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Injective modules and soluble groups
satisfying the minimal condition

for normal subgroups

B. Hartley and D. McDougall

Let p be a prime and let Q be a centre-by-finite p'-group.

It is shown that the ZQ-modules which satisfy the minimal

condition on submodules and have p-groups as their underlying

additive groups can be classified in terms of the irreducible

Z ^-modules. If such a Z^-module V is indecomposable it is

either the Z^-injective hull W' of an irreducible Z Q-module

(viewed as a Z§-module) or is the submodule w\jp ] of such a

W consisting of the elements w € W which satisfy pnw = 0 .

This classification is used to classify certain

abelian-by-nilpotent groups which satisfy Min-n , the minimal

condition on normal subgroups. Among the groups to which our

classification applies are all quasi-radicable metabelian groups

with Min-n , and all metabelian groups which satisfy Min-n

and have abelian Sylow p-subgroups for all p .

It is also shown that if Q is any countable locally finite

p'-group and V is a Z^-module whose additive group is a

p-group, then V can be embedded in a ZQ-module V whose

additive group is a minimal divisible group containing that of

V . Some applications of this result axe given.
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114 B. Hartley and D. McDougall

1. Introduction

A group G is said to be quasi-radiaable if, for each integer

n > 0 , G is generated by the n-th powers of its elements. One of the

main purposes of this paper is to classify quasi-radicable metabelian

groups satisfying Min-n , the minimal condition on normal subgroups.

However it turns out to be equally convenient to work with a somewhat

larger class, namely the class £ of all abelian-by-nilpotent groups

which satisfy Min-n and in addition satisfy the condition

(Z) If G d £ and P is a p-subgroup of G then G^ n P is

contained in the centre of P .

Here Cr= denotes the uniquely determined normal subgroup K of G which

is minimal subject to the condition that G/K is nilpotent; its

existence is assured by Min-n . By a theorem of Baer [4] soluble groups

satisfying Min-n , and hence Z.-groups, are locally finite; another

theorem of Baer [3] states that nilpotent groups with Min-n are

centre-by-finite, so that ^-groups are metabelian-by-finite. £ contains

all metabelian groups which satisfy Min-n and have abelian Sylow

p-subgroups for all primes p ; hence ([74], Corollary 3.3) it contains

all quasi-radicable metabelian groups with Min-n .

Let G £ JS and let K = fi . Then G splits over K (Lemma k.l)

G = KA , K n A = 1 .

Here, by the remarks above, A is nilpotent and centre-by-finite; the

results of Baer [33 also show that A satisfies Min , the minimal

condition on subgroups. Now the condition (Z) ensures that the Sylow

p-subgroup of A centralizes the Sylow p-subgroup K of K ; hence

K is effectively a module for A , , the Sylow p'-subgroup of A ,
P P
satisfying the minimal condition on submodules.

Our problem is thus closely related to that of classifying those

modules over the integral group ring ZQ of a centre-by-finite p'-group

Q which satisfy Min-<? , the minimal condition on Q-submodules, and have

p-groups as their underlying additive groups. Modules with the latter

property will be called p-modules. We shall deal with this problem in

https://doi.org/10.1017/S0004972700046335 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046335


Modules and soluble groups 115

§2. Strictly speaking our results simply reduce the classification

problem to that of classifying the irreducible Z Q-modules; in the case

when Q is abelian this can be done quite easily (Lemma 2.5) • We shall

see that the indecomposable p-modules over Z<2 with Min-Q arise

naturally from the injective hulls of the irreducible ones, and our

results in §2 lean heavily on the properties of the injective hull of a

module as defined by Eckmann and Schopf [S] (see also [7], p. 38U et seq.,

or [75]).

A problem which arises naturally from the work in §2 is the

following: Let V be a ZG-module, where G is any group, and let V

be a minimal divisible group containing the additive group V of V , or

in other words a Z-injective hull of V . Under what conditions can the

ZG-structure of V be extended to 7 ?

This cannot invariably be done; for example, since a group of type

C has no automorphism of order p if p is odd, it cannot be done if

V is a cyclic group of order pd which is a non-trivial module for a

cyclic group of odd prime order p . In §3 we deduce easily from the

results of §2 that the extension can be carried out provided V is a

p-module and G is a countable locally finite p'-group (Theorem Bl).

This result is used to construct examples of soluble groups of any given

derived length which satisfy Min-n and have a series of finite length in

which all the factors are divisible abelian groups (Lemma 3.^). These

groups are p£-groups in the sense of [73].

Finally in §4 we deduce our classification of Z-groups from the

results of §2.

We are indebted to Dr M.C.R. Butler who suggested the possibility of

applying the theory of injective modules to the problems described above;

this resulted in a considerable simplification of our previous work.

2. Injective p-modules for centre-by-finite p'-groups

We begin by recalling the basic facts about injective modules which

we shall need (of. [7], p. 38k et seq., or [75]). Let R be a ring with

1 . By an i?-module we shall always understand a right i?-module on which
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1 acts as the ident i ty map. An i?-module X i s called infective i f

whenever U 5 W are i?-submodules then every i?-homomorphism of U into

X can be extended to W . This is equivalent (but not immediately) to the

requirement that X be a di rect summand of every .fl-module which contains

i t . If V i s an arbi t rary i?-module then an injective hull of V (in the

category of i?-modules) i s an .ff-module V sa t isfying:-

( i ) V i s in jec t ive , and either

( i i ) no proper submodule of V containing V i s in jec t ive , or

( i i ) ' V i s an essent ia l extension of V .

Here a module W is said to be an essential (or related) extension of a

submodule U if every non-tr ivial submodule of W meets U

non- t r iv ia l ly . I t was shown by Eckmann and Schopf [S] that every .ff-module

V has an inject ive hull V which i s unique in the sense that if V* i s

another injective hull of V then there i s an isomorphism from V to V*

extending the ident i ty map on V .

We shall need the following fact:

LEMMA 2.1 . Let R be a ring with 1 , let V be an B-modute and

let V be an injective hull of V . Suppose V = © V where each V

is an R-submodule of V . If either

(i) A is finite, or

(ii) R satisfies the maximal condition on right ideals,

then V = © V. j where V. is an injective hull of V. .
A A A

AeA

Proof. We can embed V in a module W = © W , where each W is
, , A A
XeA

an injective hull of F, ; it will suffice to show that W is an
A

injective hull of V . How W is injective ([75], Theorems 5 and 6) and

so we need only show that W is an essential extension of V . If this is

not the case then there is a non-zero element w of W such that

whenever r t. R and tfr f 7 then wr = 0 . We may express w in the

form w = w, +...+&;•, (o ̂  a, € W. , X. + X . if i + j) and

\ \ h h v °
suppose k is minimal with respect to w having the desired property.
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Now 0 # U, r € 7, for some r € R . Consider (w-w, )r . If it is zero

then ur = u. r , a non-zero element of V . Hence fu-u, }r + 0 , and by

the minimality of k we have 0 # (u-wx ) M f 7 for some s t R . Hence

0 # wrs = fw-w, )rs t u, rs f P , which is a contradiction.

Notice that Lemma 2.1 holds in particular when R is the integral

group ring of a finite group.

Now it is not difficult to see that every injective if-module U is

divisible in the sense that Ud = U for every element d of R which is

not a zero-divisor {of. [77], Theorem 3.1). We shall call an i?-module V

1-divisible if the'additive group V of V is a divisible group. We

then have immediately

LEMMA 2.2. Every injective iG-module is 1-divisible.

We shall now see that under certain circumstances the converse is

true, and that sometimes the injective hull V of a ZG-module V has for

its additive group a minimal divisible group containing V . This cannot

happen when V is cyclic of order p 2 and G is cyclic of odd prime

order p , as we have already remarked. Furthermore if G is any infinite

group, D is any non-trivial divisible group, D is the base-group of the

restricted wreath product D wr G , and V = [D, G] , then V is

Z-divisible but is not ZG-inJective since it is not complemented by a

ZG-submodule of D . Thus in this case the injective hull of V does not

have for its additive group a minimal divisible group containing V .

If p denotes a prime (as it always will) and V is any abelian

group we denote by v\p J the set of elements v t V satisfying p v = 0

(where k > 0 is an integer). If V is in addition an i?-module then

V[p ] will be an #-submodule of V .

LEMMA 2.3. Let Q be a centre-by-finite p'-group and let V be a

p-module over 1Q . Suppose that either

(i) Q is finite, or

(ii) V satisfies Min-Q .
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Let V be an injeetive hull of V . Then

(a) V is a p-module and V[p] = V[p] ,

(b) V is injeetive if and only if V is 1-divisible.

For the proof we shal l require the following lemma, which i s a

straightforward consequence of a result of Kovacs and Newman [72]. We

shal l ca l l a module monolithic i f the intersection of i t s non-zero

submodules i s again non-zero.

LEMMA 2.4. Let Q be a oentre-by-finite p'-group, let V be a

TQ-module and let W be a submodule of V . Suppose that W is a

p-module and is the direct sum of finitely many monolithic submodules, and

suppose further that W is a direct sunmand of V as an additive group.

Then W is a direct summand of V as a iQ-module.

Proof of Lemma 2.3 (a). In case (i) i t i s clear that every element

of V[p] l i e s in a f in i t e submodule of V[p] . I t then follows by

Maschke's Theorem that V[p] i s generated by i t s irreducible submodules

and so i s the direct sum of a selection of them. In case (ii) we find that

i f V # 0 then V[p] contains an irreducible submodule, and th i s i s a

direct summand of V[p] by Lemma 2.k. By applying th is argument to a

complementary submodule and continuing in the same way, we find that V[p]

i s in th i s case the direct sum of f in i te ly many irreducible submodules.

Now V i s c lear ly an injeet ive hull of V[p] and so in either case Lemma

2.1 allows us to assume that V is i r reducible.

We then have V 5 V[p] . Since V i s certainly a direct summand of

the additive group of V[p] , Lemma 2.U shows that V i s a direct summand

of the ZS-module V[p] . But V i s an essential extension of V and so

V = V[p] .

It follows that the submodule V formed by the p-elements of V

is monolithic with V as its unique minimal submodule. Now by Lemma 2.2

V is Z-divisible and so it is a direct summand of the additive group of

V . Consequently, by Lemma 2.h again, V is a direct summand of V as

Z<2-module. It then follows that V = V , completing the proof.

(b) If V is injeetive then it is Z-divisible by Lemma 2.2.
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Conversely suppose that 7 is Z-divisible, and let 7 "be an injective

hull of 7 . By (a) the additive group of 7 is a minimal divisible group

containing that of 7 , and so 7 = 7 . Hence 7 is injective.

We conclude this section by describing the structure of p-modules

with Min-Q over 1Q , where Q is a centre-by-finite p'-group. Let

{V. : X € A} be a complete set of representatives for the isomorphism

types of irreducible Z Q-modules. We view the 7, as ZS-modules and

P A

denote by ~V a ZS-injective hull of 7 . Let 7, (n) denote the

A A A

submodule of 7, formed by the elements v satisfying p v = 0

(n = 0, 1, ...) , and put 7.(<*>) = V^ . Then vAn) is determined up to

isomorphism by X and n ; notice also that by Lemma 2.3

VAn+l)/VAn) = 7A = 7,(1) , which is irreducible. It follows from this
A A A A

that the 7. (n) (n = 0, 1, . . . , °°) are the only submodules of 7 (°°) .
A " A

THEOREM A. Let Q be a centre-by-finite p'-group and let V be a

p-module over 1Q . Then V satisfies flin-Q if and only if V is a

direct sum of finitely many submodules each isomorphic to some 7, (n)
A

(1 < n 5 °°) .

If V satisfies Mxn-Q and V is expressed in two ways as the

direct sum of indecomposable submodules, then there is an automorphism of

V mapping the first decomposition onto the second.

Since V.(n) is isomorphic to 7 (m) if and only if X = y and
A u

m = n it follows that the p-modules over 2Q with Min-Q are classified

by the functions of finite support from the set of pairs (X, n)

(X d A , 1 S n £ °°) to the non-negative integers.

Proof of Theorem A. From our remarks preceding the statement of

Theorem A it follows that each ^i(") satisfies Min-Q ; hence any finite

direct sum of such modules also satisfies Min-Q .

Conversely suppose that 7 satisfies Min-Q . If 7 is not

expressible as stated then among the submodules of V which are not so

expressible there is a minimal one. It thus suffices for the proof to
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assume that, while every proper submodule of V is expressible in the

manner stated, V itself is not, and to obtain a contradiction. This

assumption implies that V is indecomposable.

Let W be the maximal divisible subgroup of V and suppose first

that W # 0 . Then W is a submodule of V , and it follows from Lemma

2.3 that y is injective. Consequently W is a direct summand of V

and so V = W . However Lemma 2.k shows that W[p] is the direct sum of

finitely many irreducibles, and Lemma 2.1 then shows that W is the direct

sum of the injective hulls of these irreducibles. Therefore V is a

direct sum of submodules of type V (°°) , which is a contradiction. We
A

therefore have that W = 0 .

By the minimal condition the chain V > pV 2 p2V 2 . . . must become

stat ionary after f in i t e ly many steps. Since V contains no non-tr ivial

d iv i s ib le subgroup i t follows that p V = 0 for some n , which we suppose

chosen as small as possible. Then p V # 0 and so p V contains an

irreducible submodule U . There i s an isomorphism of U onto some V ,
A

and this may be extended to a homomorphism <j> of V into the injective

module ^x(°°) • Now pn~X(V4>) = [pn~1v)<$> + 0 , and so VQ has exponent

p precisely. Hence V<p = VAn) . Let K be the kernel of <p . Then

V/K , as an additive group, is the direct sum of cyclic groups of the same

order p . Such a group is free in the category of abelian groups of

exponent dividing p ; hence K is a direct summand of V as an

additive group. Also, by the minimality of V , K is the direct sum of

finitely many submodules of the type ^i(^) • Since these are all

monolithic, Lemma 2.k shows that K is a direct summand of V as a

module. This contradicts the indecomposability of V and establishes the

result.

To establish the final statement if suffices, by a well-known version

of the Krull-Schmidt Theorem due to Azumaya [1], to show that in the

endomorphism ring of each ^ ( n ) > n - 1 » t n e suin °? t w o non-units is a

non-unit. Since V.(n) has no proper submodule isomorphic to itself,
A
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every such non-unit has a non-trivial kernel, which must contain the unique

minimal submodule of V An) . This makes it clear that the sum of two such
A

non-units is a non-unit, as claimed.

As we have remarked, the irreducible Z Q-modules are quite readily

obtained when Q is abelian. In fact let Q be any periodic abelian

group, which need not even be a p'-group for these purposes, and let k

be an algebraic closure of Z . Let 9 be a homomorphism of Q into the

multiplicative group k* of non-zero elements of k . Then since the

elements of QQ are all roots of unity, it follows that the additive group

£„ generated by QQ is in fact a field. Let Kn be the Z ̂ -moduleu o p

whose underlying vector space is 'L with the Q-action given by

vg = v.gQ (u € V , g € Q) .

Since QQ generates La additively any Q-submodule of Kn is
o o

invariant under multiplication by any element of L. ; consequently K

o o

is irreducible. We have the following result , which is no doubt well

known.

LEMMA 2.5. With the above notation

(i) every irreducible Z Q-modute is isamorphia to some K ;

(ii) K. = K, if and only if L. = L, and 6 = <f)p for some element
o <p o (p

p of the Galois group of L over 1 .

Proof (i). Let V be an irreducible Z Q-module and let E = End^f ,

which is a division algebra over Z by Schur's Lemma. Since Q is

abelian, if g € Q the map gT given by

v(gi) = vg {v f V)

is an element of E and T maps Q homomorphically into the centre Z

of E , which is a field. Let L be the additive subgroup of E

generated by Qi . Then since the elements of Qx are roots of unity L

is a subring of Z which is algebraic over Z , and so it is a field.
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is an L-module and since QT 5 L we must have dim V = 1 . So V = VL
L

for some v € V . Choose a monomorphism ty of L into k and define

i$ (I € L) .

This gives a well-defined additive isomorphism of V onto the f ield Lty .

Let 9 = T<JI . Then 8 maps Q homomorphically into the multiplicative

group k* and Li\> i s additively generated by 66 . We now verify that

the map f i s an isomorphism of V onto K . In fact i f u t V and
6

g i Q we have u = vl for some uniquely determined I ( L , and

(ug)ip = [yL(gj)]\l> = (Z.gr)t|i = ty.gTty = uty.gQ ,

as required.

(ii) Suppose f i r s t that La = L. and 9 = 6p with p an element of

the Galois group of L, over Z . Then p i s an additive automorphism
8 p

of L. , and if x € LA and <7 € $ we have

so that p maps K isomorphically onto K^ .
9 8

Suppose conversely that K, = K. . Then since the kernel of cf> is
(p W

the kernel of the representation of Q determined by K we must have
<f>

that 6 and <\> have the same kernel. Therefore QQ = Q<j> . Now k* is a

direct product of groups of type C , one for each prime q t p ; it

follows that no two distinct subgroups of k* are isomorphic. Hence

Qd = Q<t> and so La = L, . Let p be any isomorphism of K. onto K^, •
0 <p (p W

Then p is an additive automorphism of £ and, since multiplication by

any non-zero element of L. determines an automorphism of K. , we may

0 6
choose p so that lp = 1 . Then for x 6 K and g £ Q we have

(x.g$)p = xp.gQ .

Putting x = 1 gives <J>p = 9 and so {x.g$)p = xp.gfyp , or

(x.y)p = xp.yp for x € L and y £ QQ . Since Q& generates L

addit ively i t follows that p preserves mult ipl icat ion, and so belongs to
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the Galois group of L. over Z
9 p

3. Embedding in Z-divisible modules

It follows in particular from the existence of the injective hull ,

that every i?-module can be embedded in an injective i?-module. In fact

this was first proved by Baer [Z]. Lemma 2.2 then gives

LEMMA 3.1 . Every ZG-moduZe can be embedded in a Z-divisible

ZG-module.

I t is natural to ask under what circumstances a ZG-module V may be

embedded in a Z-divisible ZG-module V whose additive group is a minimal

divisible group containing that of V . This is not always possible, as we

remarked in §1. Now the following facts are immediate from Lemma 2.3:

LEMMA 3.2. Let Q be a aentre-by-finite p''-group and let V be a

p-modute over 2Q . Let V be a minimal divisible group containing the

additive group of V } and suppose that either

(i) Q is finite^ or

(ii) V satisfies Min-Q .

Then

(a) V admits a iQ-module structure extending that on V ;

(b) if Kjj V2 are iQ-modules containing V in such a manner that

their additive groups are minimal divisible groups containing

that of V , then the identity map on V extends to an

isomorphism of Fj onto V2 •

We shall now show that (a) holds in considerably greater generality:

THEOREM Bl. Let Q be a countable locally finite p}-group, let V

be a p-module over 1Q , and let V be a minimal divisible group

containing the additive group of V . Then V admits a ZQ-module

structure extending that of V .

In this generality, however, (b) of Lemma 3-2 may break down, and the

resulting ZQ-module V is not always even determined up to isomorphism

by V . We shall not pursue this point at present, but hope to return to

i t in a later publication. We have no idea whether the restriction of
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countabi l i ty i s necessary.

Proof. Write Q = U Q. , where
i=0 %

is a tower of f inite subgroups of Q . We shall construct for each n 2 0

a map f : V x 1Q ->• V which makes V into a 1Q -module and is such

that

(1) (v, r)fn = vr [v i V , r € ZQn) .

We sha l l also arrange that each / extends / . These maps wi l l then

determine a map from V x 1Q to V which makes V into a ZQ-module in

the required manner.

Now / can cer ta in ly be obtained (and i s in fact uniquely

determined). Suppose that for some n - 0 , f has been constructed.

I t follows from Lemma 3.2 that there i s a Z-divisible 1Q .,-module W
n+±

containing the r e s t r i c t e d module VQ in such a manner that the

additive group of W is a minimal divisible group containing the additive

group of VQ (or the additive group of V , which is the same thing).

It further follows from Lemma 3.2 that the identity map on V can be

extended to a ZQ -isomorphism <j> of the 2Q -module [V, f J onto

W . The mapping / : 7 x ZQ + -• 7 defined by

{v^.r)^1 (v € V , r i IQ^

then makes V into a 1Q -module, extends / , and sat isf ies ( l ) with

n replaced by n + 1 . Thus the maps / can be constructed and the

resul t i s established.

THEOREM B2. Let Q be a countable locally finite p'-group and let

V be a p-module over 1Q satisfying Mln-Q . Then V can be embedded

in a 2-divisible p-module over 1Q which satisfies
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Proof. Let 7 be a ZQ-module containing 7 in such a manner that

the additive group of 7 i s a minimal divis ible group containing that of

7 . The existence of such a 7 i s given by Theorem Bl. Then

V[p] = V[p] and Theorem B2 follows from the following lemma:

LEMMA 3.3. Let V be an abelian p-group admitting a set ft of

distributive operators. Then V satisfies Min-fi 3 the minimal condition

on il-subgroupSj if and only if V[p] satisfies Min-ft .

Proof. It is clear that if 7 satisfies Min-ft so does V[p] .

Conversely assume that V[p] satisfies Min-ft and let

Vl^V2^ ...

be a descending chain of fi-subgroups of 7 . Consider the ft-subgroups

U i y m = P
m [ v i n 7 [ p m + 1 ] ) ( i = l , 2 , . . . ; m = 0 , 1 , . . . )

of V[p] . Clearly U. S U. , and U. 2 U. . . Thereforei ,m i+±,m i ,m * m4-n

U. > U. if j i t and n 2; m , and since V[p] satisfies Min-fi we

can choose i and m so that

(2) U. = U. for 3 > i and n 2; m .
%,m 3,n d

Now the map V '->• p u determines an embedding of v[p ~\/v[p ] in

V[p] and so each v\p ]/v{p ] s a t i s f i e s Min-fl . Therefore K[pfe]

sa t i s f i e s Min-fl and we may suppose i chosen in (2) so that in addition

vl n v{pT1] = V. n y[pm+1] whenever 3 ± i .

We now show by induction on ,.n that

(3) 7^ n 7(jpn] = V. n 7[pn] for a l l j 1 > t and n 2; m + 1 .

Indeed suppose (3) holds for some n i m + 1 and l e t 1; € 7. n V[pn ] •

Then by (2) pnv d U. = U. and so pHV = pnw for some

W f 7 . n 7[pn + 1] . Therefore pn{v-w) = 0 and

u - w € 7. n 7[pn] = 7 . n v[pn] . Hence U f V. ; as required.
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It follows from (3), and the fact that V = U V{pn] , that

V. = V. for all j i i , whence we have that V has Min-fi .

In [73] a group possessing a series of finite length in which the

factors are periodic divisible abelian groups was called a p^-group. We

extend Example it of [74] as follows:-

LEMMA 3.4. The class of pQ-groups satisfying Min-n contains

groups of any prescribed derived length.

Proof. The construction is similar to that of [74]. Suppose that we

have constructed, for some integer n 2 1 , a pQ-group G which

satisfies Min~n , is a ir-group for some finite set 7r of primes, and is

in addition monolithic with monolith M . As G\ we may take a group of

type C ^ , where q is a prime. Let x be an element of prime order

p ^ IT , and let X be the .base group of (x) wr G = W . There is a chief

series of W through X . If M centralized every factor below X in

this series it would centralize X itself since X is a p-group and

p ^ 7T . Consequently M fails to centralize some such factor, which then

furnishes a faithful irreducible p-module V for G . It follows from

Theorem Bl and Lemma 3.3 that there is a p-module V for G which

satisfies Min-G and is such that V = V[p] . Let G ., be the
n ^ n+X

semidirect product VG . Then G is a p£ group with Min-n and is

monolithic with monolith V . It follows easily that G has derived

length n+X exactly.

4. Classification of Z.-groups

Our aim in this section is to classify, up to isomorphism, groups in

the class Z. , the class introduced in §1. We shall classify these groups

in terms of nilpotent centre-by-finite groups with Min and irreducible

modules for such groups. A result which will be of fundamental importance

for our classification is the following:

LEMMA 4.1. Let G d Z, . Then G splits over G^ and the
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N N
complements to G= are conjugate in G . G/G= is centre-by-finite.

Our proof of Lemma U.l will depend on properties of the class ]£

introduced in [9]. We recall that a locally finite group X belongs to £

if and only if X has a series of finite length with locally nilpotent

factors and every subgroup of X has conjugate Sylow (that is, maximal)

ir-subgroups for all sets TT of primes.

LEMMA 4.2. Let G be a soluble group satisfying Min-n . Suppose

that G contains a normal subgroup of finite index which is

'nilpotent-by-locally nilpotent. Then G i £ .

Proof. By Baer's Theorem [4] G is locally finite. Since the

condition Min-n is inherited by normal subgroups of finite index [76],

and since the class IJ is closed under extensions by finite soluble groups

([70], Lemma 6.6) we may assume that G contains a normal nilpotent

subgroup H such that G/H is locally nilpotent. Then G/H is a locally

nilpotent group satisfying Min-n . Such groups satisfy the minimal

condition on all subgroups ([6], Corollary k.6) and so are countable and

abelian-by-finite. Therefore, arguing as before, we may suppose that G/H

is abelian.

Let X be any subgroup of G and let K be the Sylow ir-subgroup

of H . Then XK/K = X/XnK and, since X n K is a normal ir-subgroup

of X , the conjugacy of the Sylow ir-subgroups of XK/K implies the

conjugacy of those of X . We may therefore assume that K = 1 .

Let S and T be Sylow ir-subgroups of X . We shall now show that

5 and T are conjugate in X by induction on the nilpotency class c

of H . If c = 0 then H = 1 , X is abelian, and S = T . Assume

then that e > 0 and let Z be the centre of H . We may assume by

induction that X contains an element x such that (s^Z/Z, TZ/z\ is a, TZ/z\

TT-group, U/Z say. How U/Z must be countable and so U = ZW for some

ir-subgroup W of U (see for instance [70], Lemma 2.1). Let L be any

subgroup of W and let F be any finite subgroup of L . Then

CAF) = Z n CAHF) , which is normal in G since G/H is abelian.

Therefore by Min-n we cc.n choose F so that C_(f) is minimal among

the centralizers in Z of the finite subgroups of L . Then clearly
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Cr7(F) = CAL) . It follows from Lemma U.3 of [/0] that every countable

subgroup of U containing W has conjugate Sylow ir-subgroups, and hence

from Theorem B of [J0] that every countable subgroup whatsoever of U has

conjugate Sylow ir-subgroups. Therefore & and T are conjugate in the

group they generate, which establishes the lemma.

Proof of Lemma 4.1. We have by Lemma k.2 that G £ IJ . Let K be

the uniquely determined normal subgroup of G which is minimal subject to

the condition that G/K is locally nilpotent. Then K is abelian. By

[9], Theorem U.12, G splits over K and the complements to K in G

are conjugate - in fact they are the basis normalizers of G . We shall

show that K = G== . Now it is clear from (Z) (in §1) that every

p-subgroup of G is nilpotent. Since G/K satisfies Min , as we have

seen, and is therefore countable, every p-subgroup of G/K is the image

of a p-subgroup of G ([70], Lemma 2.1). Therefore the Sylow

p-subgroups of G/K are nilpotent and so G/K is nilpotent. Hence

Finally, since it is a nilpotent group satisfying Min-n , G/K is

centre-by-finite by a theorem of Baer [3].

Lemmas U.I and k.2 are generalizations of Theorem 3.5 and 5.6 of

[74].

Now it follows from Lemma U.I that in trying to classify groups in

the class Z_ it is sufficient to restrict ourselves to considering those

groups G € Z_ such that G/Gr= is isomorphic to a given nilpotent

centre-by-finite group A satisfying the minimal condition.

Let A , be the Sylow p'-subgroup of A and let {V. ; X e A }
P "• P

be a complete set of representatives for the isomorphism classes of

non-trivial irreducible Z A .-modules. We assume the sets A to be

P P P
pairwise disjoint, as we may. Notice that if A is actually abelian then
the V may be constructed by the method of Lemma 2.5- ForA

n = 1, 2, . .. , °° let VAn) denote the A ,-module obtained from V as
A p A

described before Theorem A, and view each V (n) as an 4-module by
A
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allowing A to act trivially. Let A = U A and let X = X U ) denote

P P
the set of all external direct sums of finitely many modules V^M

(n = 1, 2, . . ., °° ; X € A) . We admit a zero module to X as the direct

sum of the empty set.

An equivalence relation is introduced on X as follows. First, if

X € X and a € Aut4 , let Ja be the 4-module which has X as its

underlying additive group and which has the 4-action defined by

(x, a) -»• xiaa) {x € X , a £ A) .

Now if X and Y are elements of X we define X "v* Y to mean that

X = Ya for some a £ AutA ; we shall say that X is an automorphism

conjugate of Y . The relation of automorphism conjugacy is easily seen

to be an equivalence relation on X .

Finally for each X € X let XA denote the semidirect product of X

by 4 , that is the group consisting of all pairs {x, a) , where x d X ,

a € A , with the multiplication (x, a){x', a') = (x+x'a~ , aa') . When

appropriate we shall identify X with a subgroup of XA in the usual

manner. We now have

THEOREM C. With the above notation, if X € X then H = XA Z Z, ,

flS = x and H/lfi = A . If G Z £ and G/(^= = A then G = XA for some

X € X . If X, Y € X then XA = YA if and only if X ^ Y .

Thus there is a natural one-to-one correspondence between the

N ~
isomorphism classes of groups G in Z_ with G/G^= = A , and the

automorphism conjugacy classes of elements of X . We shall have more to

say about the relation of automorphism conjugacy after proving Theorem C.

Notice that, with the notation of Theorem C, H will be

quasi-radicable if and only if A is quasi-radicable. For if A is

quasi-radicable and n > 1 then the subgroup generated by the n-th powers

of elements of H contains A and so, being normal in H , contains

[X, A] = [flS, A~] = flS = x . Since A is in any case centre-by-finite it

follows that H is quasi-radicable if and only if A is abelian and

radicable (that is, every element has an w-th root for all n > l).
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Proof of Theorem C. If V is any irreducible module in X then
A

since V is non-trivial and irreducible the submodule \v , A~\

additively generated by the elements v - va (v € V. , a € A) must be

the whole of V . It then follows easily, since VAn+l)/VAn) = V if
A A A A

n is finite, that [vAm) , A~\ = VAm) for any m = 1, 2, . . . , °° . Hence

[X, A] = X for any X € X . Since XA/X = A , which is nilpotent, this

means that X = (XA)= .

Now let G € g, and suppose that C/G^ = A . If G^ = 1 then G = A

and taking X to be the zero module there is nothing to prove. Thus we

may assume that Cr= ̂  1 . Then by Lemma U.I we have, if K = G=

(U) G = KA,Knl=l

for some A = A . G is locally finite and the condition (Z) ensures that

the Sylow p-subgroup A of A centralizes the Sylow p-subgroup K

of the abelian group K . Therefore if we view K as an J i-module in

the natural way it satisfies Min-A ( . By Lemma U.I A , is

centre-by-finite and so by Theorem k K is a direct sum of finitely many

submodules of the type W{n) , where W is some irreducible Z A ,-module.

Now since K is a non-trivial abelian group it follows from (U) that

K = [K, A] . Hence K = [K A_,] and

(5) WM = [W(n), Apl] .

Consequently W must not be a trivial module. Otherwise, since W

determines W{n) up to isomorphism W(n) would be trivial, in

contradiction to (5).

Let a -*• a be an isomorphism of A onto A . We view K as an

yl-module by defining

xa = ~a~ xa (a; € K , a £ A) .

It now follows from the remarks just made that K is isomorphic to some

module X € X . Let <|> be an ^-isomorphism of X onto K . Then the

https://doi.org/10.1017/S0004972700046335 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046335


Modules and soluble groups 131

map (x, a) -*• xty.a maps XA isomorphically onto G .

Finally let X, Y i X . If X ^ Y then X = Ya for some a d AntA .

Let IJJ "be an ^-isomorphism of X onto Y . Then the map

(x, a) •* {xty, aa) maps XA is omorphi c ally onto YA . On the other hand

suppose that XA = YA and let <(> be an isomorphism of XA onto YA .

We have already seen that X = (XA)= and J = (H)= and so <j> maps X

onto J . Since Y is abelian the complements to it in YA are conjugate

under the automorphism group of YA ; in fact in this case, by Lemma k.l,

they are conjugate in YA itself. We may therefore assume that (J> maps

the elements of the form (0, a) in XA to the elements of similar form

in YA . Thus cj) has the form (x, a) •*• (XIJJ, aa) where f is an

additive isomorphism of X onto Y and a is a bijection of A onto

itself. It is then easy to verify that a € AutA and ^ determines an

isomorphism of X onto Y . Therefore X "" Y , which completes the

proof of Theorem C.

We notice, for example, that if A is a non-trivial locally cyclic

p'-group then there is, up to automorphism conjugacy, exactly one faithful

irreducible Z 4-module. For by Lemma 2.5 every such module has the form

KQ for some monomorphism 8 of A into an algebraic closure k of

Z . The existence of such a 6 follows since A is a locally cyclic

,e-l
p'-group, and clearly K, = Ka . Consequently there is, up to

isomorphism, exactly one quasi-radicable metabelian group with Min-n of

the form NA , where N is a normal p-subgroup faithfully and

irreducibly transformed by a given non-trivial radicable locally cyclic

p'-group A . Such groups were first constructed by Car in [5].

Let V (n) denote that member of X which is given as the direct
A a

sum of m copies of V.(n) (m > l) . Then, since each member X of X
A

is given together with a direct decomposition, X determines uniquely a

set
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S(X)
r m

={V (nj1, ..., V (nk

where k 2 0 and the pairs (X̂ ., n.) are all distinct. Now if elements

X and Y of X are isomorphic then their p-components are isomorphic

as A ,-modules for each prime p ; Theorem A then shows that this

happens if and only if S(X) = S(Y) .

LEMMA 4.3. Let X, Y € X and suppose

and

Then X ^ Y if and only if

(i) k = I ,

(ii) there exists an automorphism a of A and a permutation a of

{1, 2, . . . , k] such that V. = if1 , n. = s . , m. = t.

for 1 2 i 5 k .

Proof. Suppose f i r s t tha t X ^ Y . Then X = Ya for some a € Aut4

and, since (U © W) = V © W for any i4-modules U and W , we have

(6) V^njl © ... © vXjin/* = ( ^ ( . j f 1 © . -

Since the modules F, [n •) and y (s . ) a are indecomposable it follows

from Theorem A that there is a one-to-one correspondence between the

summands of this form on the two sides of (6) such that corresponding

summands are isomorphic. Now V (s.) = V (s .) if and only if i = j ;
Vi V ^ *

consequently to each i with 1 5 t S J there i s a uniquely determined
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integer io with 1 £ io £ I. such that V-. (n.) = V [s. )a . It
i io

then follows that n. = s. , m. = t. , k = I , and that a is a

permutation of {1, 2, . . . , k} . Clearly V, = V

A . U .

Conversely suppose that ("ij and (ii) hold. Then by Theorem A

V (s. ) must be isomorphic to some module of the form V.{n) , and

consideration of the minimal submodules shows that the module required

must be V, (n.) . We then easily obtain (6) and hence that X = Y , as
A . u

required.

Let us call an abelian p-group homogeneous if it is either homocyclic

or divisible. As an application of Theorem C and Lemma U.3 we prove

COROLLARY 4.4. Let Gx and G2 belong to £ . For i = 1, 2 let

K. = (G.)= , let N. be the product of the minimal normal subgroups of

G. contained in K. 3 and let A. be a complement for K. in G. .
1s 1s Is Is 1s

Suppose that, for each prime p , the p-component of K. is homogeneous

of exponent p . Then Gx = G2 if and only if

(i) nx(p) = n2(p) for each prime p ,

(ii) NXAX = N2A2 .

Proof. If Gx = G2 then any isomorphism from Gx to G2 maps Kx

onto K2 , and as in the argument of Theorem C there exists an isomorphism

which maps Ax onto A2 . Such an isomorphism maps NXAX isomorphically

onto N2A2 . Thus the necessity of the conditions is clear.

To see the sufficiency we notice first that by Theorem C the minimal

normal subgroups of G. in K. are non-central. Hence N. = Ql/., A.~\ ,

and so H. = [N.A.)= . Therefore it follows from (ii) that Ax =

Theorem C now allows us to assume that G. = X.A , where A is a
t 1

2

non-trivial nilpotent centre-by-finite group with Min and X . € X =
"V
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(•£ = 1, 2) . Since the p-components of X\ are homogeneous,

where X X, are all distinct and s. = n (p) if V* is a

p-module. The subgroup tl\A\ of Cj corresponds naturally to Y\Ai

where £u,j = < K, (l) , . . . , F, (l) > . Thus k is the number of1 I \ \ J

distinct isomorphism types of ,4-modules in Yi . It now follows from (ii)

that S ^ O = y [u ) 1 , ..., V (u,) > , where p , ..., u, are all

distinct. Since YyA = -^2^ , Theorem C gives 7j ^ ^2 • Hence by Lemma

U.3 there is an automorphism a of A and a permutation O of

{l, 2, ..., k) such that V, = 1 ^ and t. = W. . Now s. = n, (p)

and U-
a
= np(p) ' where p is the prime such that both V, and V

are p-modules. Hence by (i) s. = u. . Lemma 1*.3 now shows that

# 1 ^ X 2 , and Theorem C gives X\A = X2A , which completes the proof.
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