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This work was done in collaboration with Jim Gunn. 

In order to represent rotating clusters with an anisotropic velocity 
dispersion we took 

f = C(e-BE-1)e-ByI3e -BQJ3 ( 1 ) 

and approximated the third integral I3 by the total angular momentum, 
J2. 

The term in J3 leads to solid body rotation in the core, with 
the rotational velocity dropping to zero at the tidal radius. This 
rotation leads to flattened isopotentials which means that J2 is not an 
integral of the motion. This approximation is discussed below. We 
further extended equation 1 by introducing a number of mass classes, 
with masses m-j • 

MAKING THE MODELS 

Introducing dimensionless variables with substitutions 

ZM j P j o 
i „ .77. 2 1 M = T̂— • W = *M* • Vo - I f f • U2 = 

1 

y i = &-, rc2 = *V , 5 = r / r , n = 1 „, (2) 
3 M ^ G P o ( 4 T T G P 0 ) 1 / 2 

a i — i : ' ° " 7— > 
We have 

f . = C - ( e "" 1 / 2 y - i u 2 + U ^ W - l ) e - 1 / 2 ^ / 5 t ) 2 W j ( u 2 - u r
2 ) e 5 s i n 0 f i u i u < | ) (3) 
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The C-; are found by the condition that 

Pjo = / fj(x=0)a3x 
To find the potential W, which is needed to calculate the density and 
velocity moments, we must solve Poisson!s equation which takes the form 

WK UT? + g^sin^93e(sin9ie)=-9q (4) 

As the angular part of this equation is simply the legendre operator, 
we expand W and a in legendre polynomials in cos9, and end up with a 
set of ordinary differential equations for the coefficients w'1' and 
a'1', 1=0,2,4,••.which may be solved using Greenfs functions. 

In practice, we truncate at P4(cos9), evaluate the density and the 
velocity moments, weight by the mass-to-light ratios of the different 
mass classes, and project onto the sky. 

Some of these models for M13 and M92 are given in the talk by 
Lupton and Gunn at this conference. For M13, both anisotropy and 
rotation play an important role. 

USE OF J2 AS AN INTEGRAL 

We have proceeded along two paths to justify our use of J2 as an 
approximate integral. Firstly, by the use of an Eddington potential to 
approximate our true potential, and secondly by integrating f around 
orbits in our model potentials. 

EDDINGTON POTENTIALS 

For the class of potentials given by 

*(r,9)=c(r)+2i|l (5) 

l3=J2-2n(r) is an exact third integral. As may be seen from figure 1, 
our potential approximates this form in the outer parts, with 

n(r)=Xm^2rc
2v0

2P2(cose) (6) 

and 
w = w(0) + ||2. ( 7 ) 

To the extent that this is correct, the only difference between our 
(J2) models and a model using the true third integral I3 is a factor 
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k=e8Y(J2-I3)=e*PjP2At2 
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(8) 
For the case shown, A«0.8 and the p^ = 1.75, 1.17 and 0.58. These lead 
to values of k = 1.057, 1.038 and 1.019 at 9=0. Due to mass 
segregation the first mass class is negligible this far out (£;>£t) in 
these models. 

It is clear that the use of J2 leads to errors of a few percent 
that are proportional to ?2» 

DIRECT INTEGRATION 

We have integrated orbits in our model potential and looked at the 
variation of f, results are shown in figures 2 and 3. For the orbit in 
figure 2 the period is about 80 time units, and the ap- and peri-
clusticon distances are about 3 and 27 core radii. J2 was constant at 
about 3%, and f to about 2%. For the orbit in figure 3, the period was 
around 2 units, and it spent all of its time in the region from 0.8 - 1 
core radii. J2 varied by about 7%, although f varies by only 0.1% due 
to the factor e ^ / ^ ) =1.02. 
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Figure 1. The Po component of the potential for a cluster model as a 
function of dimensionless radius. The insert is for the whole model, 
the main body of the figure shows only the outer parts. The two straight 
lines show two power law fits, 1/C and 1/f, 
Eddington potential. 

The l/iz is an 
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Figures 2 & 3. The fractional variation of the distribution function f 
as a function of time for two orbits, as described in the text. 
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