J. Austral. Math. Soc. (Series A) 58 (1995), 47-53

THE LIMITING DISTRIBUTION OF A RECURSIVE RESAMPLING PROCEDURE

ZHENG ZUKANG and WU LIPENG

(Received 19 October 1990; revised 18 March 1992)

Communicated by A. G. Pakes

Abstract

A recursive resampling method is discussed in this paper. Let X_1, X_2, \dots, X_n be i.i.d. random variables with distribution function F and construct the empirical distribution function F_n . A new sample X_{n+1} is drawn from F_n and the new empirical distribution function \tilde{F}_{n+1} in the wide sense, is computed from $X_1, X_2, \dots, X_n, X_{n+1}$. Then X_{n+2} is drawn from \tilde{F}_{n+1} and \tilde{F}_{n+2} is obtained. In this way, X_{n+m} and \tilde{F}_{n+m} are found. It will be proved that \tilde{F}_{n+m} converges to a random variable almost surely as m goes to infinity and the limiting distribution is a compound beta distribution. In comparison with the usual non-recursive bootstrap, the main advantage of this procedure is a reduction in unconditional variance.

1991 Mathematics subject classification (Amer. Math. Soc.): 60G50, 60F15.

1. Introduction

In recent years the jackknife, the bootstrap and other resampling methods have been discussed by many authors. Efron [2] gave a review. The goal of his study is to understand a collection of ideas concerning the non-parametric estimators of bias, variance and more general measures of error. Perhaps the bootstrap method is more interesting. Let X_1, X_2, \dots, X_n be i.i.d. random variables with distribution function F. Let F_n be the empirical distribution function of the data, putting probability mass 1/n on each point, that is, we observe $\{X_i, j = 1, \dots, n\}$ and construct

(1.1)
$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le x\}}.$$

Now let $X_1^*, X_2^*, \dots, X_m^*$ be an i.i.d. sample from F_n . This means that $\{X_i^*\}$ is a random sample drawn with replacement from the observed X_1, X_2, \dots, X_n . A spe-

^{© 1995} Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00

cified random variable R(X, F) is given, possibly depending on both the unknown distribution function F and $X = (X_1, X_2, \dots, X_n)$. We use $R^* = R(X^*, F_n) = R((X_1^*, \dots, X_n^*), F_n)$ to approximate R(X, F) and call it the bootstrap estimator. Some asymptotic theorems for the bootstrap are investigated for interesting cases, and some counter-examples show that the approximations do not always succeed.

Instead of the above replacement, that is, equal mass on each observed value, Rubin [4] first suggested the Bayesian Bootstrap method. Some authors developed this to the random weighting method, in which case the Dirichlet distribution is introduced as a prior distribution.

In the other direction, we will suggest a recursive method of resampling. Suppose that X_1, X_2, \dots, X_n are i.i.d. random variables with distribution function F. We use the original data to get the empirical distribution function F_n of (1.1). Now we draw one sample from the observed data with equal probability to obtain X_{n+1} . Then we have X_1, X_2, \dots, X_{n+1} and draw another sample from these n + 1 data with equal probability, to get X_{n+2} with distribution \tilde{F}_{n+1} the empirical distribution function of $X_1, X_2, \dots, X_n, X_{n+1}$ in the wise sense, that is,

$$\tilde{F}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} I_{\{X_i \le x\}}.$$

In this way we get $X_{n+1}, X_{n+2}, \dots, X_{n+m}$ and $\tilde{F}_n + 1, \tilde{F}_{n+2}, \dots, \tilde{F}_{n+m}$. We shall see that our recursive method, compared with the bootstrap, has the advantage of reduction in unconditional variance. For theoretical interest, the questions are:

- (i) Does \tilde{F}_{n+m} converges when *m* tends to infinity?
- (ii) What is the form of the limit of \tilde{F}_{n+m} , if it exists?

2. Main Lemmas

We invoke the following lemmas to solve the problems mentioned in Section 1. We always suppose X_1, X_2, \dots, X_n (n > 1) are i.i.d. random variables with distribution function F. Construct the empirical distribution function F_n . Furthermore, let X_{n+1} be a sample from F_n and use $X_1, X_2, \dots, X_n, X_{n+1}$ to construct the empirical distribution function \tilde{F}_{n+1} . In this way, we get X_{n+m} and \tilde{F}_{n+m} . Denote $S_{n+m}(x) = \tilde{F}_{n+m}(x) - F(x)$, $\mathscr{F}_n = \sigma(X_1, \dots, X_n), \mathscr{F}_{n+m} = \sigma(X_1, \dots, X_n, X_{n+1}, \dots, X_{n+m})$. It is clear that \mathscr{F}_{n+m} is increasing in m.

and

LEMMA 1. For any x and m,

(2.1) (i)
$$ES_{n+m}(x) = 0;$$

(2.2) (ii)
$$ES_{n+m}^2 = \left[\frac{n+2m+1}{(n+m)(n+1)}\right]F(x)(1-F(x))$$

PROOF. (2.1) is obvious and we only need to prove (2.2). Since

$$\begin{split} \left[\tilde{F}_{n+m}(x) - F(x)\right]^2 \\ &= \frac{1}{(n+m)^2} \bigg\{ (n+m-1)^2 \left(\tilde{F}_{n+m-1}(x) - F(x)\right)^2 \\ &\quad + 2(n+m-1) \left(\tilde{F}_{n+m-1}(x) - F(x)\right) \left(I_{\{X_{n+m} \le x\}} - F(x)\right) \\ &\quad + \left[I_{\{X_{n+m} \le x\}} - F(x)\right]^2 \bigg\}, \end{split}$$

we obtain

$$E\left[\left(\tilde{F}_{n+m}(x) - F(x)\right)^{2} | \mathscr{F}_{n+m-1}\right]$$

$$= \frac{1}{(n+m)^{2}} \left[\left(n+m\right)^{2} \left(\tilde{F}_{n+m-1}(x) - F(x)\right)^{2} - \left(\tilde{F}_{n+m-1}(x) - F(x)\right)^{2}\right]$$

$$+ \frac{1}{(n+m)^{2}} E\left[I_{\{X_{n+m} \leq x\}} - 2I_{\{X_{n+m} \leq x\}}F(x) + F^{2}(x) | \mathscr{F}_{n+m-1}\right]$$

$$= \left[1 - \frac{1}{(n+m)^{2}}\right] \left[\tilde{F}_{n+m-1}(x) - F(x)\right]^{2}$$

$$+ \frac{1}{(n+m)^{2}} \left[\tilde{F}_{n+m-1}(x) - 2F(x)\tilde{F}_{n+m-1}(x) + F^{2}(x)\right].$$

Recursively,

$$\begin{split} ES_{n+m}^{2}(x) &= \left[1 - \frac{1}{(n+m)^{2}}\right] ES_{n+m-1}^{2}(x) + \frac{1}{(n+m)^{2}}F(x)\left(1 - F(x)\right) \\ &= \left[1 - \frac{1}{(n+m)^{2}}\right] \left[1 - \frac{1}{(n+m-1)^{2}}\right] ES_{n+m-2}^{2}(x) \\ &+ \left\{\frac{1}{(n+m)^{2}} + \frac{1}{(n+m-1)^{2}}\left[1 - \frac{1}{(n+m)^{2}}\right]\right\} F(x)\left(1 - F(x)\right) \\ &= \left[1 - \frac{1}{(n+m)^{2}}\right] \left[1 - \frac{1}{(n+m-1)^{2}}\right] \cdots \left[1 - \frac{1}{(n+1)^{2}}\right] \frac{F(x)\left(1 - F(x)\right)}{n} \\ &- \left[1 - \frac{1}{(n+m)^{2}}\right] \left[1 - \frac{1}{(n+m-1)^{2}}\right] \cdots \left[1 - \frac{1}{(n+1)^{2}}\right] F(x)\left(1 - F(x)\right) \\ &+ F(x)\left(1 - F(x)\right) \\ &= F(x)\left(1 - F(x)\right) \left\{-\frac{(n+m+1)(n+m-1)}{(n+m)^{2}} \cdot \frac{(n+m)(n+m-2)}{(n+m-1)^{2}} \\ &\cdots \frac{(n+2)n}{(n+1)^{2}} \cdot \frac{n-1}{n} + 1\right\} \end{split}$$

$$= F(x) (1 - F(x)) \left[\frac{n + 2m + 1}{(n + m)(n + 1)} \right].$$

REMARK 1. For any x and n, m, we have

$$E\left(\tilde{F}_{n+m}(x)|\mathscr{F}_n\right) = F_n(x)$$

and

$$\lim_{m \to \infty} E S_{n+m}^2(x) = \frac{2}{n+1} F(x)(1-F(x)).$$

REMARK 2. Let $X_1^*, X_2^*, \dots, X_m^*$ be an i.i.d. sample with distribution F_n ,

(2.3)
$$F_{n,m}^*(x) = \frac{1}{m} \sum_{j=1}^m I_{\{X_j^* \le x\}}$$

and $S_{n,m}^*(x) = F_{n,m}^*(x) - F(x)$. To compare $ES_{n+m}^2(x)$ with $ES_{n+m}^{*2}(x)$, we calculate

$$ES_{n,m}^{*2} = E\left[(F_{n,m}^{*}(x) - F_{n}(x)) + (F_{n}(x) - F(x))\right]^{2}$$

= $F(x)(1 - F(x))\left[\frac{1}{m}\left(1 - \frac{1}{n}\right) + \frac{1}{n}\right].$

It is easy to check that if $m < (n + 1 + \sqrt{(n + 1)^2 + 4n(n + 1)})/2$ then

(2.4)
$$ES_{n,m}^{*2}(x) > ES_{n+m}^{2}(x)$$

This means that $\tilde{F}_{n+m}(x)$ is preferable and our procedure is better than the bootstrap in the sense of small unconditional variance.

Now we consider the problems of some particles distributed on the two points 0 and 1. Suppose that initially there are v particles at 0 and u particles at 1. Denote by $s_0 = u/(u + v)$ the initial proportion of particles at 1. The (u + v + 1)-th particle is allocated to 1 with probability u/(u + v) and to 0 with probability v/(u + v). Furthermore, if the u + v + (k - 1) particles are allocated with A particles at 0 and B particles at 1 (A + B = u + v + k - 1), then the (u + v + k)-th particle will be put at 1 with probability B/(A + B) and at 0 with probability A/(A + B). Denote by s_k the proportion of particles at 1 at the k-th stage. It is clear that s_k equals (u + j)/(u + v + k) for some $j = 0, 1, \dots, k$. What is the probability of this equality? We may think of (A, B) as a two dimensional vector with the above 'transition probabilities'. Consequently,

50

[4]

$$P\left(s_{k} = \frac{u}{u+v+k}\right) = \frac{v(v+1)\cdots(v+k-1)}{(u+v)\cdots(u+v+k-1)} \cdot \binom{k}{0},$$

$$P\left(s_{k} = \frac{u+1}{u+v+k}\right) = \frac{u}{u+v}\left(\frac{v}{u+v+1}\right)\left(\frac{v+1}{u+v+2}\right)\cdots\left(\frac{v+k-2}{u+v+k-1}\right) \cdot \binom{k}{1},$$

$$P\left(s_{k} = \frac{u+j}{u+v+k}\right) = \frac{u(u+1)\cdots(u+j-1)}{(u+v)(u+v+1)\cdots(u+v+j-1)} \cdot \binom{v+k-1-j}{(u+v+j)} \cdot \binom{k}{j},$$

$$P\left(s_{k} = \frac{u+k}{u+v+k}\right) = \frac{u(u+1)\cdots(u+k-1)}{(u+v)(u+v+1)\cdots(u+v+k-1)} \cdot \binom{k}{k}.$$

LEMMA 2. The limiting distribution of s_k as $k \to \infty$ is the beta distribution with parameters u and v.

PROOF. Consider the general form of the Polya-Eggenberger distribution, that is, a mixed binomial distribution where the success probability has the beta (u, v) distribution. That is, the random variable α_k with

$$P(\alpha_k = j) = \binom{k}{j} \frac{B(u+j, v+k-j)}{B(u, v)}$$

for $j = 0, 1, \dots, k$. By the property of this distribution, α_k/k converges in law to beta (u, v). See Johnson and Kotz [3, pp. 177–181]. Now let $s_k = (u + \alpha_k)/(u + v + k)$ in our problem and Lemma 2 follows immediately.

3. Convergence of the resampling procedure

In this section, we discuss the almost surely convergence of $S_{n+m}(x)$ as $m \to \infty$, and we find its limiting distribution.

THEOREM 3.1. Let x and n be fixed. Then,

- (i) $S_{n+m}(x)$ is a $\{\mathscr{F}_{n+m}\}$ martingale;
- (ii) $S_{n+m}(x) \to S(x)$ as $m \to \infty$, a.s. where S(x) is a random variable depending on x and n; and
- (iii) S(x) + F(x) has the distribution function

(3.1)
$$H(x) = D(0)(1-p)^n + \sum_{j=1}^{n-1} {n \choose j} \frac{(1-p)^{n-j} p^j}{B(j,n-j)} \cdot \int_0^x (1-y)^{n-j-1} y^{j-1} dy + D(1)p^n,$$

where p = F(x), D(0) and D(1) are the degenerate distribution functions at 0 and 1, respectively.

PROOF. (i) It is obvious from Lemma 1 that $E[\tilde{F}_{n+m}(x)|\mathscr{F}_{n+m-1}] = \tilde{F}_{n+m-1}(x)$ which leads directly to our assertion.

(ii) Since $|S_{n+m}(x)| \leq 1$, the martingale convergence theorem (cf. Chow and Teicher [1]) shows that $S_{n+m}(x) \to S(x)$ (a.s.), an L_1 random variable.

(iii) Let $\xi_n(x) = \lim_{m \to \infty} \tilde{F}_{n+m}(x) = S(x) + F(x)$ and p = F(x). Suppose that u of the X_1, X_2, \dots, X_n are located to the left of x. This means that u of $I_{\{X_i \le x\}}$ equal 1 and v = n - u of $I_{\{X_i \le x\}}$ equal 0. This sets our problem into the context of the above particle scheme. Hence, from Lemma 2, the conditional limiting distribution is a beta distribution with parameters u and v. In particular, u = n leads to the degenerate limiting distribution at 1, while u = 0 leads to the degenerate limiting distribution at 0. Finally the distribution of u is binomial with parameter p = F(x), completing the proof.

We can calculate the moments of $\xi_n(x)$ using (3.1):

(3.2)
$$E\xi_n(x) = \sum_{j=1}^{n-1} \binom{n}{j} (1-p)^{n-j} p^j \int_0^1 \frac{(1-y)^{n-j-1} y^{j-1} y}{B(j,n-j)} \, dy + p^n,$$

(3.3)
$$E\xi_n^2(x) = \sum_{j=1}^{n-1} {n \choose j} (1-p)^{n-j} p^j \int_0^1 \frac{(1-y)^{n-j-1} y^{j-1} y^2}{B(j, n-j)} dy + p^n$$
$$= \frac{n-1}{n+1} p^2 + \frac{2}{n+1} p,$$

(3.4)
$$\operatorname{Var} \xi_n(x) = \frac{n-1}{n+1} p^2 + \frac{2}{n+1} p - p^2$$
$$= \frac{2}{n+1} F(x)(1-F(x)).$$

Note that $\xi_n(x)$ is a increasing function of x. In the same fashion as the proof of the Glivenko-Cantelli theorem, we obtain

THEOREM 3.2. For fixed n

(3.5)
$$\lim_{m\to\infty}\sup_{x}\left|\tilde{F}_{n+m}(x)-\xi_{n}(x)\right|=0 \quad \text{a.s.}$$

We omit the proof.

Acknowledgement

We are very grateful to Professor Tony Pakes and the referee for helpful suggestions and discussion.

References

- [1] Y. S. Chow and H. Teicher, Probability theory (Springer-Verlag, New York, 1978).
- [2] B. Efron, The jackknife, the bootstrap, and other resampling schemes (SIAM, Philadelphia, 1982).
- [3] N. L. Johnson and S. Kotz, Urn models and their application (Wiley, New York, 1977).
- [4] D. P. Rubin, 'The Bayesian bootstrap', Ann. Statist. 9 (1981), 130-134.

Department of Statistics and Operations Research Fudan University Shanghai, 200433 China

[7]