THE LIMITING DISTRIBUTION OF A RECURSIVE RESAMPLING PROCEDURE

ZHENG ZUKANG and WU LIPENG

(Received 19 October 1990; revised 18 March 1992)

Communicated by A. G. Pakes

Abstract

A recursive resampling method is discussed in this paper. Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. random variables with distribution function F and construct the empirical distribution function F_{n}. A new sample X_{n+1} is drawn from F_{n} and the new empirical distribution function \tilde{F}_{n+1} in the wide sense, is computed from $X_{1}, X_{2}, \cdots, X_{n}, X_{n+1}$. Then X_{n+2} is drawn from \tilde{F}_{n+1} and \tilde{F}_{n+2} is obtained. In this way, X_{n+m} and \tilde{F}_{n+m} are found. It will be proved that \tilde{F}_{n+m} converges to a random variable almost surely as m goes to infinity and the limiting distribution is a compound beta distribution. In comparison with the usual non-recursive bootstrap, the main advantage of this procedure is a reduction in unconditional variance.

1991 Mathematics subject classification (Amer. Math. Soc.): 60G50, 60F15.

1. Introduction

In recent years the jackknife, the bootstrap and other resampling methods have been discussed by many authors. Efron [2] gave a review. The goal of his study is to understand a collection of ideas concerning the non-parametric estimators of bias, variance and more general measures of error. Perhaps the bootstrap method is more interesting. Let $X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. random variables with distribution function F. Let F_{n} be the empirical distribution function of the data, putting probability mass $1 / n$ on each point, that is, we observe $\left\{X_{j}, j=1, \cdots, n\right\}$ and construct

$$
\begin{equation*}
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{X_{i} \leq x\right\}} . \tag{1.1}
\end{equation*}
$$

Now let $X_{1}^{*}, X_{2}^{*}, \cdots, X_{m}^{*}$ be an i.i.d. sample from F_{n}. This means that $\left\{X_{i}^{*}\right\}$ is a random sample drawn with replacement from the observed $X_{1}, X_{2}, \cdots, X_{n}$. A spe-
cified random variable $R(X, F)$ is given, possibly depending on both the unknown distribution function F and $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$. We use $R^{*}=R\left(X^{*}, F_{n}\right)=$ $R\left(\left(X_{1}^{*}, \cdots, X_{n}^{*}\right), F_{n}\right)$ to approximate $R(X, F)$ and call it the bootstrap estimator. Some asymptotic theorems for the bootstrap are investigated for interesting cases, and some counter-examples show that the approximations do not always succeed.

Instead of the above replacement, that is, equal mass on each observed value, Rubin [4] first suggested the Bayesian Bootstrap method. Some authors developed this to the random weighting method, in which case the Dirichlet distribution is introduced as a prior distribution.

In the other direction, we will suggest a recursive method of resampling. Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are i.i.d. random variables with distribution function F. We use the original data to get the empirical distribution function F_{n} of (1.1). Now we draw one sample from the observed data with equal probability to obtain X_{n+1}. Then we have $X_{1}, X_{2}, \ldots, X_{n+1}$ and draw another sample from these $n+1$ data with equal probability, to get X_{n+2} with distribution \tilde{F}_{n+1} the empirical distribution function of $X_{1}, X_{2}, \cdots, X_{n}, X_{n+1}$ in the wise sense, that is,

$$
\tilde{F}_{n+1}=\frac{1}{n+1} \sum_{i=1}^{n+1} I_{\left\{X_{i} \leq x\right\}}
$$

In this way we get $X_{n+1}, X_{n+2}, \cdots, X_{n+m}$ and $\tilde{F}_{n}+1, \tilde{F}_{n+2}, \cdots, \tilde{F}_{n+m}$. We shall see that our recursive method, compared with the bootstrap, has the advantage of reduction in unconditional variance. For theoretical interest, the questions are:
(i) Does \tilde{F}_{n+m} converges when m tends to infinity?
(ii) What is the form of the limit of \tilde{F}_{n+m}, if it exists?

2. Main Lemmas

We invoke the following lemmas to solve the problems mentioned in Section 1. We always suppose $X_{1}, X_{2}, \cdots, X_{n}(n>1)$ are i.i.d. random variables with distribution function F. Construct the empirical distribution function F_{n}. Furthermore, let X_{n+1} be a sample from F_{n} and use $X_{1}, X_{2}, \cdots, X_{n}, X_{n+1}$ to construct the empirical distribution function \tilde{F}_{n+1}. In this way, we get X_{n+m} and \tilde{F}_{n+m}. Denote $S_{n+m}(x)=\tilde{F}_{n+m}(x)-F(x)$, $\mathscr{F}_{n}=\sigma\left(X_{1}, \cdots, X_{n}\right), \mathscr{F}_{n+m}=\sigma\left(X_{1}, \cdots, X_{n}, X_{n+1}, \cdots, X_{n+m}\right)$. It is clear that \mathscr{F}_{n+m} is increasing in m.

Lemma 1. For any x and m,

$$
\begin{align*}
& E S_{n+m}(x)=0 ; \quad \text { and } \tag{2.1}\\
& E S_{n+m}^{2}=\left[\frac{n+2 m+1}{(n+m)(n+1)}\right] F(x)(1-F(x)) \tag{i}
\end{align*}
$$

Proof. (2.1) is obvious and we only need to prove (2.2). Since

$$
\begin{aligned}
& {\left[\tilde{F}_{n+m}(x)-F(x)\right]^{2}} \\
& \qquad \begin{array}{l}
=\frac{1}{(n+m)^{2}}\left\{(n+m-1)^{2}\left(\tilde{F}_{n+m-1}(x)-F(x)\right)^{2}\right. \\
\\
\qquad+2(n+m-1)\left(\tilde{F}_{n+m-1}(x)-F(x)\right)\left(I_{\left\{X_{n+m} \leq x\right\}}-F(x)\right) \\
\\
\left.\quad+\left[I_{\left\{X_{n+m} \leq x\right\}}-F(x)\right]^{2}\right\}
\end{array}
\end{aligned}
$$

we obtain

$$
\begin{gathered}
E\left[\left(\tilde{F}_{n+m}(x)-F(x)\right)^{2} \mid \mathscr{F}_{n+m-1}\right] \\
=\frac{1}{(n+m)^{2}}\left[(n+m)^{2}\left(\tilde{F}_{n+m-1}(x)-F(x)\right)^{2}-\left(\tilde{F}_{n+m-1}(x)-F(x)\right)^{2}\right] \\
\quad+\frac{1}{(n+m)^{2}} E\left[I_{\left\{X_{n+m} \leq x\right\}}-2 I_{\left\{X_{n+m} \leq x\right\}} F(x)+F^{2}(x) \mid \mathscr{F}_{n+m-1}\right] \\
=\left[\begin{array}{c}
\left.1-\frac{1}{(n+m)^{2}}\right]\left[\tilde{F}_{n+m-1}(x)-F(x)\right]^{2} \\
\quad+\frac{1}{(n+m)^{2}}\left[\tilde{F}_{n+m-1}(x)-2 F(x) \tilde{F}_{n+m-1}(x)+F^{2}(x)\right]
\end{array} .\right.
\end{gathered}
$$

Recursively,

$$
\begin{aligned}
& E S_{n+m}^{2}(x)= {\left[1-\frac{1}{(n+m)^{2}}\right] E S_{n+m-1}^{2}(x)+\frac{1}{(n+m)^{2}} F(x)(1-F(x)) } \\
&= {\left[1-\frac{1}{(n+m)^{2}}\right]\left[1-\frac{1}{(n+m-1)^{2}}\right] E S_{n+m-2}^{2}(x) } \\
&+\left\{\frac{1}{(n+m)^{2}}+\frac{1}{(n+m-1)^{2}}\left[1-\frac{1}{(n+m)^{2}}\right]\right\} F(x)(1-F(x)) \\
&= {\left[1-\frac{1}{(n+m)^{2}}\right]\left[1-\frac{1}{(n+m-1)^{2}}\right] \cdots\left[1-\frac{1}{(n+1)^{2}}\right] \frac{F(x)(1-F(x))}{n} } \\
&-\left[1-\frac{1}{(n+m)^{2}}\right]\left[1-\frac{1}{(n+m-1)^{2}}\right] \cdots\left[1-\frac{1}{(n+1)^{2}}\right] F(x)(1-F(x)) \\
&+F(x)(1-F(x)) \\
&= F(x)(1-F(x))\left\{-\frac{(n+m+1)(n+m-1)}{(n+m)^{2}} \cdot \frac{(n+m)(n+m-2)}{(n+m-1)^{2}}\right. \\
&\left.\cdots \frac{(n+2) n}{(n+1)^{2}} \cdot \frac{n-1}{n}+1\right\}
\end{aligned}
$$

$$
=F(x)(1-F(x))\left[\frac{n+2 m+1}{(n+m)(n+1)}\right]
$$

REMARK 1. For any x and n, m, we have

$$
E\left(\tilde{F}_{n+m}(x) \mid \mathscr{F}_{n}\right)=F_{n}(x)
$$

and

$$
\lim _{m \rightarrow \infty} E S_{n+m}^{2}(x)=\frac{2}{n+1} F(x)(1-F(x))
$$

REMARK 2. Let $X_{1}^{*}, X_{2}^{*}, \cdots, X_{m}^{*}$ be an i.i.d. sample with distribution F_{n},

$$
\begin{equation*}
F_{n, m}^{*}(x)=\frac{1}{m} \sum_{j=1}^{m} I_{\left\{X_{j}^{*} \leq x\right\}} \tag{2.3}
\end{equation*}
$$

and $S_{n, m}^{*}(x)=F_{n, m}^{*}(x)-F(x)$. To compare $E S_{n+m}^{2}(x)$ with $E S_{n+m}^{* 2}(x)$, we calculate

$$
\begin{aligned}
E S_{n, m}^{* 2} & =E\left[\left(F_{n, m}^{*}(x)-F_{n}(x)\right)+\left(F_{n}(x)-F(x)\right)\right]^{2} \\
& =F(x)(1-F(x))\left[\frac{1}{m}\left(1-\frac{1}{n}\right)+\frac{1}{n}\right]
\end{aligned}
$$

It is easy to check that if $m<\left(n+1+\sqrt{(n+1)^{2}+4 n(n+1)}\right) / 2$ then

$$
\begin{equation*}
E S_{n, m}^{* 2}(x)>E S_{n+m}^{2}(x) \tag{2.4}
\end{equation*}
$$

This means that $\tilde{F}_{n+m}(x)$ is preferable and our procedure is better than the bootstrap in the sense of small unconditional variance.

Now we consider the problems of some particles distributed on the two points 0 and 1. Suppose that initially there are v particles at 0 and u particles at 1 . Denote by $s_{0}=u /(u+v)$ the initial proportion of particles at 1 . The $(u+v+1)$-th particle is allocated to 1 with probability $u /(u+v)$ and to 0 with probability $v /(u+v)$. Furthermore, if the $u+v+(k-1)$ particles are allocated with A particles at 0 and B particles at $1(A+B=u+v+k-1)$, then the $(u+v+k)$-th particle will be put at 1 with probability $B /(A+B)$ and at 0 with probability $A /(A+B)$. Denote by s_{k} the proportion of particles at 1 at the k-th stage. It is clear that s_{k} equals $(u+j) /(u+v+k)$ for some $j=0,1, \cdots, k$. What is the probability of this equality? We may think of (A, B) as a two dimensional vector with the above 'transition probabilities'. Consequently,

$$
\begin{aligned}
P\left(s_{k}=\frac{u}{u+v+k}\right)= & \frac{v(v+1) \cdots(v+k-1)}{(u+v) \cdots(u+v+k-1)} \cdot\binom{k}{0} \\
P\left(s_{k}=\frac{u+1}{u+v+k}\right)= & \frac{u}{u+v}\left(\frac{v}{u+v+1}\right)\left(\frac{v+1}{u+v+2}\right) \cdots\left(\frac{v+k-2}{u+v+k-1}\right) \cdot\binom{k}{1}, \\
P\left(s_{k}=\frac{u+j}{u+v+k}\right)= & \frac{u(u+1) \cdots(u+j-1)}{(u+v)(u+v+1) \cdots(u+v+j-1)} \\
& \cdot\left(\frac{v}{u+v+j}\right)\left(\frac{v+1}{u+v+j+1}\right) \cdots\left(\frac{v+k-1-j}{u+v+k-1}\right) \cdot\binom{k}{j} \\
P\left(s_{k}=\frac{u+k}{u+v+k}\right)= & \frac{u(u+1) \cdots(u+k-1)}{(u+v)(u+v+1) \cdots(u+v+k-1)} \cdot\binom{k}{k} .
\end{aligned}
$$

Lemma 2. The limiting distribution of s_{k} as $k \rightarrow \infty$ is the beta distribution with parameters u and v.

Proof. Consider the general form of the Polya-Eggenberger distribution, that is, a mixed binomial distribution where the success probability has the beta (u, v) distribution. That is, the random variable α_{k} with

$$
P\left(\alpha_{k}=j\right)=\binom{k}{j} \frac{B(u+j, v+k-j)}{B(u, v)}
$$

for $j=0,1, \cdots, k$. By the property of this distribution, α_{k} / k converges in law to beta (u, v). See Johnson and Kotz [3, pp. 177-181]. Now let $s_{k}=\left(u+\alpha_{k}\right) /(u+v+k)$ in our problem and Lemma 2 follows immediately.

3. Convergence of the resampling procedure

In this section, we discuss the almost surely convergence of $S_{n+m}(x)$ as $m \rightarrow \infty$, and we find its limiting distribution.

THEOREM 3.1. Let x and n be fixed. Then,
(i) $S_{n+m}(x)$ is a $\left\{\mathscr{F}_{n+m}\right\}$ martingale;
(ii) $S_{n+m}(x) \rightarrow S(x)$ as $m \rightarrow \infty$, a.s. where $S(x)$ is a random variable depending on x and n; and
(iii) $S(x)+F(x)$ has the distribution function

$$
\begin{equation*}
H(x)=D(0)(1-p)^{n}+\sum_{j=1}^{n-1}\binom{n}{j} \frac{(1-p)^{n-j} p^{j}}{B(j, n-j)} \cdot \int_{0}^{x}(1-y)^{n-j-1} y^{j-1} d y+D(1) p^{n} \tag{3.1}
\end{equation*}
$$

where $p=F(x), D(0)$ and $D(1)$ are the degenerate distribution functions at 0 and 1 , respectively.
Proof. (i) It is obvious from Lemma 1 that $E\left[\tilde{F}_{n+m}(x) \mid \mathscr{F}_{n+m-1}\right]=\tilde{F}_{n+m-1}(x)$ which leads directly to our assertion.
(ii) Since $\left|S_{n+m}(x)\right| \leq 1$, the martingale convergence theorem (cf. Chow and Teicher [1]) shows that $S_{n+m}(x) \rightarrow S(x)$ (a.s.), an L_{1} random variable.
(iii) Let $\xi_{n}(x)=\lim _{m \rightarrow \infty} \tilde{F}_{n+m}(x)=S(x)+F(x)$ and $p=F(x)$. Suppose that u of the $X_{1}, X_{2}, \cdots, X_{n}$ are located to the left of x. This means that u of $I_{\left[X_{i} \leq x\right)}$ equal 1 and $v=n-u$ of $I_{\left(X_{i} \leq x\right)}$ equal 0 . This sets our problem into the context of the above particle scheme. Hence, from Lemma 2, the conditional limiting distribution is a beta distribution with parameters u and v. In particular, $u=n$ leads to the degenerate limiting distribution at 1 , while $u=0$ leads to the degenerate limiting distribution at 0 . Finally the distribution of u is binomial with parameter $p=F(x)$, completing the proof.

We can calculate the moments of $\xi_{n}(x)$ using (3.1):

$$
\begin{align*}
E \xi_{n}(x) & =\sum_{j=1}^{n-1}\binom{n}{j}(1-p)^{n-j} p^{j} \int_{0}^{1} \frac{(1-y)^{n-j-1} y^{j-1} y}{B(j, n-j)} d y+p^{n}, \tag{3.2}\\
E \xi_{n}^{2}(x) & =\sum_{j=1}^{n-1}\binom{n}{j}(1-p)^{n-j} p^{j} \int_{0}^{1} \frac{(1-y)^{n-j-1} y^{j-1} y^{2}}{B(j, n-j)} d y+p^{n} \tag{3.3}\\
& =\frac{n-1}{n+1} p^{2}+\frac{2}{n+1} p \\
\operatorname{Var} \xi_{n}(x) & =\frac{n-1}{n+1} p^{2}+\frac{2}{n+1} p-p^{2} \tag{3.4}\\
& =\frac{2}{n+1} F(x)(1-F(x)) .
\end{align*}
$$

Note that $\xi_{n}(x)$ is a increasing function of x. In the same fashion as the proof of the Glivenko-Cantelli theorem, we obtain

Theorem 3.2. For fixed n

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{x}\left|\tilde{F}_{n+m}(x)-\xi_{n}(x)\right|=0 \quad \text { a.s. } \tag{3.5}
\end{equation*}
$$

We omit the proof.

Acknowledgement

We are very grateful to Professor Tony Pakes and the referee for helpful suggestions and discussion.

References

[1] Y. S. Chow and H. Teicher, Probability theory (Springer-Verlag, New York, 1978).
[2] B. Efron, The jackknife, the bootstrap, and other resampling schemes (SIAM, Philadelphia, 1982).
[3] N. L. Johnson and S. Kotz, Urn models and their application (Wiley, New York, 1977).
[4] D. P. Rubin, 'The Bayesian bootstrap', Ann. Statist. 9 (1981), 130-134.

Department of Statistics and Operations Research
Fudan University
Shanghai, 200433
China

