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Abstract

A recursive resampling method is discussed in this paper. Let Xi, X2, • • •, Xn be i.i.d. random variables
with distribution function F and construct the empirical distribution function Fn. A new sample Xn+\
is drawn from Fn and the new empirical distribution function Fn+l in the wide sense, is computed from
XUX2,- • ,Xn, Xn+i. Then Xn+2 is drawn from Fn+i and Fn+2 is obtained. In this way, Xn+m and Fn+m

are found. It will be proved that Fn+m converges to a random variable almost surely as m goes to infinity
and the limiting distribution is a compound beta distribution. In comparison with the usual non-recursive
bootstrap, the main advantage of this procedure is a reduction in unconditional variance.

1991 Mathematics subject classification (Amer. Math. Soc): 60G50, 6OF15.

1. Introduction

hi recent years the jackknife, the bootstrap and other resampling methods have been
discussed by many authors. Efron [2] gave a review. The goal of his study is to
understand a collection of ideas concerning the non-parametric estimators of bias,
variance and more general measures of error. Perhaps the bootstrap method is more
interesting. LetXi, X2, • • •, Xn be i.i.d. random variables with distribution function F.
Let Fn be the empirical distribution function of the data, putting probability mass 1/n
on each point, that is, we observe {Xj, j = 1, • •• ,«} and construct

( l D F()

Now let X*, X*2, • • •, X* be an i.i.d. sample from Fn. This means that {X*} is a
random sample drawn with replacement from the observed Xu X2, • • •, Xn. A spe-
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cified random variable R(X, F) is given, possibly depending on both the unknown
dis t r ibu t ion func t ion F a n d X = (XUX2,---, Xn). W e use R* = R(X*, Fn) =
R((X*, • • •, X*), Fn) to approximate R(X, F) and call it the bootstrap estimator.
Some asymptotic theorems for the bootstrap are investigated for interesting cases, and
some counter-examples show that the approximations do not always succeed.

Instead of the above replacement, that is, equal mass on each observed value,
Rubin [4] first suggested the Bayesian Bootstrap method. Some authors developed
this to the random weighting method, in which case the Dirichlet distribution is
introduced as a prior distribution.

In the other direction, we will suggest a recursive method of resampling. Suppose
that Xi, X2, • • •, Xn are i.i.d. random variables with distribution function F. We use
the original data to get the empirical distribution function Fn of (1.1). Now we draw
one sample from the observed data with equal probability to obtain Xn+\. Then we
have Xu X2,..., Xn+i and draw another sample from these n + 1 data with equal
probability, to get Xn+2 with distribution FB+1 the empirical distribution function of
Xu X2, • • •, Xn, Xn+l in the wise sense, that is,

i n+l

In this way we get Xn+U Xn+2, • • •, Xn+m and Fn + 1, Fn+2, • • •, Fn+m. We shall see
that our recursive method, compared with the bootstrap, has the advantage of reduction
in unconditional variance. For theoretical interest, the questions are:

(i) Does Fn+m converges when m tends to infinity?
(ii) What is the form of the limit of Fn+m, if it exists?

2. Main Lemmas

We invoke the following lemmas to solve the problems mentioned in Section 1. We
always suppose Xlt X2, • • •, Xn(n > 1) are i.i.d. random variables with distribution
function F. Construct the empirical distribution function Fn. Furthermore, let Xn+1 be
a sample from Fn and use Xt, X2, • • •, Xn, Xn+i to construct the empirical distribution
functionFn+]. In this way, we get Xn+m andFn + m. Denote Sn+m (x) = Fn+m(x)-F(x),
&n = a(Xu • • •, Xn), &n+m = a(Xu • • •, Xn, Xn+U • • •, Xn+m). It is clear that
^n+m is increasing in m.

LEMMA 1. For any x andm,

(2.1) (i) ESn+m(x) = 0; and
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PROOF. (2.1) is obvious and we only need to prove (2.2). Since

[Pn+n(x) - F(x)J
= , ]_ Ain + m- I)2 (FH+m_x{x) - Fix))'

(n + m)2 { V /

+ 2(n + m - 1) (Fn+m_x{x) - F(JC)) (liXn+m<x) - F(x))

we obtain

(Fn+m(x) - F{x)\
2 1

(n+m)2 [(

1
in + m)2

1
in + m)2

1
- 2Fix)Fn+m_lix)

Recursively,

ES2
n+mix) = 1 -

1 -

1
in+m)2_

1

in + m)2

ES2
n+m_lix)

in+m)2
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in+m -\)2\'"l~ in + \)2\
Fix) il-Fix))

= Fix) il-Fix)) \-
in+m)2

-1) (n+m)(n+w-2)
(«+/n-l)2

(n+2)n 7J-1
+ 1
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REMARK 1. For any x and n, m, we have

E (Fn+m(x)\&n) = Fn(x)

and

lim ES2
n+m(x) =

BI+00 « + 1

REMARK 2. Let X*, X*, •• •, X*m be an i.i.d. sample with distribution FB

(2.3) KmW = -

and S*nm(x) = F;m(x) - F(x). To compare ES2
n+m(x) with ES;2

+m{x), we calculate

F5;2m = E [(F;m(x) - Fn(x)) + (Fn(x) - F(x))f

= F(x)(l - F(x)) I - ( 1 - - ) + -1 .

It is easy to check that if m < (n + 1 + V(« + I)2 + 4n(n + l))/2 then

(2-4) £5;2
m(x) > £5n

2
+m(x).

This means that Fn+m(x) is preferable and our procedure is better than the bootstrap
in the sense of small unconditional variance.

Now we consider the problems of some particles distributed on the two points 0
and 1. Suppose that initially there are v particles at 0 and u particles at 1. Denote by
s0 = u/(u + v) the initial proportion of particles at 1. The (u + v + l)-th particle
is allocated to 1 with probability u/{u + v) and to 0 with probability v/(u + v).
Furthermore, if the u + v + (k — 1) particles are allocated with A particles at 0
and B particles at 1 (A + B = u + v + k — 1), then the (w + v + k)-th particle
will be put at 1 with probability B/(A + B) and at 0 with probability A/(A + B).
Denote by sk the proportion of particles at 1 at the k-th stage. It is clear that sk

equals (u 4- j)/(u + v + k) for some ; = 0, 1, • • •, k. What is the probability of
this equality? We may think of (A, B) as a two dimensional vector with the above
'transition probabilities'. Consequently,
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p(s = u \ =
\k u + v + k)

p(s = M + 1 "\ = JL- ( v \ ( v + 1 \ ( v

\k u + v + k) u + v\u + v + l)\u + v + 2j "\u +
u + j \ u(u + l)---(u + j-l)

) (u + v)(u + v + l)---(u + v + j -I)
v

P( u+k \ - u(u + l ) - - - ( « + * - l ) /k\
y ~ u + v + k) ~ (u + v)(u + v + l)---(u + v + k-l) ' \k)'

LEMMA 2. The limiting distribution of sk as k —> oo is the beta distribution with
parameters u and v.

PROOF. Consider the general form of the Polya-Eggenberger distribution, that is, a
mixed binomial distribution where the success probability has the beta (M, V) distri-
bution. That is, the random variable ak with

,v)

for j = 0, 1, • • • ,k. By the property of this distribution, ak/k converges in law to beta
(u, v). See Johnson and Kotz [3, pp. 177-181]. Now let sk = (a + ak)/(u + v + k)
in our problem and Lemma 2 follows immediately.

3. Convergence of the resampling procedure

In this section, we discuss the almost surely convergence of Sn+m(x) as m —*• oo,
and we find its limiting distribution.

THEOREM 3.1. Let x and n be fixed. Then,

(i) Sn+m(x) is a {^n+m} martingale;
(ii) Sn+m (x) —> S(x) as m —*• oo, a.s. where S(x) is a random variable depending

on x andn; and
(iii) S(x) + F(x) has the distribution function

(3.1) H(x) = D(0)(\-p)"+T (n)
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where p = F(x), D(0) and D(l) are the degenerate distribution functions at
0 and 1, respectively.

PROOF, (i) It is obvious from Lemma 1 that E[Fn+m(x)\<Pn+m-i] — Fn+m-i(x)
which leads directly to our assertion.

(ii) Since \Sn+m(x)\ < 1, the martingale convergence theorem (cf. Chow and
Teicher [1]) shows that Sn+m(x) —> 5(x)(a.s.), an Lx random variable.

(iii) Let £„(*) = l im , , ^ Fn+m(x) = S(x) + F(x) and p = F(x). Suppose that u
of the Xi, X2, • • •, Xn are located to the left of x. This means that u of /(*,<*) equal 1
and v = n — u of /{x,<*i equal 0. This sets our problem into the context of the above
particle scheme. Hence, from Lemma 2, the conditional limiting distribution is a beta
distribution with parameters u and v. In particular, u = n leads to the degenerate
limiting distribution at 1, while u — 0 leads to the degenerate limiting distribution
at 0. Finally the distribution of u is binomial with parameter p = F(x), completing
the proof.

We can calculate the moments of £„(*) using (3.1):

,3.2) e f c W

« - 1

(3.4)

n + 1
Note that %n{x) is a increasing function of x. In the same fashion as the proof of

the Glivenko-Cantelli theorem, we obtain

THEOREM 3.2. For fixed n

(3.5) lim sup

We omit the proof.

Fn+m(x) -%n = 0 a.s.
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