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Abstract

The Laub–Ilani inequality [‘A subtle inequality’, Amer. Math. Monthly 97 (1990), 65–67] states
that xx + yy > xy + yx for nonnegative real numbers x, y. We introduce and prove new trigonometric
and algebraic-trigonometric inequalities of Laub–Ilani type and propose some conjectural algebraic-
trigonometric inequalities of similar forms.
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1. Introduction

The origins of the Laub–Ilani inequality go back to at least 1985 when an intriguing
power-exponential inequality appeared in the Problems and Solutions section of the
American Mathematical Monthly as Problem E3116 by Laub [3]. Five years later,
the solution to the problem by Ilani was published [4]. The Laub–Ilani inequality,
originally entitled ‘a subtle inequality’, is the following assertion.

Theorem 1.1 [3, 4]. (a) If x and y are nonnegative real numbers, then

xx + yy > xy + yx. (1.1)

(b) If {x1, x2, . . . , xn} is a sequence of nonnegative real numbers and {y1, y2, . . . , yn}

is any permutation of this sequence, then

xx1
1 + xx2

2 + · · · + xxn
n > xy1

1 + xy2
2 + · · · + xyn

n . (1.2)

Inequality (1.1) was apparently rediscovered around 2006, when Zeikii [8] posted
the inequality

aa + bb > ab + ba, 0 < a, b 6 1,

and the conjecture
a2a + b2b > a2b + b2a, 0 < a, b 6 1,
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on the Mathlinks Forum. In 2009, Matejicka [5] discussed some inequalities and
conjectures of similar type and Cirtoaje [1] proved that

ara + brb > arb + bra, a, b, r ∈ R+, (1.3)

where R+ denotes the set of positive real numbers, provided that 0 6 r < e and either
a > b > 1/e or 1/e > a > b > 0. In the same paper, Cirtoaje also conjectured some
further power-exponential inequalities such as

ara + brb + crc > arb + brc + cra, (1.4)

for all positive real numbers a,b, c, r ∈ R+ with a 6 b 6 c, if and only if r 6 e. Recently,
Miyagi and Nishizawa [7] proved another conjecture of Cirtoaje that, if a, b are
nonnegative real numbers satisfying a + b = 1 and k > 1, then

a(2b)k
+ b(2a)k

6 1.

Further results and the developments up to 2014 are described in [2].
To the best of author’s knowledge, trigonometric or algebraic-trigonometric

versions of the Laub–Ilani inequalities (1.1) and (1.2) have not been addressed in the
literature. The aim of this paper is to prove some new results of this type and to pose
some further conjectures.

2. New inequalities

We begin with two auxiliary results which will be used in the analysis. The first is
an algebraic inequality, while the second is of algebraic-trigonometric type.

Lemma 2.1. Let x and y be real numbers such that 0 < x < y < 1. Then

(1 − xx+1)/(1 − x) < (1 − yy+1)/(1 − y).

Proof. Since 0 < x < y < 1, it is sufficient to prove that f (t) = (1 − tt+1)/(1 − t) is an
increasing function of t for t ∈ (0, 1). Observe that

f ′(t) =
1 − tt+1 − tt(1 − t)(t ln t + t + 1)

(1 − t)2 .

Multiply both sides of the inequality t ln t + t + 1 < 1 + t by tt(1 − t) and rearrange:

1 − tt+1 − tt(1 − t)(t ln t + t + 1) > 1 − tt(1 + t − t2).

Clearly 1 + t − t2 > 0. If tt(1 + t − t2) < 1 or, equivalently, t ln t + ln(1 + t − t2) < 0,
then the result follows immediately.

Now let g(t) = t ln t + ln(1 + t − t2). Then g′(t) = ln k(t) −ln h(t), where

k(t) = t and h(t) = exp((t2 + t − 2)/(1 + t − t2)).

So g′(t) = 0 if k(t) = h(t) for some t ∈ (0, 1). Observe that

h′′(t) =
p(t)h(t)

(1 + t − t2)4 ,
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where
p(t) = (14t4 − 4t5) + (28t2 − 28t3) + (8t2 − 2t + 1).

Since p(t) > 0 and h(t) > 0, we see that h′′(t) > 0 and so h is concave up on
(0, 1). Compare limt→0+ h(t) = e−2 > limt→0+ k(t) = 0, h(1/2) = e−1 < k(1/2) = 1/2 and
limt→1− h(t) = limt→1− k(t) = 1. Since k(t) = t is linear, the equation k(t) − h(t) = 0 has
exactly one solution in (0, 1) and hence g′(t) changes sign on (0, 1) only once, that is,
g(t) has exactly one extremum point, say, ξ on (0, 1) at which g′(ξ) = 0. Since g is
decreasing on (0, ξ), increasing on (ξ, 1) and limt→0+ g(t) = limt→1− g(t) = 0, it follows
that g(t) < 0 for all t ∈ (0, 1) and so tt(1 + t − t2) < 1 for 0 < t < 1. This completes the
proof. �

Lemma 2.2. Let x ∈ (0, 1). Then

(a) (1 − xx+1) sin x > xx+1(1 − x).
(b) x(sin x)x < sin x.

Proof. (a) For 0 < x < 1, we have sin x > x − x3/3!, which we can rearrange as
xx+1/ sin x < 6xx/(6 − x2). If f (x) = 6xx/(6 − x2) < k(x) = (1 − xx+1)/(1 − x), x ∈ (0,1),
the result follows immediately. Since

f ′(x) =
6xx((1 + ln x)(6 − x2) + 2x)

(6 − x2)2 ,

we have f ′(x) = 0 if (1 + ln x)(6 − x2) = −2x for some x ∈ (0, 1). Consider the
functions g(x) = (1 + ln x)(6 − x2) and h(x) = −2x, x ∈ (0, 1). It is easy to see that
g′(x) = ((6 − x2)/x) − 2x(ln x + 1) > 5 − 2 > 0, that is, g is increasing on (0, 1). On
the other hand, h is decreasing on (0, 1), limx→0+ g(x) = −∞ < limx→0+ h(x) = 0 and
limx→1− g(x) = 5 > limx→1− h(x) = −2. So the equation g(x) = h(x) has exactly one
solution, say, η ∈ (0, 1) such that f ′(x) < 0 on (0, η) and f ′(x) > 0 on (η, 1). Therefore
f is decreasing on (0, η) and increasing on (η, 1) and, hence, has its absolute minimum
value at x = η. Note also that limx→0+ f (x) = 1 and limx→1− f (x) = 6/5. We can
complete the proof of part (a) by comparing the values of the functions f and k.
Consider the point ζ = 0.8 ∈ (0, 1). Then f (ζ) = f (0.8) � 0.936 39. In addition, k
is increasing, by Lemma 2.1, and k(ζ) = k(0.8) � 1. 653 95. So,{

f (x) < 1, x ∈ (0, 0.8)
k(x) > 1, x ∈ (0, 0.8) and

{
f (x) < 1.2, x ∈ (0.8, 1)
k(x) > 1.6, x ∈ (0.8, 1).

Thus f (x) < k(x) for x ∈ (0, 1), which completes the proof of part (a).
(b) From the Taylor series expansion of sin x,

x(sin x)x = xx+1
(
1 −

x2

3!
+

x4

5!
−

x6

7!
+ · · ·

)x
.

We now use Bernoulli’s inequality, namely (1 + a)r 6 1 + ra, for a > −1, 0 6 r 6 1.
(The inequality is strict if a , 0 and r , 0, 1.) This gives

x(sin x)x < xx+1
(
1 −

x3

3!
+

x5

5!
−

x7

7!
+ · · ·

)
= xx+1(1 + sin x − x).

So part (b) follows on noticing that xx+1(1 + sin x − x) < sin x, from part (a). �
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We call F symmetric if F(x, y) = F(y, x) for all x, y where F(x, y) is defined.
Similarly, we call the inequality F(x, y) > G(x, y) symmetric if it implies F(y, x) >
G(y, x) for all x, y where F(x, y) and G(x, y) are defined. All our inequalities are
symmetric in this sense.

We are now ready to state our main results.

Theorem 2.3. If 0 < x < y 6 1, then

sin(xx) + sin(yy) > sin(yx) + sin(xy).

Proof. Consider the function f defined by

f (t) = sin(yy) − sin(yt) − (sin(ty) − sin(tt)),

where y is fixed with y ∈ (0, 1] and 0 < t 6 y. Clearly f (y) = 0. So if f ′(t) < 0 for all
t ∈ (0, y) then f (t) > 0 and hence f (x) > 0.

To demonstrate this, write

f ′(t) = g(t) + h(t),

where

g(t) = tt cos(tt) ln t − yt cos(yt) ln y and h(t) = tt cos(tt) − yty−1 cos(ty).

To show that g(t) < 0, consider the function k(s) = st cos(st) ln s, t 6 s 6 y. Then

k′(s) = st−1(cos(st)(1 + t ln s) − stt sin(st) ln s).

Note that t ln t > −e−1 for t ∈ (0, 1]. Since 1 + t ln s > 1 + t ln t > (e − 1)/e > 0 and
stt sin(st) ln s 6 0, it follows that k′(s) > 0, that is, k is increasing on (t, y) and so
k(t) − k(y) < 0, which proves that g(t) < 0. Moreover, from [4, page 66],

tt − yty−1 < 0, 0 < t < y 6 1. (2.1)

Since cos(tt) < cos(ty) for 0 < t < y, it follows from (2.1) that tt cos(tt) < yty−1 cos(ty),
that is, h(t) < 0. Hence f ′(t) = g(t) + h(t) < 0. �

We conjecture a similar trigonometric inequality for the cosine function.

Conjecture 2.4. If 0 < x < y 6 π/2, then

cos(xx) + cos(yy) < cos(yx) + cos(xy).

The next theorem gives fully trigonometric analogues of the simple Laub–Ilani
inequality (1.1).

Theorem 2.5. (a) If 0 < x < y 6 π/2, then

(sin x)sin x + (sin y)sin y > (sin x)sin y + (sin y)sin x, (2.2)
(cos x)cos x + (cos y)cos y > (cos x)cos y + (cos y)cos x. (2.3)
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(b) If 0 < x < y 6 1, then

(cos x)sin x + (cos y)sin y < (cos x)sin y + (cos y)sin x.

Proof. (a) Since sin t, cos t > 0 for t ∈ (0, π/2], inequalities (2.2) and (2.3) are direct
consequences of Theorem 1.1.

(b) Consider the function f defined by

f (t) = (cos t)sin t + (cos y)sin y − ((cos t)sin y + (cos y)sin t),

where y is fixed with y ∈ (0, 1] and 0 < t 6 y. Since f (y) = 0, the result follows if f is
increasing. To see this, write

f ′(t) = g(t) cos t −
sin t
cos t

h(t),

where
g(t) = (cos t)sin t ln(cos t) − (cos y)sin t ln(cos y)

and
h(t) = (cos t)sin t sin t − (cos t)sin y sin y.

Observe that

g(t) = −

y∫
t

d
ds

((cos s)sin t ln(cos s)) ds

=

y∫
t

((cos s)sin t−1 sin s)(1 + sin t ln(cos s)) ds.

Since cos s > cos 1,

1 > 1 + (sin t) ln(cos s) > 1 + (sin 1) ln(cos 1) � 0.481 97 > 0.

So g(t) > 0. Similarly,

h(t) = −

y∫
t

d
ds

((cos t)sin s sin s) ds = −

y∫
t

(cos s cossin s t)(1 + sin s ln(cos t)) ds.

Again, 1 > 1 + (sin s) ln(cos t) > 1 + (sin 1) ln(cos 1) � 0.481 97 > 0 and this gives
h(t) < 0. Combining g(t) > 0 and h(t) < 0 yields f ′(t) > 0, that is, the function f is
increasing. This completes the proof of (b). �

Theorem 2.6. If 0 < x < y 6 1, then

(cos x)x + (cos y)y < (cos x)y + (cos y)x.
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Proof. Let f (t) = (cos t)y − (cos t)t − ((cos y)y − (cos y)t), where y is fixed, y ∈ (0, 1]
and 0 < t 6 y. Since f (y) = 0, it will be sufficient to show that f is decreasing. Clearly,

f ′(t) = g(t) + h(t),

where
g(t) = (cos y)t ln(cos y) − (cos t)t ln(cos t)

and
h(t) =

sin t
cos t

(t(cos t)t − y(cos t)y).

First, consider the function p(s) = s(cos t)s, t 6 s 6 y. Then

p′(s) = (cos t)s(1 + s ln(cos t))

and p′(s) > 0 for s ∈ (t, y), because 1 + s ln(cos t) > 1 + ln(cos 1) � 0.384 37 > 0.Hence
the function p is increasing, which implies that t(cos t)t < y(cos t)y, that is, h(t) < 0 for
0 < t < y. Next, let q(s) = (cos s)t ln(cos s), t 6 s 6 y. Then

q′(s) = −((cos s)t−1 sin s)(1 + t ln(cos s))

and q′(s) < 0 for s ∈ (t, y), because 1 + t ln(cos s) > 1 + ln(cos 1) � 0.384 37 > 0. Hence
the function q is decreasing. So q(t) > q(y) for t < y, which implies that g(t) < 0 for
0 < t < y. Therefore f is decreasing and the proof is complete. �

Before giving the sine version of the last result, we prove some auxiliary results that
will be used in the proof.

Lemma 2.7. Let y ∈ (0, π/2] be fixed and let

g(t) = (sin t)t ln(sin t) − (sin y)t ln(sin y), 0 < t 6 y.

Then g(t) < 0 for 0 < t < y and g is increasing on 0 < t < y.

Proof. Observe that

g(t) = −

y∫
t

d
ds

((sin s)t ln(sin s)) ds = −

y∫
t

cos s
sin s

(sin s)t(1 + t ln(sin s)) ds.

Since s > t and ln(sin s) < 0, we have 1 + t ln(sin s) > 1 + s ln(sin s). We claim that
1 + s ln(sin s) > 0 for 0 < s < π/2 which will prove the first part of the lemma.

Jordan’s inequality [6] states that

sin x
x
>

2
π
, x ∈ (0, π/2], (2.4)

where the equality holds if and only if x = π/2. For s ∈ (0, 1), it follows that
(sin s)s > (2s/π)s. Now, v(s) = (2s/π)s is decreasing on (0, π/2e) and increasing on
(π/2e, 1), while lims→0+ v(s) = 1, lims→1− v(s) = 2/π and v(π/2e) = exp(−π/2e) > 1/2.
So 1/2 < (2s/π)s < 1 and hence 1 + s ln(sin s) > 1 + ln(1/2) > 0 for s ∈ (0, 1). On the
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other hand, if 1 6 s < π/2, then 1 + s ln(sin s) > 1 + s ln(sin 1) > 1 + π ln(sin 1)/2 > 0.
So 1 + s ln(sin s) > 0 for (0, π/2). Consequently, 1 + t ln(sin s) > 0 for t < s < y and,
hence, g(t) < 0.

To prove that g is increasing on 0 < t < y, consider g′ which is given by

g′(t) = (sin t)t(ln(sin t))2 − (sin y)t(ln(sin y))2 + (1 + t ln(sin t))
cos t
sin t

(sin t)t. (2.5)

Since 1 + t ln(sin t) > 0 and cos t(sin t)t−1 > 0, the last term in (2.5) is positive.
Moreover, since g(t) < 0 and ln(sin t) < 0,

(sin t)t(ln(sin t))2 − (sin y)t ln(sin t) ln(sin y) > 0. (2.6)

Since −ln(sin t) > −ln(sin y) for 0 < t < y, (2.6) yields

(sin t)t(ln(sin t))2 − (sin y)t(ln(sin y))2 > 0.

Therefore g′(t) > 0 for 0 < t < y 6 π/2. �

Lemma 2.8. If 0 < t < y 6 1 or 3/5 6 t < y 6 π/2, then

t(sin t)t − y(sin t)y < 0.

Proof. First note that the regions 0 < t < y 6 1 and 3/5 6 t < y 6 π/2 are partially
overlapping in the ty-plane.

(a) Suppose that 0 < t < y 6 1. From part (b) of Lemma 2.2, t(sin t)t < sin t, that is,

ln t < (1 − t) ln(sin t), 0 < t < 1.

Let p(s) = ln(t/s) and q(s) = (s − t) ln(sin t) for t 6 s 6 y. Then p′(s) = −1/s < 0 and
p′′(s) = 1/s2 > 0 on (0, 1), so p is decreasing and concave up on (0, 1). On the other
hand, q is linear and decreasing on (0, 1). Since p(t) = q(t) = 0 and lims→1− p(s) =

ln t < lims→1− q(s) = (1 − t) ln(sin t), we have p(s) < q(s) and so

t
s
<

(sin t)s

(sin t)t , t < s 6 y.

Then taking s = y leads to the desired inequality for 0 < t < y 6 1.
(b) Suppose that 3/5 6 t < y 6 π/2. Let w(s) = s(sin t)s, t 6 s 6 y. Then

w′(s) = (sin t)s(1 + s ln(sin t)).

Since 1 + s ln(sin t) > 1 + s ln(sin(3/5)) > 1 + π ln(sin(3/5))/2 � 0.102 19 > 0, it
follows that w′(s) > 0 for t < s < y, that is, w is increasing, which implies that
w(t) = t(sin t)t < w(y) = y(sin t)y for t < y. �

We can now state the sine version of Theorem 2.6.

Theorem 2.9. If 0 < x < y 6 π/2, then

(sin x)x + (sin y)y > (sin y)x + (sin x)y.
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94 A. Y. Özban [8]

Proof. Consider the function f defined by

f (t) = (sin y)y − (sin y)t − ((sin t)y − (sin t)t),

where y is fixed with 0 < y 6 π/2 and 0 < t 6 y. Since f (y) = 0, it will follow that
f (t) > 0 if f ′(t) < 0 for all t ∈ (0, y). To estimate f ′, write

f ′(t) = g(t) + h(t),

where

g(t) = (sin t)t ln(sin t) − (sin y)t ln(sin y) and h(t) = (t(sin t)t − y(sin t)y)
cos t
sin t

.

To determine the sign of the function f ′, we examine three partially overlapping
regions in the ty-plane.

(a) Over the region 0 < t < y 6 1, we have g(t) < 0 by Lemma 2.7 and h(t) < 0 by
Lemma 2.8. Hence f ′(t) = g(t) + h(t) < 0 for 0 < t < y 6 1.

(b) For the region 3/5 6 t < y 6 π/2, we have g(t) < 0 by Lemma 2.7 and h(t) < 0
by Lemma 2.8. Hence f ′(t) = g(t) + h(t) < 0 for 3/5 6 t < y 6 π/2.

(c) Finally, consider the region 0 < t 6 3/5, 1 6 y 6 π/2. By part (b) of Lemma 2.2,
t(sin t)t < sin t. Moreover, y(sin t)y > (sin t)π/2. Thus,

h(t) = (t(sin t)t − y(sin t)y)
cos t
sin t

< (1 − (sin t)(π−2)/2) cos t := k(t). (2.7)

The function k is decreasing, since both the functions p(t) = 1 − (sin t)(π−2)/2 > 0
and q(t) = cos t > 0 are decreasing for 0 < t 6 3/5. On the other hand, if we set
u(s) = (sin s)t ln(sin s), 1 6 s 6 y, we find u′(s) = cos s(sin s)t−1(1 + t ln(sin s)) > 0,
which implies that u is increasing on (1, y). So

(sin y)t ln(sin y) > (sin 1)t ln(sin 1)

and, hence,

g(t) = (sin t)t ln(sin t) − (sin y)t ln(sin y)
6 (sin t)t ln(sin t) − (sin 1)t ln(sin 1) := z(t). (2.8)

From Lemma 2.7 it is easily seen that z(t) < 0 and z(t) is increasing on (0, 3/5).
Consequently, f ′(t) = g(t) + h(t) 6 z(t) + k(t). Now, using inequalities (2.7) and

(2.8) and the properties of the functions k and z, we compute:

f ′(t) 6 −0.003 for t ∈ (0, 0.2], f ′(t) 6 −0.091 for t ∈ (0.2, 0.3],
f ′(t) 6 −0.094 for t ∈ (0.3, 0.35], f ′(t) 6 −0.056 for t ∈ (0.35, 0.40],
f ′(t) 6 −0.064 for t ∈ (0.4, 0.425], f ′(t) 6 −0.050 for t ∈ (0.425, 0.450],
f ′(t) 6 −0.039 for t ∈ (0.450, 0.475], f ′(t) 6 −0.030 for t ∈ (0.475, 0.500],
f ′(t) 6 −0.022 for t ∈ (0.500, 0.525], f ′(t) 6 −0.015 for t ∈ (0.525, 0.550],
f ′(t) 6 −0.008 for t ∈ (0.550, 0.575], f ′(t) 6 −0.003 for t ∈ (0.575, 0.600].

Hence, f ′(t) = g(t) + h(t) < 0 for 0 < t 6 3/5, 1 6 y 6 π/2. This completes the
proof. �

https://doi.org/10.1017/S0004972717000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000156


[9] Inequalities of Laub–Ilani type 95

Theorem 2.10. If 0 < x < y 6 π/2 then

xsin x + ysin y > xsin y + ysin x.

Proof. For 0 < x < y = 1, we have xsin x > xsin y = xsin 1 and, hence, the inequality holds.
The inequality holds also for 1 = x < y 6 π/2, since ysin y > ysin x = ysin 1. Further,
sin x < sin y for 0 < x < 1 < y 6 π/2, so xsin x > xsin y and ysin y > ysin x and, again, the
inequality holds. For the remaining values of x, y, that is, for 0 < x < y < 1 and
1 < x < y 6 π/2, consider the function f defined by

f (t) = ysin y − ysin t − (tsin y − tsin t),

where y ∈ (0, π/2] is fixed and 0 < t 6 y. Since f (y) = 0, the inequality follows if
f ′(t) < 0 for 0 < t < y < 1 and 1 < t < y 6 π/2. Write

f ′(t) = g(t) cos t + t−1h(t),

where
g(t) = (tsin t ln t − ysin t ln y) and h(t) = tsin t sin t − tsin y sin y.

To determine the sign of g(t) for 0 < t < y < 1 and 1 < t < y 6 π/2, rewrite g as

g(t) = −

y∫
t

d
ds

(ssin t ln s) ds = −

y∫
t

ssin t−1(1 + (sin t) ln s) ds.

If 0 < t 6 s 6 y < 1, then 1 + (sin t) ln s > 1 + (sin s) ln s > 1 + s ln s. Let k(s) = s ln s
for 0 < s < 1. The global minimum of k is k(e−1) = −e−1. Hence 1 + (sin t) ln s >
1 + s ln s > 1 − e−1 > 0 and g(t) < 0 for 0 < t < y < 1. On the other hand, if 1 < t < s <
y 6 π/2, then 1 + (sin t) ln s > 0 since ln s > 0. Hence g(t) < 0 for 1 < t < y 6 π/2.

To determine the sign of h(t) for 0 < t < y < 1, we use the inequality [4, page 66]

pp − qpq−1 < 0, 0 < p < q 6 1.

Let p = sin t and q = sin y. Then sin tsin t − sin tsin y−1 sin y < 0, that is,

sin t
sin y

< sin tsin y−sin t.

But since
sin tsin y−sin t < tsin y−sin t, 0 < t < y < 1,

we have
sin t
sin y

< tsin y−sin t,

which shows that h(t) < 0 for 0 < t < y < 1. Moreover, for 1 < t < y 6 π/2, we have
sin t < sin y and hence tsin t < tsin y. Then tsin t sin t < tsin y sin t < tsin y sin y, which shows
that h(t) < 0 for 1 < t < y 6 π/2.

Consequently, f ′(t) < 0 for 0 < t < y < 1 and 1 < t < y 6 π/2, since g(t) < 0 and
h(t) < 0 for the corresponding values of t. This completes the proof. �
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The following result is the cosine version of Theorem 2.10.

Theorem 2.11. If 0 < x < y and 1 6 y 6 π/2 then

xcos x + ycos y < xcos y + ycos x.

Proof. The inequality holds for x < y = 1 and x < y = π/2, since xcos x < xcos 1 and
xcos x < (π/2)cos x, respectively. For x < y, 1 < y < π/2, we have ycos y > xcos y and
cos x > cos y. Then

ycos x − ycos y = ycos y(ycos x−cos y − 1)
> xcos y(ycos x−cos y − 1) > xcos y(xcos x−cos y − 1) = xcos x − xcos y,

which completes the proof. �

Finally, we give two conjectures based on numerous tests we have performed to
check the validity of the trigonometric and algebraic-trigonometric versions of the n-
term Laub–Ilani inequality given by (1.2).

Conjecture 2.12. If x1, x2, . . . , xn ∈ (0, 1] and if {y1, y2, . . . , yn} is any permutation of
the finite sequence {x1, x2, . . . , xn}, then

(a) sin xx1
1 + sin xx2

2 + · · · + sin xxn
n > sin xy1

1 + sin xy2
2 + · · · + sin xyn

n ,
(b) cosx1 x1 + cosx2 x2 + · · · + cosxn xn < cosy1 x1 + cosy2 x2 + · · · + cosyn xn,
(c) cosr1 x1 + cosr2 x2 + · · · + cosrn xn < cost1 x1 + cost2 x2 + · · · + costn xn, where ri =

sin xi and ti = sin yi for i = 1, 2, . . . , n.

Conjecture 2.13. If x1, x2, . . . , xn ∈ (0, π/2] and if {y1, y2, . . . , yn} is any permutation
of the finite sequence {x1, x2, . . . , xn}, then

(a) cos xx1
1 + cos xx2

2 + · · · + cos xxn
n < cos xy1

1 + cos xy2
2 + · · · + cos xyn

n ,
(b) sinx1 x1 + sinx2 x2 + · · · + sinxn xn > siny1 x1 + siny2 x2 + · · · + sinyn xn,
(c) xsin x1

1 + xsin x2
2 + · · · + xsin xn

n > xsin y1
1 + xsin y2

2 + · · · + xsin yn
n .
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