Injective modules and soluble groups satisfying the minimal condition for normal subgroups

B. Hartley and D. McDougall

Abstract

Let p be a prime and let Q be a centre-by-finite p^{\prime}-group. It is shown that the $Z Q$-modules which satisfy the minimal condition on submodules and have p-groups as their underlying additive groups can be classified in terms of the irreducible $Z_{p} Q$-modules. If such a $Z Q$-module V is indecomposable it is either the $Z Q$-injective hull W of an irreducible $Z_{p} Q$-module (viewed as a $Z Q$-module) or is the submodule $W\left[p^{n}\right]$ of such a W consisting of the elements $w \in W$ which satisfy $p^{n} w=0$. This classification is used to classify certain abelian-by-nilpotent groups which satisfy Min-n, the minimal condition on normal subgroups. Among the groups to which our classification applies are all quasi-radicable metabelian groups with Min-n, and all metabelian groups which satisfy Min-n and have abelian Sylow p-subgroups for all p.

It is also shown that if Q is any countable locally finite p^{\prime}-group and V is a $Z Q$-module whose additive group is a p-group, then V can be embedded in a $Z Q$-module \bar{V} whose additive group is a minimal divisible group containing that of V. Some applications of this result are given.

1. Introduction

A group G is said to be quasi-radicable if, for each integer $n>0, G$ is generated by the n-th powers of its elements. One of the main purposes of this paper is to classify quasi-radicable metabelian groups satisfying Min-n, the minimal condition on normal subgroups. However it turns out to be equally convenient to work with a somewhat larger class, namely the class $\underline{\underline{Z}}$ of all abelian-by-nilpotent groups which satisfy Min-n and in addition satisfy the condition
(Z) If $G \in \underline{\underline{Z}}$ and P is a p-subgroup of G then $G \mathbb{N} \cap P$ is contained in the centre of P.

Here G denotes the uniquely determined normal subgroup K of G which is minimal subject to the condition that G / K is nilpotent; its existence is assured by Min-n . By a theorem of Baer [4] soluble groups satisfying Min-n, and hence Z Zgroups, are locally finite; another theorem of Baer [3] states that nilpotent groups with Min-n are centre-by-finite, so that Z-groups are metabelian-by-finite. $\underline{\underline{Z}}$ contains all metabelian groups which satisfy Min-n and have abelian Sylow p-subgroups for all primes p; hence ([14], Corollary 3.3) it contains all quasi-radicable metabelian groups with Min-n .

$$
\text { Let } \begin{aligned}
G \in \underline{\underline{Z}} \text { and let } K & =G \underline{N} \text {. Then } G \text { splits over } K \text { (Lemma 4.1) } \\
G & =K A, K \cap A=1 .
\end{aligned}
$$

Here, by the remarks above, A is nilpotent and centre-by-finite; the results of Baer [3] also show that A satisfies Min , the minimal condition on subgroups. Now the condition (Z) ensures that the Sylow p-subgroup of A centralizes the Sylow p-subgroup K_{p} of K; hence K_{p} is effectively a module for A_{p}, the Sylow p^{\prime}-subgroup of A, satisfying the minimal condition on submodules.

Our problem is thus closely related to that of classifying those modules over the integral group ring $Z Q$ of a centre-by-finite p^{\prime}-group Q which satisfy Min-Q, the minimal condition on Q-submodules, and have p-groups as their underlying additive groups. Modules with the latter property will be called p-modules. We shall deal with this problem in
§2. Strictly speaking our results simply reduce the classification problem to that of classifying the irreducible $Z_{p} Q$-modules; in the case when Q is abelian this can be done quite easily (Lemma 2.5). We shall see that the indecomposable p-modules over $Z Q$ with Min- Q arise naturally from the injective hulls of the irreducible ones, and our results in $\S 2$ lean heavily on the properties of the injective hull of a module as defined by Eckmann and Schopf [8] (see also [7], p. 384 et seq., or [15]).

A problem which arises naturally from the work in $\$ 2$ is the following: Let V be a $Z G$-module, where G is any group, and let \bar{V} be a minimal divisible group containing the additive group V^{+}of V, or in other words a Z-injective hull of V^{+}. Under what conditions can the Z_{G}-structure of V be extended to \bar{V} ?

This cannot invariably be done; for example, since a group of type C_{∞} has no automorphism of order p if p is odd, it cannot be done if p V is a cyclic group of order p^{2} which is a non-trivial module for a cyclic group of odd prime order p. In $\S 3$ we deduce easily from the results of $\$ 2$ that the extension can be carried out provided V is a p-module and G is a countable locally finite p^{\prime}-group (Theorem Bl). This result is used to construct examples of soluble groups of any given derived length which satisfy Min-n and have a series of finite length in which all the factors are divisible abelian groups (Lemma 3.4). These groups are PQ -groups in the sense of [13].

Finally in 54 we deduce our classification of z-groups from the results of $\$ 2$.

We are indebted to Dr M.C.R. Butler who suggested the possibility of applying the theory of injective modules to the problems described above; this resulted in a considerable simplification of our previous work.

2. Injective p-modules for centre-by-finite p^{\prime}-groups

We begin by recalling the basic facts about injective modules which we shall need (cf. [7], p. 384 et seq., or [15]). Let R be a ring with 1 . By an R-module we shall always understand a right R-module on which

I acts as the identity map. An R-module X is called injective if whenever $U \leq W$ are R-submodules then every R-homomorphism of U into X can be extended to W. This is equivalent (but not immediately) to the requirement that X be a direct summand of every R-module which contains it. If V is an arbitrary R-module then an injective hull of V (in the category of R-modules) is an R-module \bar{V} satisfying:-
(i) \vec{V} is injective, and either
(ii) no proper submodule of \bar{V} containing V is injective, or (ii)' \bar{V} is an essential extension of V.

Here a module W is said to be an essential (or related) extension of a submodule U if every non-trivial submodule of W meets U non-trivially. It was shown by Eckmann and Schopf [8] that every R-module V has an injective hull \bar{V} which is unique in the sense that if V^{*} is another injective hull of V then there is an isomorphism from \bar{V} to V^{*} extending the identity map on V.

We shall need the following fact:
LEMMA 2.1. Let R be a ring with 1 , let V be an R-module and let \bar{V} be an injective hull of V. Suppose $V=\underset{\lambda \in \Lambda}{\oplus} V_{\lambda}$ where each V_{λ} is an R-submodule of V. If either
(i) A is finite, or
(ii) R satisfies the maximal condition on right ideals, then $\bar{V}=\underset{\lambda \in \Lambda}{\oplus} \bar{V}_{\lambda}$, where \bar{V}_{λ} is an injective hull of V_{λ}.

Proof. We can embed V in a module $W=\underset{\lambda \in \Lambda}{\bigoplus} W_{\lambda}$, where each W_{λ} is an injective hull of V_{λ}; it will suffice to show that W is an injective hull of V. Now W is injective ([15], Theorems 5 and 6) and so we need only show that W is an essential extension of V. If this is not the case then there is a non-zero element w of W such that whenever $r \in R$ and $w r \in V$ then $w r=0$. We may express w in the form $\omega=w_{\lambda_{1}}+\ldots+w_{\lambda_{k}} \quad\left(0 \neq w_{\lambda_{i}} \in W_{\lambda_{i}}, \quad \lambda_{i} \neq \lambda_{j}\right.$ if $\left.i \neq j\right)$ and suppose k is minimal with respect to w having the desired property.

Now $0 \neq w_{\lambda_{1}} r \in V_{\lambda_{1}}$ for some $r \in R$. Consider $\left(w-w_{\lambda_{1}}\right)_{r}$. If it is zero then $w r=w_{\lambda_{1}} r$, a non-zero element of V. Hence $\left(w-w_{\lambda_{1}}\right) r \neq 0$, and by the minimality of k we have $0 \neq\left(w-w_{\lambda_{1}}\right) r s \in V$ for some $s \in R$. Hence $0 \neq w r s=\left(w-w_{\lambda_{1}}\right) r s+w_{\lambda_{1}} r s \in V$, which is a contradiction.

Notice that Lemma 2.1 holds in particular when R is the integral group ring of a finite group.

Now it is not difficult to see that every injective R-module U is divisible in the sense that $U d=U$ for every element d of R which is not a zero-divisor (cf. [11], Theorem 3.1). We shall call an R-module V Z-divisible if the additive group V^{+}of V is a divisible group. We then have immediately

LEMMA 2.2. Every injective $Z G$-module is Z-divisible.
We shall now see that under certain circumstances the converse is true, and that sometimes the injective hull \bar{V} of a $Z G$-module V has for its additive group a minimal divisible group containing V^{+}. This cannot happen when V is cyclic of order p^{2} and G is cyclic of odd prime order p, as we have already remarked. Furthermore if G is any infinite group, D is any non-trivial divisible group, \bar{D} is the base-group of the restricted wreath product D wr G, and $V=[\bar{D}, G]$, then V is Z-divisible but is not $Z G$-injective since it is not complemented by a Z G-submodule of \bar{D}. Thus in this case the injective hull of V does not have for its additive group a minimal divisible group containing V^{+}.

If p denotes a prime (as it always will) and V is any abelian group we denote by $V\left[p^{k}\right]$ the set of elements $v \in V$ satisfying $p^{k} v=0$ (where $k>0$ is an integer). If V is in addition an R-module then $V\left[p^{k}\right]$ will be an R-submodule of V.

LEMMA 2.3. Let Q be a centre-by-finite p^{\prime}-group and let V be a p-module over ZQ . Suppose that either
(i) Q is finite, or
(ii) V satisfies Min-Q.

Let \bar{V} be an injective kull of V. Then
(a) \bar{V} is a p-moduze and $\bar{V}[p]=V[p]$,
(b) V is injective if and only if V is Z-divisible.

For the proof we shall require the following lemma, which is a straightforward consequence of a result of Kovács and Newman [12]. We shall call a module monolithic if the intersection of its non-zero submodules is again non-zero.

LEMMA 2.4. Let Q be a centre-by-finite p^{\prime}-group, let V be a ZQ-module and let W be a submodule of V. Suppose that W is a p-module and is the direct swm of finitely many monolithic submodules, and suppose further that W is a direct summand of V as an additive group. Then W is a direct summand of V as a ZQ-moduze.

Proof of Lemma 2.3 (α). In case (i) it is clear that every element of $V[p]$ lies in a finite submodule of $V[p]$. It then follows by Maschke's Theorem that $V[p]$ is generated by its irreducible submodules and so is the direct sum of a selection of them. In case (ii) we find that if $V \neq 0$ then $V[p]$ contains an irreducible submodule, and this is a direct summand of $V[p]$ by Lemma 2.4. By applying this argument to a complementary submodule and continuing in the same way, we find that $V[p]$ is in this case the direct sum of finitely many irreducible submodules. Now \bar{V} is clearly an injective hull of $V[p]$ and so in either case Lemma 2.1 allows us to assume that V is irreducible.

We then have $V \leq \bar{V}[p]$. Since V is certainly a direct summand of the additive group of $\bar{V}[p]$, Lemma 2.4 shows that V is a direct summand of the $Z Q$-module $\bar{V}[p]$. But \bar{V} is an essential extension of V and so $V=\bar{V}[p]$.

It follows that the submodule \bar{V}_{p} formed by the p-elements of \bar{V} is monolithic with V as its unique minimal submodule. Now by Lerma 2.2 \bar{V}_{p} is Z-divisible and so it is a direct summand of the additive group of \bar{V}. Consequently, by Lemma 2.4 again, \bar{V}_{p} is a direct summand of \bar{V} as ZQ-module. It then follows that $\bar{V}_{p}=\bar{V}$, completing the proof.
(b) If V is injective then it is Z-divisible by Lemma 2.2.

Conversely suppose that V is Z-divisible, and let \bar{V} be an injective hull of V. By (a) the additive group of \bar{V} is a minimal divisible group containing that of V, and so $V=\bar{V}$. Hence V is injective.

We conclude this section by describing the structure of p-modules with Min- Q over $Z Q$, where Q is a centre-by-finite p^{\prime}-group. Let $\left\{V_{\lambda}: \lambda \in \Lambda\right\}$ be a complete set of representatives for the isomorphism types of irreducible $Z_{p} Q$-modules. We view the V_{λ} as $Z Q$-modules and denote by \bar{V}_{λ} a $Z Q$-injective hull of V_{λ}. Let $V_{\lambda}(n)$ denote the submodule of \bar{V}_{λ} formed by the elements v satisfying $p{ }^{n} v=0$ $(n=0,1, \ldots)$, and put $V_{\lambda}(\infty)=\bar{V}_{\lambda}$. Then $V_{\lambda}(n)$ is determined up to isomorphism by λ and n; notice also that by Lemma 2.3 $V_{\lambda}(n+1) / V_{\lambda}(n) \cong V_{\lambda}=V_{\lambda}(1)$, which is irreducible. It follows from this that the $V_{\lambda}(n) \quad(n=0,1 ; \ldots, \infty)$ are the only submodules of $V_{\lambda}(\infty)$.

THEOREM A. Let Q be a centre-by-finite p^{\prime}-group and let V be a p-module over Z_{Q}. Then V satisfies Min-Q if and only if V is a direct sum of finitely many submodules each isomorphic to some $V_{\lambda}(n)$ (1 $\leq n \leq \infty$).

If V satisfies $\operatorname{Min}-Q$ and V is expressed in two ways as the direct sum of indecomposable submodules, then there is an automorphism of V mopping the first decomposition onto the second.

Since $V_{\lambda}(n)$ is isomorphic to $V_{\mu}(m)$ if and only if $\lambda=\mu$ and $m=n$ it follows that the p-modules over $Z Q$ with Min- Q are classified by the functions of finite support from the set of pairs (λ, n) $(\lambda \in \Lambda, l \leq n \leq \infty)$ to the non-negative integers.

Proof of Theorem A. From our remarks preceding the statement of Theorem A it follows that each $V_{\lambda}(n)$ satisfies Min- Q; hence any finite direct sum of such modules also satisfies Min- Q.

Conversely suppose that V satisfies Min- Q. If V is not expressible as stated then among the submodules of V which are not so expressible there is a minimal one. It thus suffices for the proof to
assume that, while every proper submodule of V is expressible in the manner stated, V itself is not, and to obtain a contradiction. This assumption implies that V is indecomposable.

Let W be the maximal divisible subgroup of V and suppose first that $W \neq 0$. Then W is a submodule of V, and it follows from Lemma 2.3 that W is injective. Consequently W is a direct summand of V and so $V=W$. However Lemma 2.4 shows that $W[p]$ is the direct sum of finitely many irreducibles, and Lemma 2.1 then shows that W is the direct sum of the injective hulls of these irreducibles. Therefore V is a direct sum of submodules of type $V_{\lambda}(\infty)$, which is a contradiction. We therefore have that $W=0$.

By the minimal condition the chain $V \geq p V \geq p^{2} V \geq \ldots$ must become stationary after finitely many steps. Since V contains no non-trivial divisible subgroup it follows that $p^{n} V=0$ for some n, which we suppose chosen as small as possible. Then $p^{n-1} V \neq 0$ and so $p^{n-l_{V}}$ contains an irreducible submodule U. There is an isomorphism of U onto some V_{λ}, and this may be extended to a homomorphism ϕ of V into the injective module $V_{\lambda}(\infty)$. Now $p^{n-1}(V \phi)=\left(p^{n-1} V\right) \phi \neq 0$, and so $V \phi$ has exponent p^{n} precisely. Hence $V \phi=V_{\lambda}(n)$. Let K be the kernel of ϕ. Then V / K, as an additive group, is the direct sum of cyclic groups of the same order p^{n}. Such a group is free in the category of abelian groups of exponent dividing p^{n}; hence K is a direct summand of V as an additive group. Also, by the minimality of V, K is the direct sum of finitely many submodules of the type $V_{\lambda}(n)$. Since these are all monolithic, Lemma 2.4 shows that K is a direct summand of V as a module. This contradicts the indecomposability of V and establishes the result.

To establish the final statement if suffices, by a well-known version of the Krull-Schmidt Theorem due to Azumaya [1], to show that in the endomorphism ring of each $V_{\lambda}(n), n \geq 1$, the sum of two non-units is a non-unit. Since $V_{\lambda}(n)$ has no proper submodule isomorphic to itself,
every such non-unit has a non-trivial kernel, which must contain the unique minimal submodule of $V_{\lambda}(n)$. This makes it clear that the sum of two such non-units is a non-unit, as claimed.

As we have remarked, the irreducible $Z_{p} Q$-modules are quite readily obtained when Q is abelian. In fact let Q be any periodic abelian group, which need not even be a p^{\prime}-group for these purposes, and let k be an algebraic closure of Z_{p}. Let θ be a homomorphism of Q into the multiplicative group k^{*} of non-zero elements of k. Then since the elements of $Q \theta$ are all roots of unity, it follows that the additive group L_{θ} generated by $Q \theta$ is in fact a field. Let K_{θ} be the $Z_{p} Q$-module whose underlying vector space is : L_{θ} with the Q-action given by

$$
v g=v . g^{\theta} \quad(v \in V, g \in Q)
$$

Since $Q \theta$ generates L_{θ} additively any Q-submodule of K_{θ} is invariant under multiplication by any element of L_{θ}; consequently K_{θ} is irreducible. We have the following result, which is no doubt well known.

LEMMA 2.5. With the above notation
(i) every irreducible Z_{p} Q-module is isomorphic to some K_{θ};
(ii) $K_{\theta} \cong K_{\phi}$ if and only if $L_{\theta}=L_{\phi}$ and $\theta=\phi \rho$ for some element ρ of the Galois group of L_{θ} over Z_{p}.

Proof (i). Let V be an irreducible $Z_{P} Q$-module and let $E=$ End $_{Q} V$, which is a division algebra over Z_{p} by Schur's Lemma. Since Q is abelian, if $g \in Q$ the map $g \tau$ given by

$$
v(g \tau)=v g \quad(v \in V)
$$

is an element of E and τ maps Q homomorphically into the centre Z of E, which is a field. Let L be the additive subgroup of E generated by $Q \tau$. Then since the elements of $Q \tau$ are roots of unity L is a subring of Z which is algebraic over Z_{p}, and so it is a field.
is an L-module and since $Q \tau \leq L$ we must have $\operatorname{dim}_{L} V=1$. So $V=v L$ for some $v \in V$. Choose a monomorphism $\bar{\psi}$ of L into k and define

$$
(v z) \psi=z \bar{\psi} \quad(z \in L) .
$$

This gives a well-defined additive isomorphism of V onto the field $L \bar{\psi}$. Let $\theta=\tau \bar{\psi}$. Then θ maps Q homomorphically into the multiplicative group k^{*} and $L \bar{\psi}$ is additively generated by $Q \theta$. We now verify that the map ψ is an isomorphism of V onto K_{θ}. In fact if $u \in V$ and $g \in Q$ we have $u=v Z$ for some uniquely determined $Z \in L$, and

$$
(u g) \psi=[v L(g \tau)] \psi=(\imath \cdot g \tau) \bar{\psi}=\tau \bar{\psi} \cdot g \tau \bar{\psi}=u \psi \cdot g \theta,
$$

as required.
(ii) Suppose first that $L_{\theta}=L_{\phi}$ and $\theta=\phi \rho$ with ρ an element of the Galois group of L_{θ} over Z_{p}. Then ρ is an additive automorphism of L_{θ}, and if $x \in L_{\theta}$ and $g \in Q$ we have

$$
(x \cdot g \phi) \rho=x \rho \cdot g \phi \rho=x \rho \cdot g \theta
$$

so that ρ maps K_{ϕ} isomorphically onto K_{θ}.
Suppose conversely that $K_{\phi} \cong K_{\theta}$. Then since the kernel of ϕ is the kernel of the representation of Q determined by K_{ϕ} we must have that θ and ϕ have the same kernel. Therefore $Q \theta \cong Q \phi$. Now k^{*} is a direct product of groups of type $C_{q^{\infty}}$, one for each prime $q \neq p$; it follows that no two distinct subgroups of k^{*} are isomorphic. Hence $Q \theta=Q \phi$ and so $L_{\theta}=L_{\phi}$. Let ρ be any isomorphism of K_{ϕ} onto $K_{\dot{\theta}}$. Then ρ is an additive automorphism of L_{θ} and, since multiplication by any non-zero element of L_{θ} determines an automorphism of K_{θ}, we may choose ρ so that $l \rho=1$. Then for $x \in K_{\phi}$ and $g \in Q$ we have

$$
(x . g \phi) \rho=x \rho . g \theta .
$$

Putting $x=1$ gives $\phi \rho=\theta$ and so $(x . g \phi) \rho=x \rho . g \phi \rho$, or $(x . y) \rho=x \rho . y \rho$ for $x \in L_{\theta}$ and $y \in Q \theta$. Since $Q \theta$ generates L_{θ} additively it follows that ρ preserves multiplication, and so belongs to
the Galois group of L_{θ} over Z_{p}.

3. Embedding in Z-divisible modules

It follows in particular from the existence of the injective hull, that every R-module can be embedded in an injective R-module. In fact this was first proved by Baer [2]. Lemma 2.2 then gives

LEMMA 3.1. Every ZG-moduze can be embedded in a Z-divisible ZG-moduze.

It is natural to ask under what circumstances a $Z G$-module V may be embedded in a Z-divisible $Z G$-module \bar{V} whose additive group is a minimal divisible group containing that of V. This is not always possible, as we remarked in $\S 1$. Now the following facts are immediate from Lemma 2.3:

LEMMA 3.2. Let Q be a centre-by-finite p^{\prime}-group and let V be a p-module over $Z Q$. Let \bar{V} be a minimal divisible group containing the additive group of V, and suppose that either
(i) Q is finite, or
(ii) V satisfies Min-Q.

Then
(a) \bar{V} admits a ZQ-module structure extending that on V;
(b) if V_{1}, V_{2} are $Z Q$-modules containing V in such a manner that their additive groups are minimal divisible groups containing that of V, then the identity map on V extends to an isomorphism of V_{1} onto V_{2}.

We shall now show that (a) holds in considerably greater generality:
THEOREM B1. Let Q be a countable locally finite p^{\prime}-group, let V be a p-module over $Z Q$, and let \bar{V} be a minimal divisible group containing the additive group of V. Then \bar{V} admits a ZQ-module structure extending that of V.

In this generality, however, (b) of Lemma 3.2 may break down, and the resulting $Z Q$-module \bar{V} is not always even determined up to isomorphism by V. We shall not pursue this point at present, but hope to return to it in a later publication. We have no idea whether the restriction of
countability is necessary.

$$
\begin{aligned}
& \text { Proof. Write } Q=\bigcup_{i=0}^{\infty} Q_{i}, \text { where } \\
& \\
& \qquad 1=Q_{0} \leq Q_{1} \leq \ldots
\end{aligned}
$$

is a tower of finite subgroups of Q. We shall construct for each $n \geq 0$ a map $f_{n}: \bar{V} \times Z Q_{n} \rightarrow \bar{V}$ which makes \bar{V} into a $Z Q_{n}$-module and is such that

$$
\begin{equation*}
(v, r) f_{n}=v r \quad\left(v \in V, \quad r \in Z Q_{n}\right) \tag{1}
\end{equation*}
$$

We shall also arrange that each f_{n+1} extends f_{n}. These maps will then determine a map from $\bar{V} \times Z Q$ to \bar{V} which makes \bar{V} into a $Z Q$-module in the required manner.

Now f_{0} can certainly be obtained (and is in fact uniquely determined). Suppose that for some $n \geq 0, f_{n}$ has been constructed. It follows from Lemma 3.2 that there is a Z-divisible $Z Q_{n+1}$-module W containing the restricted module $V_{Q_{n+1}}$ in such a manner that the additive group of W is a minimal divisible group containing the additive group of $V_{Q_{n+1}}$ (or the additive group of V, which is the same thing).
It further follows from Lemma 3.2 that the identity map on V can be extended to a $Z Q_{n}$-isomorphism ϕ of the $Z Q_{n}$-module $\left(V, f_{n}\right)$ onto $W_{Q_{n}}$. The mapping $f_{n+1}: \bar{V} \times Z Q_{n+1} \rightarrow \bar{V}$ defined by

$$
(v, r) f_{n+1}=(v \phi \cdot r) \phi^{-1} \quad\left(v \in V, \quad r \in Z Q_{n+1}\right)
$$

then makes \bar{V} into a $Z Q_{n+1}$-module, extends f_{n}, and satisfies (1) with n replaced by $n+1$. Thus the maps f_{n} can be constructed and the result is established.

THEOREM B2. Let Q be a countable locally finite p^{\prime}-group and let V be a p-module over $Z Q$ satisfying Min- Q. Then V can be embedded in a Z-divisible p-module over $Z Q$ which satisfies Min-Q.

Proof. Let \bar{V} be a $Z Q$-module containing V in such a manner that the additive group of \bar{V} is a minimal divisible group containing that of V. The existence of such a \bar{V} is given by Theorem Bl. Then $\bar{V}[p]=V[p]$ and Theorem B2 follows from the following lemma:

LEMMA 3.3. Let V be an abelian p-group admitting a set Ω of distributive operators. Then V satisfies Min- Ω, the minimal condition on Ω-subgroups, if and only if $V[p]$ satisfies Min- Ω.

Proof. It is clear that if V satisfies Min- Ω so does $V[p]$. Conversely assume that $V[p]$ satisfies $\operatorname{Min}-\Omega$ and let

$$
V_{1} \geq V_{2} \geq \ldots
$$

be a descending chain of Ω-subgroups of V. Consider the Ω-subgroups

$$
U_{i, m}=p^{m}\left(V_{i} \cap V\left[p^{m+1}\right]\right) \quad(i=1,2, \ldots ; m=0,1, \ldots)
$$

of $V[p]$. Clearly $U_{i, m} \geq U_{i+1, m}$ and $U_{i, m} \geq U_{i, m+1}$. Therefore $U_{i, m} \geq U_{j, n}$ if $j \geq i$ and $n \geq m$, and since $V[p]$ satisfies $\operatorname{Min}-\Omega$ we can choose i and m so that

$$
\begin{equation*}
U_{i, m}=U_{j, n} \text { for } j \geq i \text { and } n \geq m \tag{2}
\end{equation*}
$$

Now the map $v \rightarrow p^{k} v$ determines an embedding of $v\left[p^{k+l}\right] / V\left[p^{k}\right]$ in $V[p]$ and so each $V\left[p^{k+1}\right] / V\left[p^{k}\right]$ satisfies Min- Ω. Therefore $V\left[p^{k}\right]$ satisfies $\operatorname{Min}-\Omega$ and we may suppose i chosen in (2) so that in addition

$$
V_{i} \cap V\left[p_{-}^{m+l}\right]=V_{j} \cap V\left[p^{m+l}\right] \text { whenever } j \geq i
$$

We now show by induction on , n that

$$
\begin{equation*}
V_{i} \cap V\left[p^{n}\right]=V_{j} \cap V\left[p^{n}\right] \text { for all } j \geq i \text { and } n \geq m+1 \tag{3}
\end{equation*}
$$

Indeed suppose (3) holds for some $n \geq m+1$ and let $v \in V_{i} \cap V\left[p^{n+1}\right]$. Then by (2) $p^{n} v \in U_{i, n}=U_{j, n}$ and so $p^{n} v=p^{n} w$ for some $w \in V_{j} \cap V\left[p^{n+1}\right]$. Therefore $p^{n}(v-w)=0$ and $v-w \in V_{i} \cap V\left[p^{n}\right]=V_{j} \cap V\left[p^{n}\right]$. Hence $v \in V_{j} ;$ as required.

It follows from (3), and the fact that $V=\underset{n \geq m+1}{U} V\left[p^{n}\right]$, that $V_{i}=V_{j}$ for all $j \geq i$, whence we have that V has Min- Ω.

In [13] a group possessing a series of finite length in which the factors are periodic divisible abelian groups was called a PQ-group. We extend Example 4 of [14] as follows:-

LEMMA 3.4. The class of PQ-groups satisfying Min-n contains groups of any prescribed derived length.

Proof. The construction is similar to that of [14]. Suppose that we have constructed, for some integer $n \geq 1$, a $P \underline{\underline{Q}}$-group G_{n} which satisfies Min-n, is a π-group for some finite set π of primes, and is in addition monolithic with monolith M. As G_{1} we may take a group of type C_{∞}, where q is a prime. Let x be an element of prime order $p \nmid \pi$, and let X be the base group of $\langle x\rangle$ wr $G_{n}=W$. There is a chief series of W through X. If M centralized every factor below X in this series it would centralize X itself since X is a p-group and $p \notin \pi$. Consequently M fails to centralize some such factor, which then furnishes a faithful irreducible p-module V for G_{n}. It follows from Theorem Bl and Lemma 3.3 that there is a p-module \bar{V} for G_{n} which satisfies $\operatorname{Min}-G_{n}$ and is such that $V=\bar{V}[p]$. Let G_{n+1} be the semidirect product $\bar{V} G_{n}$. Then G_{n+1} is a $P Q$ group with Min-n and is monolithic with monolith V. It follows easily that G_{n+1} has derived length $n+1$ exactly.

4. Classification of Z-groups

Our aim in this section is to classify, up to isomorphism, groups in the class $\underline{\underline{Z}}$, the class introduced in §l. We shall classify these groups in terms of nilpotent centre-by-finite groups with Min and irreducible modules for such groups. A result which will be of fundamental importance for our classification is the following:

LEMMA 4.1. Let $G \in \underline{\underline{Z}}$. Then G splits over $G^{\underline{N}}$ and the
complements to $G \underline{\underline{N}}$ are conjugate in $G . G / G^{\underline{N}}$ is centre-by-finite.
Our proof of Lemma 4.1 will depend on properties of the class $\underline{\underline{U}}$ introduced in [9]. We recall that a locally finite group X belongs to $\underline{\underline{U}}$ if and only if X has a series of finite length with locally nilpotent factors and every subgroup of X has conjugate Sylow (that is, maximal) π-subgroups for all sets π of primes.

LEMMA 4.2. Let G be a soluble group satisfying Min-n. Suppose that G contains a normal subgroup of finite index which is -nilpotent-by-locally nilpotent. Then $G \in \underline{\underline{\mathrm{U}}}$.

Proof. By Baer's Theorem [4] G is locally finite. Since the condition Min-n is inherited by normal subgroups of finite index [16], and since the class $\underline{\underline{U}}$ is closed under extensions by finite soluble groups ([10], Lemma 6.6) we may assume that G contains a normal nilpotent subgroup H such that G / H is locally nilpotent. Then G / H is a locally nilpotent group satisfying Min-n . Such groups satisfy the minimal condition on all subgroups ([6], Corollary 4.6) and so are countable and abelian-by-finite. Therefore, arguing as before, we may suppose that G / H is abelian.

Let X be any subgroup of G and let K be the Sylow π-subgroup of H. Then $X K / K \cong X / X \cap K$ and, since $X \cap K$ is a normal π-subgroup of X, the conjugacy of the Sylow π-subgroups of $X K / K$ implies the conjugacy of those of X. We may therefore assume that $K=1$.

Let S and T be Sylow π-subgroups of X. We shall now show that S and T are conjugate in X by induction on the nilpotency class c of H. If $c=0$ then $H=1, X$ is abelian, and $S=T$. Assume then that $c>0$ and let Z be the centre of H. We may assume by induction that X contains an element x such that $\left\langle S^{x} Z / Z, T Z / Z\right\rangle$ is a π-group, U / Z say. Now U / Z must be countable and so $U=2 W$ for some π-subgroup W of U (see for instance [10], Lemma 2.1). Let L be any subgroup of W and let F be any finite subgroup of L. Then $C_{Z}(F)=Z \cap C_{G}(H F)$, which is normal in G since G / H is abelian. Therefore by Min-n we con choose F so that $C_{Z}(F)$ is minimal among the centralizers in Z of the finite subgroups of L. Then clearly
$C_{Z}(F)=C_{Z}(L)$. It follows from Lemma 4.3 of [10] that every countable subgroup of U containing W has conjugate Sylow π-subgroups, and hence from Theorem B of [10] that every countable subgroup whatsoever of U has conjugate Sylow π-subgroups. Therefore S^{x} and T are conjugate in the group they generate, which establishes the lemma.

Proof of Lemma 4.1. We have by Lemma 4.2 that $G \in \underline{\underline{U}}$. Let K be the uniquely determined normal subgroup of G which is minimal subject to the condition that G / K is locally nilpotent. Then K is abelian. By [9], Theorem 4.12, G splits over K and the complements to K in G are conjugate - in fact they are the basis normalizers of G. We shall show that $K=0$. Now it is clear from (Z) (in §1) that every p-subgroup of G is nilpotent. Since G / K satisfies Min, as we have seen, and is therefore countable, every p-subgroup of G / K is the image of a p-subgroup of G ([10], Lemma 2.1). Therefore the Sylow p-subgroups of G / K are nilpotent and so G / K is nilpotent. Hence $K=\underline{\underline{N}}$.

Finally, since it is a nilpotent group satisfying Min-n, G / K is centre-by-finite by a theorem of Baer [3].

Lemmas 4.1 and 4.2 are generalizations of Theorem 3.5 and 5.6 of [14].

Now it follows from Lemma 4.1 that in trying to classify groups in the class $\underline{\underline{Z}}$ it is sufficient to restrict ourselves to considering those groups $G \in \underline{\underline{Z}}$ such that G / G^{N} is isomorphic to a given nilpotent centre-by-finite group A satisfying the minimal condition.

Let A_{p}, be the sylow p^{\prime}-subgroup of A and let $\left\{V_{\lambda} ; \lambda \in \Lambda_{p}\right\}$ be a complete set of representatives for the isomorphism classes of non-trivial irreducible $Z_{p} A_{p}$,-modules. We assume the sets Λ_{p} to be pairwise disjoint, as we may. Notice that if A is actually abelian then the V_{λ} may be constructed by the method of Lemma 2.5. For $n=1,2, \ldots, \infty$ let $V_{\lambda}(n)$ denote the A_{p},-module obtained from V_{λ} as described before Theorem A, and view each $V_{\lambda}(n)$ as an A-module by
allowing A_{p} to act trivially. Let $\Lambda=U_{p} \Lambda_{p}$ and let $X=X(A)$ denote the set of all external direct sums of finitely many modules $V_{\lambda}(n)$ $(n=1,2, \ldots, \infty ; \lambda \in \Lambda)$. We admit a zero module to X as the direct sum of the empty set.

An equivalence relation is introduced on X as follows. First, if $X \in X$ and $\alpha \in \operatorname{Aut} A$, let X^{α} be the A-module which has X as its underlying additive group and which has the A-action defined by

$$
(x, a) \rightarrow x(a \alpha) \quad(x \in X, \quad a \in A)
$$

Now if X and Y are elements of X we define $X \sim Y$ to mean that $X \cong Y^{\alpha}$ for some $\alpha \in \operatorname{Aut} A$; we shall say that X is an automorphism conjugate of Y. The relation of automorphism conjugacy is easily seen to be an equivalence relation on X.

Finally for each $X \in X$ let $X A$ denote the semidirect product of X by A, that is the group consisting of all pairs (x, a), where $x \in X$, $a \in A$, with the multiplication $(x, a)\left(x^{\prime}, a^{\prime}\right)=\left(x+x^{\prime} a^{-1}, a a^{\prime}\right)$. When appropriate we shall identify X with a subgroup of $X A$ in the usual manner. We now have

THEOREM C. With the above notation, if $X \in X$ then $H=X A \in \underline{\underline{Z}}$, $I \mathbb{N}=X$ and $H / H \cong N$ N. If $G \in \underline{\underline{Z}}$ and $G / G \underline{N} \cong A$ then $G \cong X A$ for some $X \in X$. If $X, Y \in X$ then $X A \cong Y A$ if and only if $X \sim Y$.

Thus there is a natural one-to-one correspondence between the isomorphism classes of groups G in $\underline{\underline{Z}}$ with $G / G^{N} \cong A$, and the automorphism conjugacy classes of elements of X. We shall have more to say about the relation of automorphism conjugacy after proving Theorem C.

Notice that, with the notation of Theorem C, H will be quasi-radicable if and only if A is quasi-radicable. For if A is quasi-radicable and $n>1$ then the subgroup generated by the n-th powers of elements of H contains A and so, being normal in H, contains $[X, A]=\left[H^{N}, A\right]=H^{N}=X$. Since A is in any case centre-by-finite it follows that H is quasi-radicable if and only if A is abelian and radicable (that is, every element has an n-th root for all $n>1$).

Proof of Theorem C. If V_{λ} is any irreducible module in X then since V_{λ} is non-trivial and irreducible the submodule $\left[V_{\lambda}, A\right]$ additively generated by the elements $v-v a\left(v \in V_{\lambda}, a \in A\right)$ must be the whole of V_{λ}. It then follows easily, since $V_{\lambda}(n+1) / V_{\lambda}(n) \cong V_{\lambda}$ if n is finite, that $\left[V_{\lambda}(m), A\right]=V_{\lambda}(m)$ for any $m=1,2, \ldots, \infty$. Hence $[X, A]=X$ for any $X \in X$. Since $X A / X \cong A$, which is nilpotent, this means that $X=(X A)$.

Now let $G \in \underline{\underline{Z}}$ and suppose that $G / G^{\mathbb{N}} \cong A$. If $G \mathbb{N}=1$ then $G \cong A$ and taking X to be the zero module there is nothing to prove. Thus we may assume that $G \underline{N} \neq 1$. Then by Lemma 4.1 we have, if $K=G$

$$
\begin{equation*}
G=K \bar{A}, \quad K \cap \bar{A}=1 \tag{4}
\end{equation*}
$$

for some $\bar{A} \cong A . G$ is locally finite and the condition (Z) ensures that the Sylow p-subgroup \bar{A}_{p} of \bar{A} centralizes the Sylow p-subgroup K_{p} of the abelian group K. Therefore if we view K_{p} as an \bar{A}_{p},-module in the natural way it satisfies Min- \bar{A}_{p}, . By Lemma $4.1 \bar{A}_{p}$, is centre-by-finite and so by Theorem $A \quad K_{p}$ is a direct sum of finitely many submodules of the type $W(n)$, where W is some irreducible $Z_{p} \bar{A}_{p}$-module. Now since K is a non-trivial abelian group it follows from (4) that $K=[K, \bar{A}]$. Hence $K_{p}=\left[K_{p}, \bar{A}_{p^{\prime}}\right]$ and

$$
\begin{equation*}
W(n)=\left[W(n), \bar{A}_{p^{\prime}}\right] . \tag{5}
\end{equation*}
$$

Consequently W must not be a trivial module. Otherwise, since W determines $W(n)$ up to isomorphism $W(n)$ would be trivial, in contradiction to (5).

Let $a \rightarrow \bar{a}$ be an isomorphism of A onto \bar{A}. We view K as an A-module by defining

$$
x a=\bar{a}^{-1} x \bar{a} \quad(x \in K, \quad a \in A)
$$

It now follows from the remarks just made that K is isomorphic to some module $X \in X$. Let ψ be an A-isomorphism of X onto K. Then the
$\operatorname{map}(x, a) \rightarrow x \psi \cdot \bar{a}$ maps $X A$ isomorphically onto G.

Finally let $X, Y \in X$. If $X \sim Y$ then $X \cong Y^{\alpha}$ for some $\alpha \in$ AutA.
Let ψ be an A-isomorphism of X onto Y^{α}. Then the map $(x, a) \rightarrow(x \psi, a \alpha)$ maps $X A$ isomorphically onto $Y A$. On the other hand suppose that $X A \cong Y A$ and let ϕ be an isomorphism of $X A$ onto $Y A$. We have already seen that $X=(X A) \xlongequal{\underline{N}}$ and $Y=(Y A)^{\underline{N}}$ and so ϕ maps X onto Y. Since Y is abelian the complements to it in $Y A$ are conjugate under the automorphism group of $Y A$; in fact in this case, by Lemma 4.l, they are conjugate in $Y A$ itself. We may therefore assume that ϕ maps the elements of the form $(0, \alpha)$ in $X A$ to the elements of similar form in $Y A$. Thus ϕ has the form $(x, a) \rightarrow(x \psi, \alpha \alpha)$ where ψ is an additive isomorphism of X onto Y and α is a bijection of A onto itself. It is then easy to verify that $\alpha \in A u t A$ and ψ determines an isomorphism of X onto Y^{α}. Therefore $X \sim Y$, which completes the proof of Theorem C.

We notice, for example, that if A is a non-trivial locally cyclic p^{\prime}-group then there is, up to automorphism conjugacy, exactly one faithful irreducible $Z_{p} A$-module. For by Lemma 2.5 every such module has the form K_{θ} for some monomorphism θ of A into an algebraic closure k of Z_{p}. The existence of such a θ follows since A is a locally cyclic p^{\prime}-group, and clearly $K_{\phi}=K_{\theta}^{\phi \theta^{-1}}$. Consequently there is, up to isomorphism, exactly one quasi-radicable metabelian group with Min-n of the form $N A$, where N is a normal p-subgroup faithfully and irreducibly transformed by a given non-trivial radicable locally cyclic p^{\prime}-group A. Such groups were first constructed by Carin [5].

Let $V_{\lambda}(n)^{m}$ denote that member of X which is given as the direct sum of m copies of $V_{\lambda}(n)(m \geq 1)$. Then, since each member X of X is given together with a direct decomposition, X determines uniquely a set

$$
S(X)=\left\{v_{\lambda_{1}}\left(n_{1}\right)^{m_{1}}, \ldots, v_{\lambda_{k}}\left(n_{k}\right)^{m_{k}}\right\}
$$

where $k \geq 0$ and the pairs $\left(\lambda_{i}, n_{i}\right)$ are all distinct. Now if elements X and Y of X are isomorphic then their p-components are isomorphic as A_{p}-modules for each prime p; Theorem A then shows that this happens if and only if $S(X)=S(Y)$.

LEMMA 4.3. Let $X, Y \in X$ and suppose

$$
S(X)=\left\{v_{\lambda_{1}}\left(n_{1}\right)^{m} 1, \ldots, v_{\lambda_{k}}\left(n_{k}\right)^{m}\right\}
$$

and

$$
s(Y)=\left\{V_{\mu_{1}}\left(s_{1}\right)^{t_{1}}, \ldots, V_{\mu_{2}}\left(s_{\eta}\right)^{t_{\imath}}\right\}
$$

Then $X \sim Y$ if and only if
(i) $k=2$,
(ii) there exists an automorphism α of A and a permutation σ of $\{1,2, \ldots, k\}$ such that $V_{\lambda_{i}} \cong V_{\mu_{i \sigma}}^{\alpha}, \quad n_{i}=s_{i \sigma}, m_{i}=t_{i \sigma}$ for $\quad 1 \leq i \leq k$.

Proof. Suppose first that $X \sim Y$. Then $X \cong Y^{\alpha}$ for some $\alpha \in \operatorname{Aut} A$ and, since $(U \oplus W)^{\alpha}=U^{\alpha} \oplus W^{\alpha}$ for any A-modules U and W, we have (6) $V_{\lambda_{1}}\left(n_{1}\right)^{m} 1 \oplus \ldots \oplus V_{\lambda_{k}}\left(n_{k}\right)^{m_{k}} \cong\left(V_{\mu_{1}}\left(s_{1}\right)^{\alpha}\right)^{t_{1}} \oplus \ldots \oplus\left(V_{\mu_{2}}\left(s_{2}\right)^{\alpha}\right)^{t_{2}}$. Since the modules $V_{\lambda_{i}}\left(n_{i}\right)$ and $V_{\mu_{j}}\left(s_{j}\right)^{\alpha}$ are indecomposable it follows from Theorem A that there is a one-to-one correspondence between the summands of this form on the two sides of (6) such that corresponding summands are isomorphic. Now $V_{\mu_{i}}\left(s_{i}\right)^{\alpha} \cong V_{\mu_{j}}\left(s_{j}\right)^{\alpha}$ if and only if $i=j$; consequently to each i with $1 \leq i \leq k$ there is a uniquely determined
integer $i \sigma$ with $1 \leq i \sigma \leq 2$. such that $V_{\lambda_{i}}\left(n_{i}\right) \cong V_{\mu_{i \sigma}}\left(s_{i \sigma}\right)^{\alpha}$. It then follows that $n_{i}=s_{i \sigma}, m_{i}=t_{i \sigma}, k=l$, and that σ is a permutation of $\{1,2, \ldots, k\}$. Clearly $V_{\lambda_{i}} \simeq V_{\mu_{i \sigma}^{\alpha}}^{\alpha}$.

Conversely suppose that (i) and (ii) hold. Then by Theorem A $V_{\mu}\left(s_{i \sigma}\right)^{\alpha}$ must be isomorphic to some module of the form $V_{\lambda}(n)$, and consideration of the minimal submodules shows that the module required must be $V_{\lambda_{i}}\left(n_{i}\right)$. We then easily obtain (6) and hence that $X \cong Y^{\alpha}$, as required.

Let us call an abelian p-group homogeneous if it is either homocyclic or divisible. As an application of Theorem C and Lemma 4.3 we prove

COROLLARY 4.4. Let G_{1} and G_{2} belong to $\underline{\underline{Z}}$. For $i=1,2$ let $K_{i}=\left(G_{i}\right)^{\underline{N}}$, Let N_{i} be the product of the minimal normal subgroups of G_{i} contained in K_{i}, and let A_{i} be a complement for K_{i} in G_{i}. Suppose that, for each prime p, the p-component of K_{i} is homogeneous of exponent $p^{n_{i}(p)}$. Then $G_{1} \cong G_{2}$ if and only if
(i) $n_{1}(p)=n_{2}(p)$ for each prime p,
(ii) $\quad N_{1} A_{1} \cong N_{2} A_{2}$.

Proof. If $G_{1} \cong G_{2}$ then any isomorphism from G_{1} to G_{2} maps K_{1} onto K_{2}, and as in the argument of Theorem C there exists an isomorphism which maps A_{1} onto A_{2}. Such an isomorphism maps $N_{1} A_{1}$ isomorphically onto $N_{2} A_{2}$. Thus the necessity of the conditions is clear.

To see the sufficiency we notice first that by Theorem C the minimal normal subgroups of G_{i} in K_{i} are non-central. Hence $N_{i}=\left[N_{i}, A_{i}\right]$, and so $N_{i}=\left(N_{i} A_{i}\right)^{\frac{\mathbb{N}}{=}}$. Therefore it follows from (ii) that $A_{1} \cong A_{2}$. Theorem C now allows us to assume that $G_{i}=X_{i} A$, where A is a non-trivial nilpotent centre-by-finite group with Min and $X_{i} \in X=X(A)$
($i=1,2$) . Since the p-components of X_{1} are homogeneous,

$$
s\left(X_{1}\right)=\left\{V_{\lambda_{1}}\left(s_{1}\right)^{t_{1}}, \ldots, v_{\lambda_{k}}\left(s_{k}\right)^{t_{k}}\right\}
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are all distinct and $s_{i}=n_{1}(p)$ if $V_{\lambda_{i}}$ is a p-module. The subgroup $N_{1} A_{1}$ of G_{1} corresponds naturally to $Y_{1} A_{1}$ where $S\left(Y_{1}\right)=\left\{V_{\lambda_{1}}(1)^{t_{1}}, \ldots, V_{\lambda_{k}}(1)^{t_{k}}\right\}$. Thus k is the number of distinct isomorphism types of A-modules in Y_{1}. It now follows from (ii) that $S\left(X_{2}\right)=\left\{V_{\mu_{1}}\left(u_{1}\right)^{w_{1}}, \ldots, V_{\mu_{k}}\left(u_{k}\right)^{w_{k}}\right\}$, where μ_{1}, \ldots, μ_{k} are all distinct. Since $Y_{1} A \cong Y_{2} A$, Theorem C gives $Y_{1} \sim Y_{2}$. Hence by Lemma 4.3 there is an automorphism α of A and a permutation σ of $\{1,2, \ldots, k\}$ such that $V_{\lambda_{i}} \cong V_{\mu_{i \sigma}}^{\alpha}$ and $t_{i}=w_{i \sigma}$. Now $s_{i}=n_{1}(p)$ and $u_{i \sigma}=n_{2}(p)$, where p is the prime such that both $V_{\lambda_{i}}$ and $V_{\mu_{i \sigma}}^{\alpha}$ are p-modules. Hence by (i) $s_{i}=u_{i \sigma}$. Lemma 4.3 now shows that $X_{1} \sim X_{2}$, and Theorem C gives $X_{1} A \cong X_{2} A$, which completes the proof.

References

[1] Gorô Azumaya, "On generalized semi-primary rings and Krull-Remak-Schmidt's theorem", Japan J. Math. 19 (1948), 525-547.
[2] Reinhold Baer, "Abelian groups that are direct summands of every containing group", BuZZ. Amer. Math. Soc. 46 (1940), 800-806.
[3] Reinhold Baer, "Nilgruppen", Math. 2. 62 (1955), 402-437.
[4] Reinhold Baer, "Irreducible groups of automorphisms of abelian groups", Pacific J. Math. 14 (1964), 385-406.
[5] V.S. Carin, "A remark on the minimal condition for subgroups", (Russian), DokZ. Akad. Nauk SSSR 66 (1949), 575-576.
[6] S.N. Cernikov, "Finiteness conditions in group theory", (Kussian), Uspehi Mat. Nauk 14 (1959), no. 5 (89), 45-96. German translation: "Endlichkeitsbedingungen in der Gruppentheorie", (VEB Deutscher Verlag der Wissenschaften, Berlin, 1963).
[1] Charles W. Curtis; Irving Reiner, Representation theory of finite groups and associative algebras (Pure and Applied Mathematics, XI; Interscience, [John Wiley \& Sons], New York, London, 1962).
[8] B. Eckmann und A. Schopf, "Über injektive Moduln", Arch. Math. 4 (1953), 75-78.
[9] A.D. Gardiner, B. Hartley and M.J. Tomkinson, "Saturated formations and Sylow structure in locally finite groups", J. Algebra (to appear).
[10] B. Hartley, "Sylow subgroups of locally finite groups" Proc. London Math. Soc. (to appear).
[11] Lawrence Levy, "Torsion-free and divisible modules over non-integral-domains", Canad. J. Math. 15 (1963), 132-151.
[12] L.G. Kovács and M.F. Newman, "Direct complementation in groups with operators", Arch. Math. 13 (1962), 427-433.
[13] D. McDougall, "The subnormal structure of some classes of soluble groups", J. Austral. Math. Soc. (to appear).
[14] D. McDougall, "Soluble groups with the minimal condition for normal subgroups", Math. 2. (to appear).
[15] Tsai Chi-Te, Report on injective modules (Queen's papers in pure and applied mathematics, no. 6; Queen's University, Kingston, Ontario, 1966).
[16] John S. Wilson, "Some properties of groups inherited by normal subgroups of finite index", Math. Z. 114 (1970), 19-21.

University of Warwick,
Coventry, England;
Australian National University,
Canberra, ACT.

