
2
y + α2

z ). (D17a,b)

In the case of s = ω, (3.7) describes the linear shear flow, and (D14) and (D15)
correspond to the model developed by Abkarian et al. (2007). Further considering
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ηm = μm = 0, (D14) and (D15) correspond to the model developed by Keller & Skalak
(1982). It can be clearly seen that (2.35) is an extension of the torque balance equation
(D14) obtained by replacing the torque due to the linear flow with the torque due to
2-D ultrasonic standing waves, while (2.43) is the extension of the energy conservation
equation (D15) obtained by replacing the work done by the linear flow with the work done
by 2-D ultrasonic standing waves.
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