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GLOBAL EXISTENCE OF SOLUTIONS TO
DEGENERATE WAVE EQUATIONS WITH DISSIPATIVE TERMS

MOHAMMED AASSILA

In this paper we prove the global existence and study the asymptotic behaviour of
solutions to a degenerate wave equation with a nonlinear dissipative term.

1. INTRODUCTION

Nonlinear vibrations of an elastic string are written in the form of partial integro-
differential equations

for 0 < x < L, t > 0, where u is the lateral deflection, x the space co-ordinate, t

the time, E the Young's modulus, p the mass density, h the cross section area, L

the length, p0 the initial axial tension, and / the external force. Kirchhoff [10] first
introduced (1.1) in the study of the oscillations of strechted strings and plates, so that
(1.1) is called the wave equation of Kirchhoff type after him. Moreover, we call (1.1) a
degenerate equation when po = 0 and a non-degenerate one when po > 0. Concerning
the solvability of (1.1), the analytic case is rather well known in general dimension, see
for example [3, 17, 15, 2, 6, 7, 5] among others. On the other hand, in the case of
Sobolev space we know only local solutions in time solvability, see for example [1, 4, 8,
9, 11, 12, 18, 19, 20]. So far, there has been no work to determine the global solutions
in time existence in Sobolev spaces, because the problem is given by an interior initial
boundary value problem for a hyperbolic equation, the solutions of which have a non-
decay property. As well known now, deriving solutions global in time solvability deeply
depends on the decay structure of the solutions to the corresponding linearised problem
of (1.1). Therefore, we are led naturally to the equations of Kirchhoff type with a
dissipative term which guarantees the decay properties of the solutions to the linearised
problem. To be precise, in this paper we are interested in the following problem

u"-\\Vu\\2,Au + g(u') = 0 in ft x [0, +oo),

(P) { u = 0 on T x [0, +00),

u(x,0) = UQ(X), U'(X,0) = u\(x) in Ci,
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where fi is a bounded domain in Rn with smooth boundary F and g : R -> R is a

non-decreasing continuous function such that

(1.2) 5(0) = 0,

(1.3) g'(x) > T > 0,

(1.4) \g(x)\ < ci|i |«,

c\ and T are two positive constants and q > 1 is such that (n — 2)q < n + 2.

Concerning global existence of solutions to quasilinear wave equations, the degener-

ate case is more difficult to handle than the non-degenerate case, but when the equation

includes some dissipative terms u', — An', A2u, et cetera, we may expect some decay

properties of solutions under suitable assumptions and these are useful for analyses of

solutions global in time solvability. When the damping term is linear, that is, g(x) = 6x,

problem (P) was investigated by Nishihara-Yamada [16] and Mizumachi [13]. In this

paper, we prove an existence and uniqueness theorem and study the asymptotic be-

haviour for solutions to (P) under the hypotheses (1.2)-(1.4).

Throughout this paper the functions are all real valued and the notations are as

usual, in particular we shall denote by || • ||p (p > 1) the usual Lp-norm. Our main

results are

THEOREM 1 . 1 . (Existence and uniqueness.) Suppose (1.2)-(1.4) hold and (u0, ui)
(HQ n H2) x (H& n L2q) with UQ(X) / O f o n g f l . Then there exists a positive number

e depending on r, ||Vuo||2 and \\ui\\2 such that if:

(!-5) 77^ i j 2 + A u O 2 < £

IIVU0II2

then (P) admits a unique weaJc solution u which satisfies \\Vu(t)\\ > 0 for all t £

[0,+oo).
THEOREM 1 . 2 . (Energy decay.)

In addition to (1.2)-(1.5), assume that

(1.6) \g{x)\ <c2\x\ if \x\<l.

Then the total energy

E(t) = \\u'(t)\\2
2 + ±\\Vu(t)\\l

satis6es

E(t)< C 3 ^ ° ) f0raU t > 0 ,
(1 + t)2

where c2 and C3 are positive constants.

The contents of this paper are as follows. In Section 2, the existence and uniqueness

of a solution are proved (Theorem 1.1). In Section 3, asymptotic behaviour is established

(Theorem 1.2).
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2. E X I S T E N C E AND UNIQUENESS

It is well known tha t the operator - A with Dirichlet condition has an infinite

sequence of eigenvalues (A2) such that

0 < A2 < A2 < • • • < A2 < • • • -¥ +oo as j -> oo,

and that there exists a complete orthonormal system (WJ) in L2(fl), each WJ being an

eigenvector corresponding to A2. Therefore, each u £ L2(fi) has a Fourier expansion

in L2{Q) :
oo / oo v 1/2

u = y UjWj with 11ix112 = i y Uj i

We apply the Faedo-Galerkin procedure. For each m > 1, we take an approximating
solution um(t) = Y^j=\9jm{t)wj as a solution of the initial value problem for the
following system of ordinary differential equations:

(2.1)

(2.2) um(0) = uOm = 5 3 ("o, WJ)WJ, uOm -> u0 in H^ n i/"2

(2.3) u'm{0) = ulm = V (ui, iuj)^i, «im -> «i in H] n L29,

where V^ is an m-dimensional vector space spanned by {wi, • • • , wm}. By virtue of

the theory of ordinary differential equations um(t) can be defined on some interval

[0, tm). In the next step, we obtain a priori estimates for the solution um(t), so that it

can be extended outside [0, tm), to obtain one solution defined for all t > 0 .

(i) A PRIORI ESTIMATE 1: Taking w = 2u'm(t) in (2.1), we have

l l W f i ) fQ9(m())m() = 0.

Integrating in [0, t], t < tm, we obtain

(2.4) \\u'm(t)\\l+ 111^^)111 +2 [ [ g{u'm(s))u'm(s)dsdx
*• JO JQ

Hence,

(2-5) \\u'm(t)\\2,\\Vum(t)\\2<c.
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Here and after we denote by c various positive constants independent of m and t.

From (2.4) we conclude that um(t) can be extended to [0,T) for any 0 < T < +oo.

Furthermore, we conclude from (2.4) and (1.4) that

(2.6) u'mg{u'm) is bounded in LX(Q x [0,r]) ,

(2.7) g(u'm) is bounded in L ^ (Q x [0,T]).

(ii) A PRIORI ESTIMATE 2: Let us define

A simple computation shows that

p, (t) = ( < . - ( n i - 1 + | |Vtim^)Atim,-2Ai4) _ 2a(Vum,Vu'm)\\Vu'm\\l

i \\V\\2 2(

2a(Vixro,Vi4)||V<||l

Since

(2.8) F^(t) + (2T - cfm(t)1/2)fm(t) < 0,

it is easy to see that Fm(t) < Fm(0) for 0 < t < t* if fm(t) < {T/C)2 for 0 < t < t*.

Assume F(0) < ( T / C ) 2 / 2 . Since

as m —> +oo,

it follows that ^ ( 0 ) < (T/C)2 for sufficiently large m, and therefore fm(t) < Fm(t) <

(T/C) . Thus, taking e = (T/C) /2 in (1.5) we may get t* = oo. Integrating (2.8) over
[0, t), we obtain

Fm(*) + T / fm(x)dx< ( - ) ,

which implies

(2.9)

(2.10) " " " " " 2 1 / 2 < c,

(2 11) / — — — ~ d s < c .
Jo m-i + ||VUm(S)ll2,
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(iii) A PRIORI ESTIMATE 3: Taking w = u'^(t) in (2.1) and choosing t = 0, we obtain

that

K(0 ) | | 2 < ( ^ + \\VuOm\\l)\\AuOm\\2 + \\g(ul

Since g{uim) is bounded in L2(Cl) by (1.4), hence u^(0) is bounded in L2(Q,). Next,
by differentiation of (2.1) and multiplication with 2umit) we obtain

= 2(V«m(t), Vt4(t))||Vt4(t)||; + 4(Vum, Vu'J x f <
Jn

< 2||Vum||2||Vu^||| + 16||Vum||5||V<|||||Aum||| + ||u^||

and then

l̂

Jn
where

gm(t) =

Whence

IKWlfi + ^ m ( t ) \ \ 2
2 +

+ I||Vnm(0)||^+ \\Vum(0)\\l\\Vu>m(0)\ty +eTj\m{s)ds

for all t € R+, and we deduce that

(2.13) u'n{t) is bounded in L°°(0,r;I,2).

(iv) PASSAGE TO THE LIMIT: By applying the Dunford-Pettis theorem and the Riesz
lemma, we conclude from (2.5)-(2.7), (2.9)-(2.12) and (2.13), replacing the sequence um

with a subsequence if needed, that

(2.14) um -> u weak-star in L°° (0, T; Hi n H2)

(2.15) i i ^ u ' weak-star in L°°(0,T\Hl)

(2.16) u'n-^u" weak-star in L°° (0, T; L2)

(2.17) u'm -> v! almost everywhere in fix[0,T]

(2.18) giu'm) ->• x weak-star in L^q+1)/qin x (0,T))

(2.19) \\Vum\\lAum-^ ip weak-star in L°°(0,T;L2)
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for suitable functions u £ L°°(0,T; H% nH2),ip£L°°(0,T; L2) and x € I ( g + 1 ) / g ( f i x
(0, T)) . We have to show that u is a solution of (P). From (2.14)-(2.16) we deduce that

/ um(0)wjdx -> / u(0)vjjdx and / u'm(0)wjdx -> / u'(0)uijdz
./fi Jn Vn 7n

for any fixed j > 1. From (2.2)-(2.3) we deduce that u(0) = uo and u'(0) = Ui.

Now let us prove that tp — UVull^Au, that is,

Au m ->• | |Vu| | |Au weak-star in L°°(0,+oo;L2).

For v e L2 (0, T; L2), we have

(2.20) f (iP-\\Vu\\2
2Au,v)dt=

Jo

+ / \\Vu\\2(Aum-Au,v)d+ f (\\Vum\\2-\\Vu\\l)(Aum,v)dt.
Jo Jo

The first and second term in (2.20) tend to zero a s m - > +oo, and for the third one we
have

[
o

I
Jo

<c [ ( | |Vi im-
Jo

As (um) is bounded in L°°{0,T;HQ(CI)) and the injection HQ <-t L2 is compact, we

have um —» u strongly in L2(0, T\ L2), and hence

/ / {u'^-\\Vum\\lAum)vdxdt-^ I / (u" - \\Vu\\\Au)vdxdt
Jo Jn Jo Jn

a s m 4 +00 for each fixed v e Lq+1 (0, T; H&).

It remains to show that

rp rp

i i i f f ,
(2.21) / / vg(um) dxdt —> / / vg(u ) dxdt as m —t +00.

Jo Jn Jo Jn
It follows from (2.6) and Fatou's lemma that u'g(u') £ L1 (fi x (0, T ) ) . This yields

g(u') £ Lx(fi x (0 ,T)) . On the other hand, g(u'm) -» g(u') almost everywhere in

fix [0,T].
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Let E c Q x [0, T] and set

El := |(x,t) € £; <?«„(*,*)) < - / = } , 2̂ := £ - Eu

where \E\ is the measure of E.

If M(r) := inf < |x|; x € Rand |<7(a;)| > r >, then we have

Jjg(u'm)\dxdt < y/\E\+ ( M ( ^ p ) ) j B Kg(u'm)\dxdt.Jj\ ( (^p)) jB
Applying (2.6), we deduce that s u p m / B \g{u'm)\dxdt -> 0 as |.E| -> 0. From Vitali's
convergence theorem we deduce that ^(uJn) -» g(u') in L1(fi x (0,T)), hence

g{u'm) -* g(u') weak-star in L(q+^lq{9. x [0,T])

and this implies (2.2). Hence

/ [ (u"-\\S7u\\lAu + g(u'))vdxdt = 0, \/v e L"+1(0,T;H^).
Jo Ja

(v) ||Vu(£)||2 > 0 for 0 < t < +00: We need the following lemma

LEMMA .Ifv: [-T, T] -> H& n H2 is a weak solution of

f «"(t) - ||V«(t)||lAi;(t) + g(v'(t)) =0 -T<t<T,

\ v(0) = 0, v'(0) = 0,

then v(t) = 0 for te [-T,T].

P R O O F : Multiplying with 2v'(t), we obtain

and the integration of the above identity with (1.3) gives

Gronwall's inequality assures v'(t) = 0 and v(t) = 0 for t € [-T,T\. D

We now turn to the proof of || Vu(t)|| > 0, Vt > 0:

Let T be a point such that Vu(T) = 0. Since the a priori estimates imply

that | |Vu'(t) | |2/ | |Vu(t) | |2 is bounded, then Vu'(T) must be zero. Hence, the above

lemma implies that u(t) = 0 (0 < t < T), which contradicts u0 ^ 0. Thus we obtain

||Vu(t)|j2 > 0 for all t>0.

(vi) UNIQUENESS: The uniqueness is a consequence of the monotonicity of g and
Gronwall's lemma. We shall omit the proof since it can be obtained in a standard way.
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3. E N E R G Y ESTIMATE

For the proof of the energy decay, we need the following lemma

LEMMA. (Nakao [14].) Let (j>{t) be a bounded and nonnegative function on [0, oo)

satisfying

sup <fi1+r(s)<koU(t)-<j>{t + l)}
t<s<t+l

for r > 0 and k0 > 0. Then

T T V for '"Oi

with some constant c = c(r, ko, </>(0)).

We shall follow the method developed in [14], so we give here only the main steps

of the proof.

Taking the scalar product of the first equation of (P) with 2u', we have

(3.1) E'(t) + 2 [ u'g(u') dx = 0.
Ju

Integrating (3.1) over [t,t + 1], we have

(3.2) 2 / / g(u')u' dxds = E(t) - E{t + 1) (:= D{tf).
Jt Jn

Then there exist tx £ [t,t+ (1/4)], t2 € [t + (3/4), t + l] such that

(3.3) [ g(u'(ti))u'(ti) dx < W{t)2 for i = 1,2.

Taking the scalar product of the first equation in (P) with 2u and integrating it over

[ti,t2], we have from (3.2)-(3.3) that

(3.4) f2\\Vu(s)\\lds<c{D(t)2 + D(t) sup (Vu(a))2} (:= A{tf).
Jt\ t<s<t+l '

Using the Poincare inequality, we obtain from (3.1), (3.2), (3.4) that

E(t2) < —^— [ 2 E{s) ds < cA{t)2

<2 - H J^
and hence

/

t+i /•
/ u'g(u') dxds
Jn

< cA{tf < c{D{t)2 + D(t) sup
<• t<s<tt<s<t+l
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Using Young's inequality, we arrive at

sup E{sf'2 < cD(t)2 = c(E(t) -
t<s<t+l

Hence, Nakao's lemma gives
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